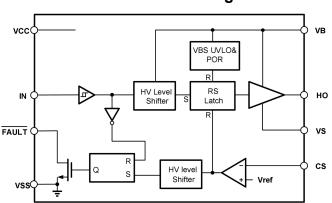


Description

UMW IR21271STR is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune **CMOS** technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3V. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side or low side configuration which operates up to 300 volts.


Application

- Motor control and drive
- Robot technology
- · Fast charging of electric vehicles

Features and Benefits

- Floating channel designed for bootstrap operation
- Fully operational to +300 V
- 3.3V, 5V and 15V input logic compatible
- dV/dt noise Immunity ±50 V/nsec
- Allowable negative Vs capability: -5V
- Output in phase with input
- Gate drive supply range from 8V to 22V
- Undervoltage lockout for both channels
 --UVLO 6.8V/7.2V
- Propagation delay
 - --Ton/Toff =150ns/150ns
- Wide operating temperature range -40°C ~125°C
- Fault lead indicates shutdown has occurred
- RoSH compatible SOIC8(S)

Functional Block Diagram

Function Pin Description

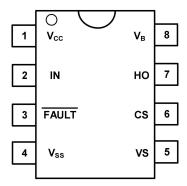


Figure 7-1 8-Pin SOIC8 Top view

Table7-1 Lead Definitions

Number	Number Symbol Description		
1	Vcc	Power supply	
2	IN	Logic input for high side gate driver output (HO), in phase	
3	FAULT	Indicates over-current shutdown has occurred,negative logic	
4	V _{SS}	Logic ground	
5	Vs	High side floating supply return	
6	CS	Current sense input to current sense comparator	
7	НО	High side gate drive output	
8	V _B	High side floating supply	

Absolute Maximum Ratings

Exceeding the limit maximum rating may cause permanent damage to the device. All voltage parameters are rated with reference to VSS and an ambient temperature of 25°C.

Symbol	Definition	MIN.	MAX.	Units
V _B	High side floating supply	-0.3	322	
Vs	High side floating supply return	V _B – 22	V _B + 0.3	
V _{HO}	High side gate drive output	Vs -0.3	V _B + 0.3	
Vcc	Low side and main power supply	-0.3	22	V
V _{IN}	Logic input of IN		V _{CC} + 0.3	1
V_{FLT}	FAULT output voltage	-0.3	V _{CC} + 0.3	
Vcs	Current sense voltage	V _S - 0.3	V _B + 0.3	1
dVs/dt	Allowable Offset Supply Voltage Transient	_	50	V/ns
ESD	HBM Model	2	_	kV
E3D	Machine Model	500	_	V
P _D	Package Power Dissipation @ TA ≤25°C		0.625	W
Rth _{JA}	Thermal Resistance, Junction to Ambient		200	°C/W
TJ	Junction Temperature	_	150	
Ts			150	°C
T _L			300	1

Recommended Operating Conditions

For proper operation, the device should be used under the following recommended conditions. The bias ratings of VS and VSS are measured at a supply voltage of 15V, and unless otherwise specified, the ratings of all voltage parameters are referenced to VSS and the ambient temperature is 25°C.

Symbol	Definition	MIN.	MAX.	Units
V _B	High side floating supply	VS + 8	VS + 20	
Vs	High side floating supply return	-5	300	
V _{HO}	High side gate drive output	Vs	V _B	
Vcc	Low side and main power supply	8	20	V
V _{IN}	Logic input of IN	0	Vcc	
V _{FLT}	FAULT output voltage	0	Vcc	
V _{CS}	Current sense signal voltage	Vs	Vs+5	
T _A	Ambient temperature	-40	125	°C

Note1: Transient negative VS can be used for VSS-50V with a pulse width of 50ns, guaranteed by design.

