

May, 2019 SJ-FET

TSA65R190S3/TSK65R190S3 650V N-Channel Super-Junction MOSFET Gen-II

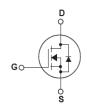
Description

SJ-FET is new generation of high voltage MOSFET family that is utilizing an advanced charge balance mechanism for outstanding low on-resistance and lower gate charge performance. This advanced technology has been tailored to minimize conduction loss, provide superior switching performance, and withstand extreme dv/dt rate and higher avalanche energy. SJ-FET is suitable for various AC/DC power conversion in switching mode operation for higher efficiency.

Features

- Multi-Epi process SJ-FET
- 700V @TJ = 150 °C
- Typ. RDS(on) = 0.16Ω
- Ultra Low Gate Charge (typ. Qg = 36.5nC)
- 100% avalanche tested

TSA65R190S3



TO-3P

TSK65R190S3

TO-247

Absolute Maximum Ratings

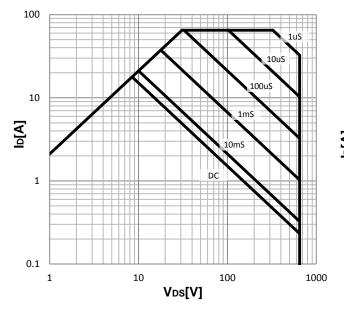
Symbol	Parameter	TSA65R190S3	TSK65R190S3	Unit
V _{DSS}	Drain-Source Voltage	650		V
I _D	Drain Current -Continuous (TC = 25°C) -Continuous (TC = 100°C)	20* 14*		Α
I _{DM}	Drain Current - Pulsed (Note 1)	65		Α
V _{GSS}	Gate-Source voltage	±30		V
E _{AS}	Single Pulsed Avalanche Energy (Note 2)	62.5		mJ
I _{AS}	Avalanche current, repetitive or not-repetitive (pulse width limited by Tj max)	4.5		А
dv/dt	Peak Diode Recovery dv/dt (Note 3)	15		V/ns
dVds/dt	Drain Source voltage slope (Vds=480V)	50		V/ns
PD	Power Dissipation (TC = 25°C)	250		
T _J , T _{STG}	Operating and Storage Temperature Range	-55 to +150		°C
TL	Maximum Lead Temperature for Soldering Purpose,	260		ಌ
	1/16" from Case for 10 Seconds	200		

^{*} Drain current limited by maximum junction temperature. Maximum duty cycle D=0.75.

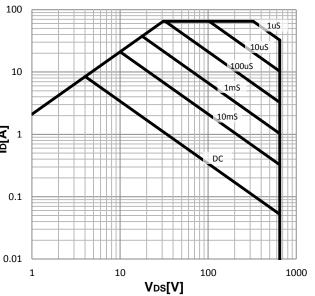
Thermal Characteristics

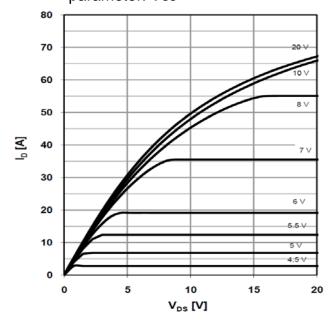
Symbol	Parameter	TSA65R190S3	TSK65R190S3	Unit
R _{0JC}	Thermal Resistance, Junction-to-Case	0.47	0.47	°C/W
R _{ecs}	Thermal Resistance, Case-to-Sink Typ.	0.5	0.5	°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient	65	65	°C/W

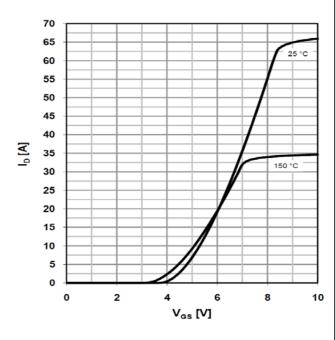
Electrical Characteristics TC = 25°C unless otherwise noted


