

Monolithic Amplifier

TSY-173LN+

50Ω 13.5 to 17 GHz

THE BIG DEAL

- Positive Gain Slope
- Shutdown Feature
- Excellent Noise Figure, 1.2dB Typ.
- Built-In ESD Protection Circuits (Class 1C)
- Low Current Operation, 13.2mA

Generic photo used for illustration purposes only CASE STYLE: MC1630-1

+RoHS Compliant

The +Suffix identifies RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications

APPLICATIONS

- Point to Point ODU System
- Fixed Satellite
- Radio Location
- Mobile

PRODUCT OVERVIEW

The TSY-173LN+ is a GaAs E-PHEMT based low noise MMIC Amplifier with shutdown feature with a unique combination of low noise (1.2dB Typ.), and Low Current (13.2mA Typ.) It is suitable for receiver application. This design operates on a single supply of 3V. It is well-matched to 50Ω and comes in a tiny, low profile package (2x2mm 6 Lead), accommodating dense circuit board layouts.

KEY FEATURES

Feature	Advantages
Low noise, 1.2dB Typical from 13.5 – 17GHz	Enables lower system noise figure performance.
Positive Gain Slope vs. Frequency +0.6 dB/GHz from 13.5 GHz to 15 GHz +0.4 dB/GHz from 15 GHz to 17 GHz	Useful for compensating negative gain slope of most wideband microwave components and eliminating the need for equalization.
Shutdown Feature	Allow users to turn on and off the amplifier with pulsed signals while keeping the power supply at constant voltage.
Integrated DC Blocks and Bias-Tee	Saves motherboard space and minimizes overall cost. Very User Friendly.
Small Size (2x2 mm 6L MCLP)	Tiny footprint saves space in dense layouts while providing low inductance, repeatable transitions, and excellent thermal contact to the PCB.

REV. A ECO-011994 TSY-173LN+ MCL NY

Monolithic Amplifier TSY-173LN+

ELECTRICAL SPECIFICATIONS¹ AT 25°C, 50Ω, UNLESS NOTED

Parameter	Condition (GHz)	Amplifier - ON			Amplifier- OFF	Units
Farameter	Condition (GH2)	Min.	Тур.	Max.	Тур.	Units
Frequency range		13.5		17	13.5-17	GHz
	13.5		1.2		_	
	14		1.2		_	
Noise Figure	15		1.1		_	dB
	16		1.2		_	
	17		1.2		_	
	13.5	14.2	15.6	17	-14.8	
Caia	14	151	16	10	-14.7	٩D
Gain	15 16	15.1	16.5	18	-15.1	dB
	17	15.2	16.8 16.7	18.2	-15.6 -16.7	
	13.5	15.2	16.7	16.2	2.6	
	14		18.9		2.7	
Input Return Loss	15		18.8		3.1	dB
input Notain 2000	16		15.4		3.3	u _D
	17		16.6		3.2	
	13.5		11.7		8.8	
	14		14.9		8.0	
Output Return Loss	15		21.4		6.0	dB
	16		20.3		5.9	
	17		16		5.2	
	13.5		9.3		_	
Output P1dB	14		9.4		_	
(AMP-ON)	15		8.7		_	dBm
(16		8.4		_	
	17		6.6		_	
	13.5		22.4		_	
Output IP3	14		22.9		_	ID.
(Pout = -10 dBm/Tone)	15 16		24.2		_	dBm
	17		21.9 21		_	
Device Operating Voltage(VDD)	17	2.75	3	3.25	3	V
Device Operating Current (IDD)		-	13.2	19	0.00012	mA
Control Voltage (VC)		2.25	2.5	2.75	0	V
Control Current (IC)			0.56	2., 3	0	mA
DC Current (IDD) Variation Vs. Temperature ²			11.54		_	uA/degC
DC Current (IDD) Variation Vs. Voltage ³			0.014		_	mA/mV
Thermal Resistance			106.7		_	degC/W
Thermal Nesistance			100.7			uege/ W

^{1.} Measured on Mini-Circuits Characterization Test Board TB-TSY-173LN+. See Characterization Test & Application Circuit (Fig. 1)

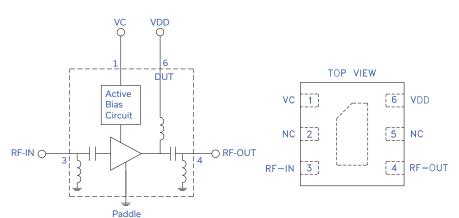
MAXIMUM RATINGS⁴

Parameter	Ratings
Operating temperature (ground lead)	-40°C to 85°C
Storage temperature	-65°C to 150°C
Junction Temperature	130°C
Total power dissipation	0.42W
Input power (CW)	+22 dBm
DC voltage at VC	3V
DC voltage at VDD	8V

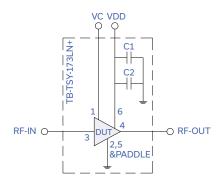
^{4.} Permanent damage may occur if any of those limits are exceeded. Electrical maximum ratings are not intended for continuous normal operation.