Electrical Characteristics

 T_A = 25°C, V_{CC} = V_B = 15V, C_L =1nF, unless otherwise specified

Symbol	Definition	MIN.	TYP.	MAX.	Units	Test Condition
ton	ton Turn-on propagation delay		150	250	ns	V _S =0V
t _{OFF} Turn-off propagation delay		_	150	250	ns	V _S =300V
t _R Turn-on rise time		_	80	130	ns	
t _F Turn-off fall time		_	40	70	ns	
t _{BL} Start-up blanking time		550	750	950	ns	
t _{CS}	CS shutdown propagation delay	_	65	360	ns	
t _{flt}	CS to FAULT pull-up propagation delay	_	270	510	ns	

Static electrical characteristics

Valid for temperature range at Ta= 25°C, V_{CC} = V_B = 15V, C_L =1nF, unless otherwise specified.

Symbol	Definition	MIN.	TYP.	MAX.	Units	Test Condition
V _{IH}	Logic "1"(IN) input voltage	2.5	_	_	V	
V _{IL}	Logic "0" (IN) input voltage	_	_	0.8	V	VCC=10Vto 20V
V _{CSTH+}	CS input positive going threshold	1.5	1.8	2.1	V	
V _{BSUV+}	VPS aupply LIVI O threshold	6.3	7.2	8.2	V	
V _{BSUV} -	─ VBS supply UVLO threshold	6.0	6.8	7.7	V	
I _{LK}	High-side floating supply leakage current	_	_	50	μA	V _B =V _S =300V
I _{QBS}	Quiescent VB supply current	_	300	800	μA	V _{IN} =0V or 5V
I _{QCC}	Quiescent VCC supply current	_	60	120	μΑ	V _{IN} =0V or 5V
I _{CS+}	"High"CS bias current	_	_	5	μA	CS=3V
I _{CS} -	"High"CS bias current		_	5	μΑ	CS=0V
V _{OH}	High level output voltage, VBIAS - VO	_	_	0.2	V	I _{O=} 2mA
V _{OL}	Low level output voltage, VO	_	_	0.1	V	
I _{IN+}	Logic "1" Input bias current	_	7	15	μΑ	V _{IN} =5V
I _{IN-}	Logic "0" Input bias current	_	0	5	μA	V _{IN} =0V
I _{O+}	Output high short circuit pulsed current	200	300	_	mA	V ₀ =0V PW≤10us
I _{O-}	Output low short circuit pulsed current	420	600	_	mA	V ₀ =15V PW≤10us
R _{on,FLT}	FAULT-low on resistance		125		Ω	

