

声表谐振器规格书					
产品名称:	声表谐振器				
产品型号:	D11-R315M(SMD-2)				
产品参数:	\pm 75 KHZ				
原厂型号:	KD1R3150				
凯越翔技术部:	董宗全				
客户确认栏					
认证印章	负责人印章				
年 月 日	年 月 日				
L					

工厂地址: 深圳市龙华区观澜人民路蔡发工业城一栋四层 TEL: 0755-89315823 89315866 FAX: 0755-89315223 官网: www.kaiyuexiang.com

The YRR315 is a true one- port , surface- acoustic- wave(SAW) resonator in a lowprofile D -11 case. It provides reliable , fundamental- mode , quartz frequency stabilization of fixed- frequency transmitters operating at 315 MHz.

1. Package Dimension (SMD-2)

Pin	Connection	
1	Input	
2	Case Ground	
3	Output	

2. Marking Circuit

3.Equivalent LC Model and Test

R315

Color: Black or Blue

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7. Performance

7-1.Maximum Rating

Rating	Value	Units
CW RF Power Dissipation	+10	dBm
DC Voltage Between Any Two Pins	±30V	VDC
Case Temperature	-40 to +85	°C

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Units
Center Frequency (+25℃)	Absolute Frequency	f _C	314.25		315.75	MHz
	Tolerance from 315 MHz	Δf_{C}		±75		kHz
Insertion Loss		١L		1.5	1.8	dB
Quality Factor	Unloaded Q	Q _U		15974		
	50 Ω Loaded Q	QL		1900		
Temperature Stability	Turnover Temperature	To	25	40	55	°C
	Turnover Frequency	f _o		fc		kHz
	Frequency Temperature Coefficient	FTC		0.037		ppm/°C ²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resis	stance Between Any Two Pins		1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	23	Ω
	Motional Inductance	L _M		79.137		μH
	Motional Capacitance	См		1.8019		fF
	Pin 1 to Pin 2 Static Capacitance	Co		1.9		pF

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling.

Notes:

- 1. Frequency aging is the change in fc with time and is specified at +65 °C or less. Aging may exceed the specification for prolonged temperatures above +65 °C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, fc, is measured at the minimum insertion loss point, IL _{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2: 1). The shunt inductance, L _{TEST}, is tuned for parallel resonance with Co at fc.
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4. Unless noted otherwise, case temperature $Tc=+25^{\circ}C \pm 2^{\circ}C$.
- 5. Derived mathematically from one or more of the following directly measured parameters: fc, IL, 3dB bandwidth, fc versus Tc, and Co.
- Turnover temperature, To, is the temperature of maximum (or turnover) frequency, fo. The nominal frequency at any case temperature, Tc, may be calculated from: f=fo [1-FTC(To-Tc)²]. Typically, *oscillator* To is 20°C less than the specified *resonator* To.
- 7. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between Pin 1 and Pin 2 measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with floating case. For usual grounded case applications (with ground connected to either pin 1 or pin 2 and to the case), add approximately 0.25pF to Co.

拟 制	成望生	审 核	董宗全	批准	谢为亮
-----	-----	-----	-----	----	-----