TRUTH TABLE + SWITCHING TIME SPECIFICATION

Truth Table			VC Typ.	VC Max.	Units
Amplifier- ON		2.25	2.5	2.75	V
Amplifier -OFF			0	0.2	V
Switching Time Parameter		Min.	Тур.	Max.	Units
Amplifier	OFF Time (50% Control to 10% RF)		13.7		ns
ON to OFF	FALL Time (90% RF to 10% RF)		8.8		ns
Amplifier ON Time (50% Control to 90% RF)			52.4		ns
OFF to ON	RISE Time (10% RF to 90% RF)		38.8		ns
Control Voltage Leakage (Rising Edge)			0.64		mV
Control Voltage Leakage (Falling Edge)			1.45		mV


^{2.} Device Current Variation vs. Temperature= (Current in mA at 85°C - Current in mA at -45°C)/130°C

 $^{3. \} Device \ Current \ In \ mA \ at \ 3.25V - Current \ in \ mA \ at \ 2.75V) \ / \ ((3.25V-2.75V)*1000 \ mA/mV)$


Monolithic Amplifier TSY-173LN+

SIMPLIFIED SCHEMATIC AND PAD DESCRIPTION

Function	Pad Number	Description (Fig 1)
VC	1	Control Voltage Pad for Shutdown (VC)
RF - IN	3	RF Input Pad
RF-OUT	4	RF Output Pad
VDD	6	DC Power Supply (VDD)
No Connection	2 & 5	Not used internally. Connected to ground on Test Board
Ground	Paddle	Soldered to Ground

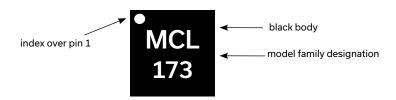
CHARACTERIZATION TEST & APPLICATION CIRCUIT

Component	Size	Value	Part Number	Manufacturer
C1	0402	0.1uF	GRM155R71C104KA88D	Murata
C2	0402	100pF	GRM1555C1H101JA01D	Murata

Fig 1. Application and Characterization Circuit

Note: This block diagram is used for characterization. (DUT is soldered on Mini-Circuits Characterization test board TB-TSY-173LN+)

Gain, Return loss, Output power at 1dB compression (P1dB), output IP3 (OIP3) and noise figure measured using Agilent's N5242A PNA-X microwave network analyzer.


Conditions:

- 1. Gain and Return loss: Pin= -25dBm
- 2. Output IP3 (OIP3): Two tones, spaced 1 MHz apart, -10 dBm/tone at output.

 3. Switching Time: RF Signal: Pin = -10dBm, fRF =15GHz

VDD = 3V, VC = Pulse Signal at 100Hz with Vhigh =2.5V and Vlow =0V & 50% Duty Cycle.

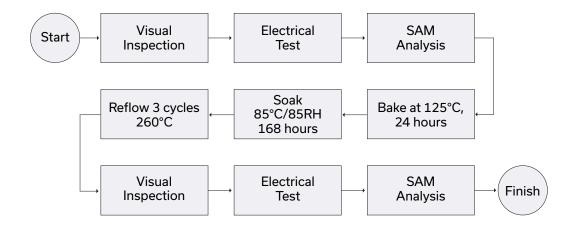
PRODUCT MARKING

Marking may contain other features or characters for internal lot control

Monolithic Amplifier TSY-173LN+

ADDITIONAL DETAILED TECHNICAL INFORMATION IS AVAILABLE ON OUR DASH BOARD. TO ACCESS

	,
	Data Table
Performance Data	Swept Graphs
	S-Parameter (S2P Files) Data Set (.zip file)
Case Style	MC1630-1 Plastic package, exposed paddle, lead finish: Matt Tin
Tape & Reel Standard quantities available on reel	F66 7" reels with 20, 50, 100, 200, 500 or 2K devices
Suggested Layout for PCB Design	PL-719
Evaluation Board	TB-TSY-173LN+ (Without Connectors) TB-TSY-173LNC+ (With Connectors)
Environmental Ratings	ENV08T1


ESD RATING

Human Body Model (HBM): Class 1C (1000V) in accordance with ANSI/ESD STM 5.1 - 2001

MSL RATING

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020D

MSL TEST FLOW CHART

A. Performance and quality attributes and conditions not expressly stated in this specification document are intended to be excluded and do not form a part of this specification document.

B. Electrical specifications and performance data contained in this specification document are based on Mini-Circuit's applicable established test performance criteria and measurement instructions.

C. The parts covered by this specification document are subject to Mini-Circuits standard limited warranty and terms and conditions (collectively, "Standard Terms"); Purchasers of this part are entitled to the rights and benefits contained therein. For a full statement of the standard. Terms and the exclusive rights and remedies thereunder, please visit Mini-Circuits' website at www.minicircuits.com/MCLStore/terms.jsp