- $5-\Omega$ Switch Connection Between Two Ports

- TTL-Compatible Input Levels

- Outputs Are Precharged by Bias Voltage to Minimize Signal Distortion During Live Insertion
- Package Options Include Plastic Shrink Small-Outline (DB, DBQ), Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages

description

The SN74CBT6800 provides ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows bidirectional connections to be made while adding near-zero propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.
The SN74CBT6800 is organized as one 10 -bit switch with a single enable $(\overline{\mathrm{ON}})$ input. When $\overline{\mathrm{ON}}$ is low, the switch is on and port A is connected to port B . When $\overline{\mathrm{ON}}$ is high, the switch between port A and port B is open and the B port is precharged to BIASV through the equivalent of a $10-\mathrm{k} \Omega$ resistor.

The SN74CBT6800 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
function table

$\overline{\mathbf{O N}}$	B1-B10	FUNCTION
L	A1-A10	Connect
H	BIASV	Precharge

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Supply voltage range, V_{CC}	0.5 V to 7 V
Bias voltage range, BIASV	0.5 V to 7 V
Input voltage range, $\mathrm{V}_{\text {I }}$ (see Note 1)	-0.5 V to 7 V
Continuous channel current	128 mA
Input clamp current, $\mathrm{I}_{\mathrm{IK}}\left(\mathrm{V}_{\mathrm{I}}<0\right)$	-50 mA
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): DB package	$104^{\circ} \mathrm{C} / \mathrm{W}$
DBQ package	$103^{\circ} \mathrm{C} / \mathrm{W}$
DW package	$81^{\circ} \mathrm{C} / \mathrm{W}$
PW package	$120^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	C to $150^{\circ} \mathrm{C}$
esses beyond those listed under "absolute maximum ratings" may cause permanen ctional operation of the device at these or any other conditions beyond those ind lied. Exposure to absolute-maximum-rated conditions for extended periods may	ratings only, and onditions" is not
ES: 1. The input and output negative-voltage ratings may be exceeded if the in 2. The package thermal impedance is calculated in accordance with JESD	observed.

recommended operating conditions (see Note 3)

		MIN	MAX
	UNIT		
V_{CC}	Supply voltage	4	5.5
BIASV	Supply voltage	1.3	$\mathrm{~V}_{\mathrm{CC}}$
V_{IH}	High-level control input voltage	2	
$\mathrm{~V}_{\mathrm{IL}}$	Low-level control input voltage	V	
T_{A}	Operating free-air temperature	-40	85

NOTE 3: All unused control inputs of the device must be held at V_{C} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP\#	MAX	UNIT
V_{IK}		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}_{1}=-18 \mathrm{~mA}$				-1.2	V
1		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ or GND				± 5	$\mu \mathrm{A}$
IO		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	BIASV $=2.4 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0$	0.25			mA
${ }^{\text {ICC }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{I} \mathrm{O}=0$,	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND			50	$\mu \mathrm{A}$
$\Delta_{\mathrm{CCC}}{ }^{\text {§ }}$	Control inputs	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	One input at 2.7 V ,	Other inputs at V_{CC} or GND			2.5	mA
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=3 \mathrm{~V}$ or 0				3.5		pF
$\mathrm{C}_{\mathrm{O} \text { (OFF) }}$		$\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0 ,	Switch off			4.5		pF
$\mathrm{ran}^{\text {f }}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, \\ & \text { TYP at } \mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}=15 \mathrm{~mA}$		14	20	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{I}}=0$	$\mathrm{I}=64 \mathrm{~mA}$		5	7	
		$\mathrm{I}=30 \mathrm{~mA}$			5	7		
		$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \quad \mathrm{I}=15 \mathrm{~mA}$		10	15			

\ddagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
II Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.
switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	TEST CONDITIONS	FROM (INPUT)	TO (OUTPUT)	$\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \\ \pm 0.5 \mathrm{~V} \end{gathered}$		UNIT
				MIN MAX	MIN	MAX	
tpd^{\dagger}		A or B	B or A	0.35		0.25	ns
tPZH	BIASV = GND	$\overline{\mathrm{ON}}$	A or B	9.1	3.1	8.1	ns
tpZL	BIASV $=3 \mathrm{~V}$			9.6	3.6	8.6	
tPHZ	BIASV = GND	$\overline{\mathrm{ON}}$	A or B	5.9	2.7	6.1	ns
tplZ	BIASV $=3 \mathrm{~V}$			6.4	3	7.3	

\dagger The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.
E. $t_{P L Z}$ and tPHZ are the same as t_{di}.
F. tPZL and tPZH are the same as ten.
G. $\mathrm{t}_{\mathrm{PLH}}$ and tPHL are the same as t_{pd}.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.
In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. Tl's publication of information regarding any third party's products or services does not constitute Tl's approval, warranty or endorsement thereof.

