

1.8V-5.5V, 70µA, RRIO Zero-Drift, Instrumentation Amplifier

Features

■ Low offset Voltage: 25µV (Max.)

■ Zero Drift: 0.05µV/°C

■ Low Quiescent Current: 70µA

■ Low Input Bias Current: 200pA (Max.)

■ Rail-to-Rail Input and Output (RRIO)

■ Operates on 1.8V ~ 5.5V Supplies

-3dB Bandwidth: 250kHz

■ Slew Rate: 0.25V/µs

Unity Gain Stable

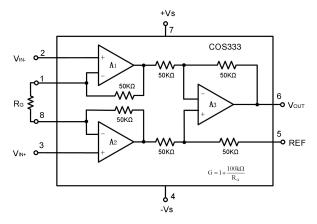
No Phase Reversal

Extended Temperature Ranges
From -40°C to +125°C

■ Available in MSOP8/SOP8

Applications

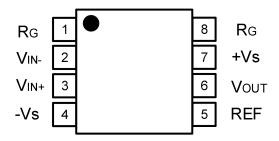
- Medical Instrumentation
- ECG and RTD Sensor Amplifiers
- Data Acquisition
- Thermocouple Amplifiers
- Bridge Amplifiers
- Pressure Sensors


Rev1.0 Copyright@2018 Cosine Nanoelectronics Inc. All rights reserved

The information provided here is believed to be accurate and reliable. Cosine Nanoelectronics assumes no reliability for inaccuracies and omissions. Specifications described and contained here are subjected to change without notice on the purpose of improving the design and performance. All of this information described herein should not be implied or granted for any third party.

General Description

The COSINA333 is a micro power, zero-drift instrumentation amplifier operated on 1.8 to 5.5 supplies. It has both rail-to-rail input and output range. The output voltage swing extends to within 2mV of each rail, providing the maximum output dynamic range. A single external resistor sets any gain from 1 to 1000.


The COSINA333 uses auto-calibration technique to provide very low offset voltage (less than 25µV maximum) and near zero drift over temperature. Low quiescent supply current of 70µA and very low input bias current make the device an ideal choice for low offset, low power consumption and high impedance applications.

Block Diagram

1. Pin Configuration and Functions

Pin Functions

Pin	Name	I/O	Description			
1,8	R _G	-	Gain setting pin. For gains greater than 1, place a gain resistor between pin1 & 8			
2	V _{IN-}	I	Negative input			
3	V _{IN+}	I	Positive input			
4	-Vs	Р	Negative supply			
5	REF	I	Reference input. This Pin must be driven by low impedance or connected to ground			
6	Vout	0	Output			
7	+V _S	Р	Positive supply			

2. Product Specification

2.1 Absolute Maximum Ratings (1,2)

Parameter	Rating	Units
Power Supply: V+ to V-	6	V
Differential Input Voltage Range	±6	V
Common Mode Input voltage Range ⁽²⁾	V+ to V-	V
Output Current	50	mA
Storage Temperature Range	-65 to 150	°C
Junction Temperature	150	°C
Operating Temperature Range	-40 to 125	°C
ESD Susceptibility, HBM	2000	V

(1) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

(2) Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to 10mA or less.

2.2 Thermal Data

Parameter	Rating	Unit
Package Thermal Resistance	206 (MSOP8) 155 (SOP8)	°C/W

2.3 Recommended Operating Conditions

Parameter	Rating	Unit
DC Supply Voltage	1.8V ~ 5.5V	V
DC Supply Voltage	±0.9V ~ ± 2.75V	V
Input common-mode voltage range	-Vs ~ +Vs	V
Operating ambient temperature	-40 to +85	°C

2.4 Electrical Characteristics

 $(+V_S=+5V, -V_S=0V, V_{REF}=2.5V, T_A=+25^{\circ}C, R_L=10k\Omega$ and G=1, unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Input Characteristics								
land Offer A Velland	V	COSINA333A		±5	±25	μV		
Input Offset Voltage	Vos	COSINA333B		±25	±150	μV		
Input Offset Voltage Drift	ΔV _{OS} /ΔT	-40 to 125°C		0.01	0.05	μV/°C		
Input Bias Current	I _B			±3	±200	pА		
Input Offset Current	los			±3	±200	pА		
Common-Mode Voltage Range	V _{CM}	V _S = 5.5V	-0.1		5.6	V		
Common-Mode Rejection Ratio	CMRR	V _{CM} =0.1V to 4.9V		120		dB		
Open-Loop Voltage Gain	A _{OL}	V _O =0.2V to 4.8V		145		dB		

Output Characteristics						
Output Voltage Swing from Bail		R _L =100kΩ		2		mV
Output Voltage Swing from Rail		R _L =10kΩ		20		mV
011-0111-0	I _{SR}	Sourcing		15		mA
Short-Circuit Current	I _{SK}	Sinking		-15		mA
Power Supply						
O			1.8		5.5	V
Operating Voltage Range	Vs		±0.9		± 2.75	V
Power Supply Rejection Ratio	PSRR		120	130		dB
Quiescent Current / Amplifier	IQ			70		μA
Frequency Response					•	
		G=1		250		kHz
Dandwidth 2dD	BW	G=10		42		kHz
Bandwidth, -3dB		G=100		4		kHz
		G=1000		400		Hz
Dynamic Performance						
Slew Rate	SR	G=1		0.25		V/µs
Siew Rate		G=100		0.05		V/µs
Noise Performance						
Voltage Noise Density	en	f=1kHz		50		nV/ √ Hz
REFERENCE INPUT						
Voltage Range			-Vs		+Vs	V
Reference Input Impedance	R _{IN}			100		kΩ

3. Application Notes

3.1 Overview

The COSINA333 is a micro power, zero-drift instrumentation amplifier operated on 1.8 to 5.5 supplies. It has both rail-to-rail input and output range. The output voltage swing extends to within 2mV of each rail, providing the maximum output dynamic range. A single external resistor sets any gain from 1 to 1000. The COSINA333 uses auto-calibration technique to provide very low offset voltage (less than 25µV maximum) and near zero drift over temperature. Low power and small size make it ideal for a wide range of portable applications.