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Off Characte	eristics					
BVDSS	Drain-Source Breakdown Voltage	VGS = 0V, ID = 250μ A, TJ = 25° C	650	-	-	V
		VGS = 0V, ID = 250μA, TJ = 150°C	-	700	-	V
ΔBVDSS/ΔTJ	Breakdown Voltage Temperature Coefficient	ID = 250μA, Referenced to 25°C	-	0.6	-	V/°C
IDSS	Zero Gate Voltage Drain Current	VDS = 650V, VGS = 0V -Tc = 125°C	-	-	1 100	μA μA
IGSSF	Gate-Body Leakage Current, Forward	VGS = 30V, VDS = 0V	-	-	100	nA
IGSSR	Gate-Body Leakage Current, Reverse	VGS = -30V, $VDS = 0V$	-	-	-100	nA
On Characte	eristics					
VGS(th)	Gate Threshold Voltage	$VDS = VGS$, $ID = 250\mu A$	2.0	3.0	4.0	V
RDS(on)	Static Drain-Source On-Resistance	VGS = 10V, ID = 10A	-	-0.16	0.19	Ω
Dynamic Ch	aracteristics					
Ciss	Input Capacitance	\/pa 400\/ \/aa 0\/	-	1805	-	pF
Coss	Output Capacitance	VDS = 100V, VGS = 0V, f = 1.0MHz	-	68	-	pF
Crss	Reverse Transfer Capacitance		-	2.1	-	pF
Qg	Total Gate Charge	VDS = 480V, ID = 10A,	-	36.5	-	nC
Qgs	Gate-Source Charge		-	8.7	-	nC
Qgd	Gate-Drain Charge	VGS = 10V (Note 4)	-	12.5	-	nC
Rg	Gate resistance	f=1 MHz, open drain	-	9.8	-	Ω
Switching C	haracteristics					
td(on)	Turn-On Delay Time	.,	-	38	-	ns
tr	Turn-On Rise Time	VDS = 400V, ID = 10A	-	39	-	ns
td(off)	Turn-Off Delay Time	$RG = 3.3\Omega$, $VGS = 10V$ (Note 4)	-	170	-	ns
tf	Turn-Off Fall Time		-	47	-	ns
Drain-Source	e Diode Characteristics and Maximum	Ratings				
Is	Maximum Continuous Drain-Source Dioc	de Forward Current	-	-	20	Α
lsм	Maximum Pulsed Drain-Source Diode Fo		-	-	65	Α
Vsd	Drain-Source Diode Forward Voltage	Vgs = 0V, Is = 20A	-	0.9	1.4	V
trr	Reverse Recovery Time	Voc - 0V Vpc - 400V	-	318	-	ns
Qrr	Reverse Recovery Charge	Vgs = 0V, VDs = 400V, Is = 10A, dIF/dt =100A/μs	-	5.5	-	μC
Irrm	Peak Reverse Recovery Current		-	24.9	-	Α

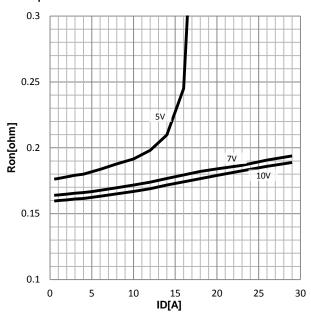
NOTES:


- 1. Repetitive Rating: Pulse width limited by maximum junction temperature 2. ID=I $_{AS}$, VDD=50V, Starting TJ=25 °C 3. I $_{SO}$ SID, di/dt \leq 200A/us, V $_{DD}$ \leq BV $_{DSS}$, Starting TJ = 25 °C 4. Essentially Independent of Operating Temperature Typical Characteristics