Function Description

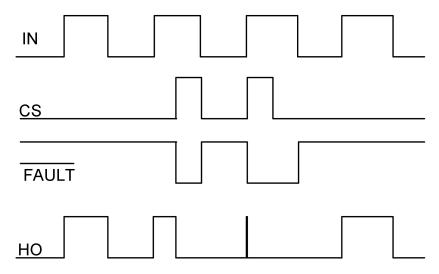


Figure 9-1 IR21271STR Input and output timing waveform

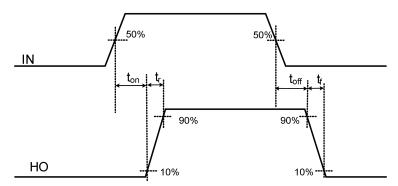


Figure 9-2 Switching Time Waveform Definition

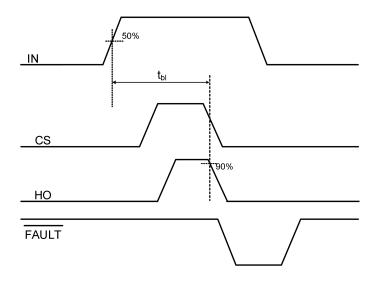


Figure 9-3 Start-up Blanking Time Waveform Definitions

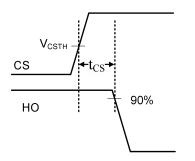


Figure 9-4 CS Shotdown Waveform Definitions

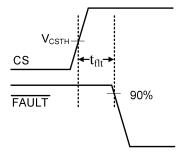


Figure 9-5 CS to FAULT Waveform Definitions

Function Block Diagram

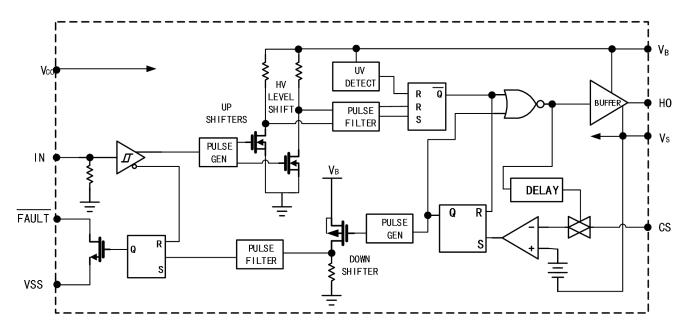


Figure 10-1 Function Block Diagram of IR21271STR

Application message

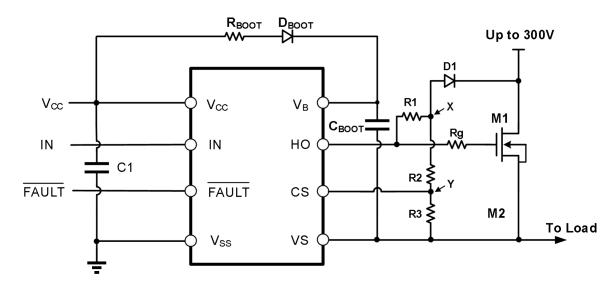


Figure 10-2 Typical application circuit of IR21271STR

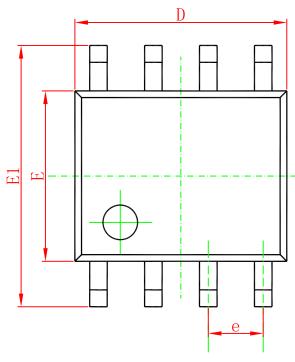
To Calculate the resistor values use the following guidelines.

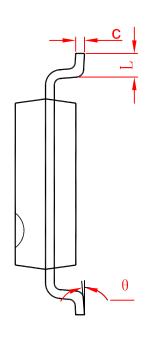
Rg is the gate resistor, and the value is chosen to optimize switching speed and switching losses.

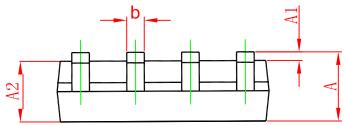
R1 is typically chosen to be 10k (12V Vbs)/22k (15V Vbs)/33k (18V Vbs); this high value helps to minimize the increased miller capacitance effect from diode D1, and makes sure there is not significant current being drawn from the HO output. Note diode D1 must have the same characteristics as the bootstrap diode.

When the HO output goes high MOSFET (or it could be an IGBT) Q1 turns on. Now point X in fig 10-2) will be pulled down to a voltage which equals the voltage across the FET (V_{DS}) plus the voltage across diode D1.

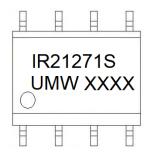
Therefore in an overload condition we want to shut down the driver output when the voltage across the FET (or IGBT) Q1 equals a set limit that indicates on overload condition has occurred (for example 8V).


Therefore with a 8V Vds on Q1. V_{D1} is typically 1.2V for a small 1A ultra fast recovery diode.


$$V_X = V_{D1} + V_{DS}$$
 $V_X = 1.2 + 8$
 $V_X = 9.2V$


For a IR21271STR the CS pin threshold is 1.8V,therefore we need to divide V_X ,so that when V_X =11.2V,then V_Y =1.8V.

PACKAGING INFORMATION SOP-8



Cymhal	Dimensions In	Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
Е	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270(BSC)		0.050	D(BSC)	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

Marking

Ordering information

Order code		Package	Baseqty	Deliverymode
	UMW IR21271STR	SOP-8	2500	Tape and reel