3.2 Application Information

Figure 3.1 shows the basic connections required for operation of the COSINA333. The output is referred to the REF terminal, which is normally grounded. The REF pin connection must be low-impedance to assure good common-mode rejection. A resistance of 8Ω in series with the REF pin will cause a 80dB CMRR degradation.

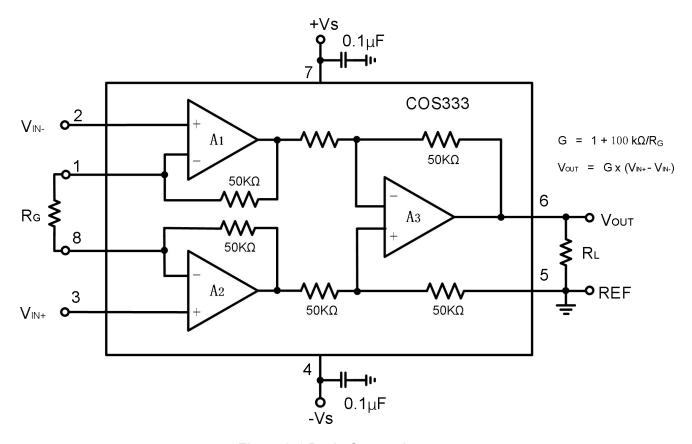


Figure 3.1 Basic Connection

Gain of the COSINA333 is set by connecting a single external resistor, R_G, between pins 1 and 8:

$$G = 1 + 100 k\Omega/R_G$$

Commonly used gains and resistor values are shown in following Table 3.1. Low resistor values required for high gain can make wiring resistance contribute to the gain error.

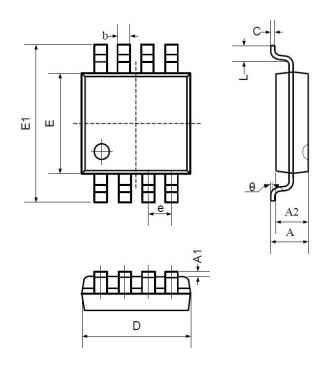
Desired Gain	COSINA333: G=1 + 100 kΩ/R _G			
G(V/V)	$R_G(\Omega)$	Nearest 1% R _G (Ω)		
1	NC	NC		
2	100k	100k		
5	25k	24.9k		
10	11.1k	11k		
20	5.26k	5.23k		
50	2.04k	2.05k		
100	1.01k	1k		
200	502.5	499		
500	200.4	200		
1000	100.1	100		

Table 3.1 Gain and Corresponding Resistor Values

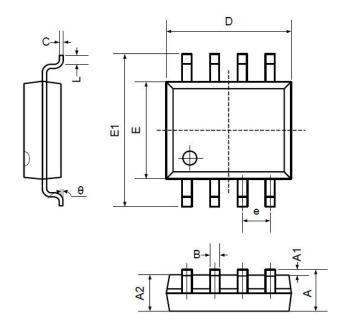
3.3 Power-Supply Bypassing and Layout

The COSINA333 operates from a single +1.8V to +5.5V supply or dual ± 0.9 V to ± 2.75 V supplies. For single-supply operation, bypass the power supply +Vs with a $0.1\mu F$ ceramic capacitor which should be placed close to the +Vs pin. For dual-supply operation, both the +Vs and the -Vs supplies should be bypassed to ground with separate $0.1\mu F$ ceramic capacitors. $2.2\mu F$ tantalum capacitor can be added for better performance.

The length of the current path is directly proportional to the magnitude of parasitic inductances and thus the high frequency impedance of the path. High speed currents in an inductive ground return create an unwanted voltage noise. Broad ground plane areas will reduce the parasitic inductance. Thus a ground plane layer is important for high speed circuit design.


4. Order Information

Model	Order Number	Package	Package Option	Marking Information
0001114000	COSINA333MRA	MSOP-8	Tape and Reel, 3000	COS333
COSINA333	COSINA333MRB	MSOP-8	Tape and Reel, 3000	COS333


5. Package Information

5.1 MOP8 (Package Outline Dimensions)

Symbol		nsions meters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	0.800	1.200	0.031	0.047	
A1	0.000	0.200	0.000	0.008	
A2	0.760	0.970	0.030	0.038	
b	0.30 TYP		0.012 TYP		
С	0.15	TYP	0.006 TYP		
D	2.900	3.100	0.114	0.122	
е	0.65 TYP		0.026	TYP	
E	2.900	3.100	0.114 0.12		
E1	4.700	5.100	0.185	0.201	
L	0.410	0.650	0.016	0.026	
θ	0°	6°	0°	6°	

5.2 SOP8 (Package Outline Dimensions)

Symbol		nsions meters	Dimensions In Inches		
	Min	Max	Min	Max	
Α	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
В	0.330	0.510	0.013	0.020	
С	0.190	0.250	0.007	0.010	
D	4.780	5.000	0.188	0.197	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.300	0.228	0.248	
е	1.270	1.270TYP		TYP	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	