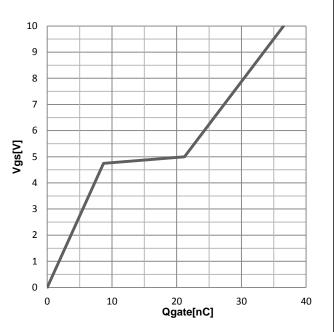

Safe operating area TC=25 °C parameter: tp; TO-220, TO-247

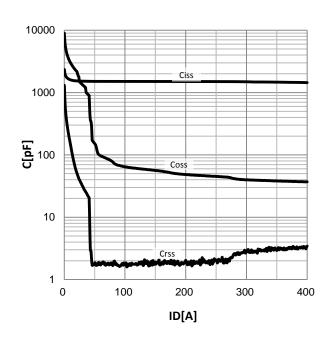

Safe operating area TC=25 °C parameter: tp; TO-220FullPAK

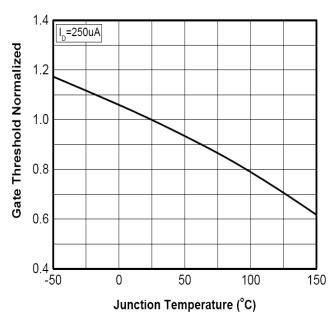
Typ. output characteristics T_j =25 $^{\circ}$ C parameter: V_{GS}