PRODUCT FOLDER | PRODUCT INFO: FEATURES | DESCRIPTION| DATASHEETS | PRICING/AVAILABILITY | SAMPLES | APPLICATION NOTES | RELATED DOCUMENTS

PRODUCT SUPPORT: TRAINING
SN74CBT6800, 10-Bit FET Bus Switch With Precharged Outputs For Live Insertion DEVICE STATUS: ACTIVE

PARAMETER NAME	SN74CBT6800
Voltage Nodes (V)	5
Vcc range (V)	4.0 to 5.5
No. of Bits	10
ron(max) (ohms)	7
tpd(max) (ns)	0.25

FEATURES \triangle Back to Top

- 5- Ω Switch Connection Between Two Ports
- TTL-Compatible Input Levels
- Outputs Are Precharged by Bias Voltage to Minimize Signal Distortion During Live Insertion
- Package Options Include Plastic Shrink Small-Outline (DB, DBQ), Small-Outline (DW), and Thin Shrink Small-Outline (PW) Packages

DESCRI PTI ON

- Back to Top

The SN74CBT6800 provides ten bits of high-speed TTL-compatible bus switching. The low onstate resistance of the switch allows bidirectional connections to be made while adding nearzero propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.

The SN74CBT6800 is organized as one 10 -bit switch with a single enable (ON O) input. When ON is low, the switch is on and port A is connected to port B . When ON is high, the switch between port A and port B is open and the B port is precharged to BIASV through the equivalent of a $10-\mathrm{k} \Omega$ resistor.

The SN74CBT6800 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

2 of 3
To view the following documents, Acrobat Reader 3.x is required.
To download a document to your hard drive, right-click on the link and choose 'Save'.
DATASHEET
\triangle Back to Top
Full datasheet in Acrobat PDF: scds005j.pdf (61 KB) (Updated: 12/14/1998)
Full datasheet in Zipped PostScript: scds005j.psz (61 KB)
APPLICATION NOTES
\perp Back to Top
View Application Reports for Digital Logic

- 5-V To 3.3-V Translation With The SN74CBTD3384 (SCDA003B - Updated: 03/01/1997)
- Flexible Voltage-Level Translation With CBT Family Devices (SCDA006 - Updated: 07/20/1999)
- Implications of Slow or Floating CMOS Inputs (SCBA004C - Updated: 02/01/1998)
- Low-Voltage Bus-Switch Technology And Applications (SCDA005 - Updated: 12/01/1997)
- Migration From 3.3-V To 2.5-V Power Supplies For Logic Devices (SCEA005 - Updated: 12/01/1997)
- SN74CBTS3384 Bus Switches Provide Fast Connection And Ensure Isolation (SCDA002A Updated: 08/01/1996)
- TI Logic Solutions for Memory Interleaving With the Intel440BX Chipset (SCCA001 Updated: 04/08/1999)
- Texas Instruments Crossbar Switches (SCDA001A - Updated: 06/01/1995)
- Texas Instruments Solution for Undershoot Protection for Bus Switches (SCDA007Updated: 04/13/2000)
- Understanding Advanced Bus-Interface Products Design Guide (SCAA029, 253 KB Updated: 05/01/1996)
- Documentation Rules (SAP) And Ordering Information (SZZU001B, 4 KB - Updated: 05/06/1999)
- Logic Selection Guide Second Half 2000 (SDYU001N, 5035 KB - Updated: 04/17/2000)
- MicroStar Junior BGA Design Summary (SCET004, 167 KB - Updated: 07/28/2000)
- More Power In Less Space - Technical Article (SCAU001A, 850 KB - Updated: 03/01/1996)

SAMPLES
\triangle Back to Top

ORDERABLE DEVICE	PACKAGE	PINS	TEMP (으)	STATUS	SAMPLES
SN74CBT6800DW	$\underline{\text { DW }}$	24	-40 TO 85	ACTIVE	$\underline{\text { Request Samples }}$
SN74CBT6800PWLE	$\underline{\text { PW }}$	24	-40 TO 85	OBSOLETE	

PRICI NG/ AVAI LABI LI TY

$\frac{\text { ORDERABLE }}{\underline{\text { DEVICE }}}$	PACKAGE	PINS	$\frac{\text { TEMP }}{\text { (으) }}$	STATUS	$\begin{aligned} & \text { BUDGETARY } \\ & \text { PRICE } \\ & \text { US\$/UNIT } \\ & \text { QTY }=1000+ \end{aligned}$	$\frac{\text { PACK }}{\underline{\text { QTY }}}$	PRICING/AVAI LABI LITY
SN74CBT6800DBLE	DB	24	$\begin{gathered} -40 \text { TO } \\ 85 \end{gathered}$	OBSOLETE			
SN74CBT6800DBQR	DBQ	24	$\begin{gathered} -40 \text { TO } \\ 85 \end{gathered}$	ACTIVE	1.09	2500	Check stock or order

3 of 3

SN74CBT6800DBR	$\underline{\text { DB }}$	24	-40 TO 85	ACTIVE	1.09	2000	Check stock or order
SN74CBT6800DGVR	$\underline{\text { DGV }}$	24	-40 TO 85	ACTIVE	1.25	2000	Check stock or order
SN74CBT6800DW	$\underline{\text { DW }}$	24	-40 TO 85	ACTIVE	1.09	25	Check stock or order
SN74CBT6800DWR	$\underline{\text { DW }}$	24	-40 TO 85	ACTIVE	1.15	2000	Check stock or order
SN74CBT6800PWLE	$\underline{\text { PW }}$	24	-40 TO 85	OBSOLETE			
SN74CBT6800PWR	$\underline{\text { PW }}$	24	-40 TO 85	ACTIVE	1.09	2000	Check stock or order

Table Data Updated on: 11/15/ 2000
@ Copyright 2000 Texas Instruments Incorporated. All rights reserved. Irademarks | Privacy Policy | Important Notice