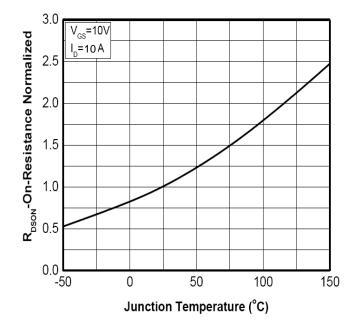
Typ. transfer characteristics



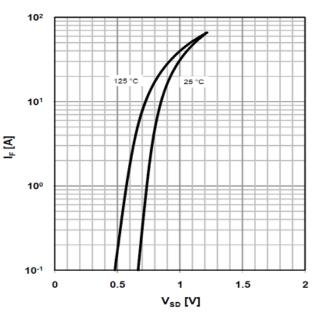

Typ. drain-source on-state resistance parameter: V_{GS}

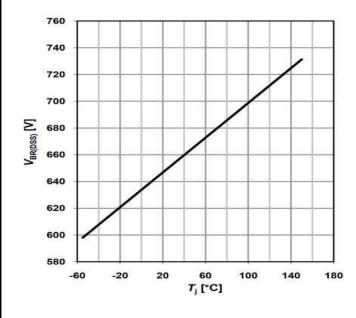

Typ. gate charge characteristics

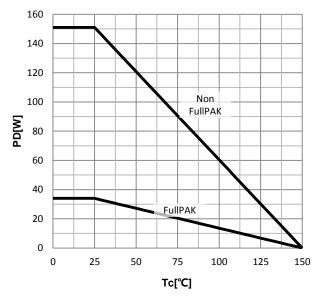
Typ. capacitances

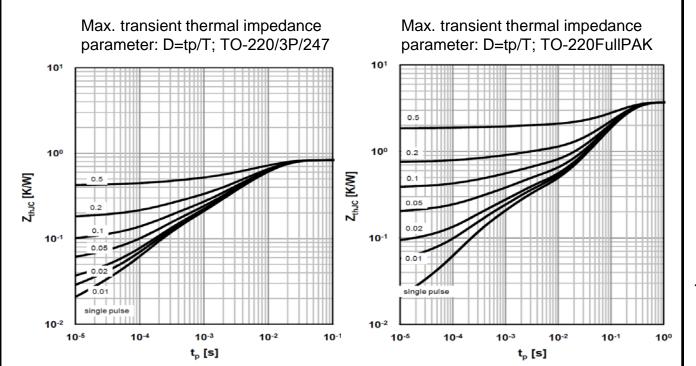


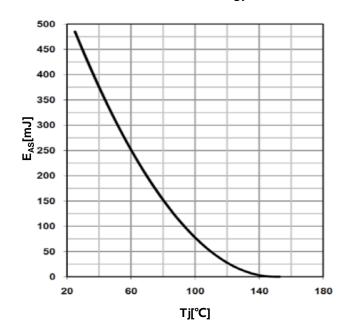
Normalized V_{GS(th)} characteristics

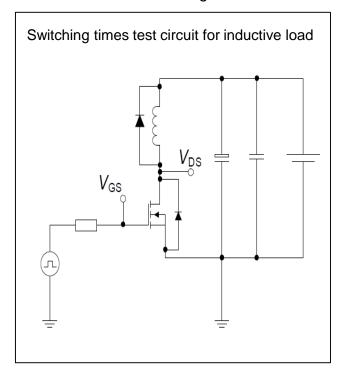


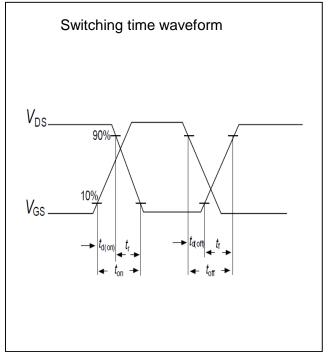

Normalized on resistance vs temperature

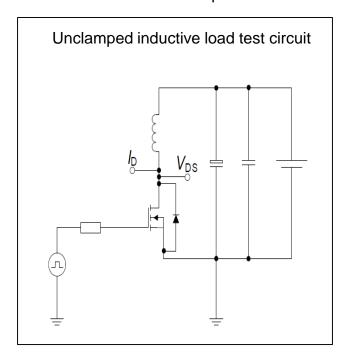

Forward characteristics of reverse diode

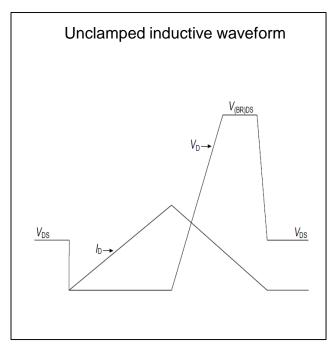

Drain-source breakdown voltage


Power dissipation

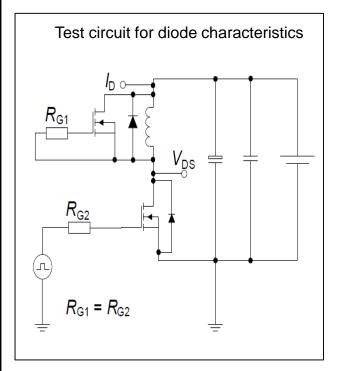


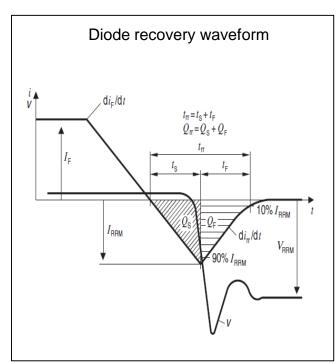



Test circuits


Switching times test circuit and waveform for inductive load

Unclamped inductive load test circuit and waveform





Test circuits

Test circuit and waveform for diode characteristics

DISCLAIMER

Truesemi Semiconductor reserves the right to make changes WITHOUT further notice to any products herein to improve reliability, function, or design.

For documents and material available from this datasheet, Truesemi Semiconductor does not warrant or assume any legal liability or responsibility for the accuracy, completeness of any product or technology disclosed hereunder.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Truesemi Semiconductor hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

The products shown herein are not designed for use as critical components in medical, life-saving, or life-sustaining applications, whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Customers using or selling Truesemi Semiconductor products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Truesemi Semiconductor for any damages arising or resulting from such use or sale.

INFORMATION

For further information on technology, delivery terms and conditions and prices, please contact Truesemi Semiconductor office or website (**www.truesemi.com**).