

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC8236T6N$

SiGe:C LOW NOISE AMPLIFIER FOR GPS

DESCRIPTION

The μ PC8236T6N is a silicon germanium carbon (SiGe:C) monolithic integrated circuit designed as low noise amplifier for GPS. This device exhibits low noise figure and high power gain characteristics, so this IC can improve the sensitivity of GPS receiver. In addition, the μ PC8236T6N which is included output matching circuit contributes to reduce external components and system size.

The package is a 6-pin plastic TSON (Thin Small Qut-line Non-leaded) (T6N) suitable for surface mount.

This IC is manufactured using our UHS4 (<u>Ultra High Speed Process</u>) SiGe:C bipolar process.

FEATURES

• Supply voltage : Vcc = 1.6 to 3.3 V (2.7 V TYP.)

Low noise
 NF = 0.8 dB TYP. @ Vcc = 2.7 V, fin = 1 575 MHz

: NF = 0.8 dB TYP. @ Vcc = 1.8 V, $f_{in} = 1.575 \text{ MHz}$

High gain
 : GP = 19.5 dB TYP. @ Vcc = 2.7 V, fin = 1 575 MHz

: GP = 19.1 dB TYP. @ Vcc = 1.8 V, fin = 1 575 MHz

Low current consumption : Icc = 6.5 mA TYP. @ Vcc = 2.7 V

• Built-in power-saving function : VPSon = 1.0 V to Vcc, VPSoff = 0 to 0.4 V

High-density surface mounting
 6-pin plastic TSON (T6N) package (1.5 × 1.5 × 0.37 mm)

· Included output matching circuit

Included very robust bandgap regulator (Small Vcc and TA dependence)

Included protection circuits for ESD

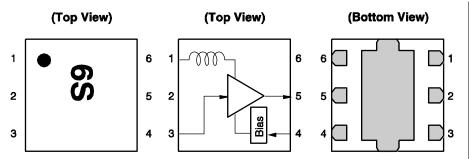
APPLICATION

· Low noise amplifier for GPS

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
μPC8236T6N-E2	μPC8236T6N-E2-A	6-pin plastic TSON (T6N) (Pb-Free)	6S	8 mm wide embossed taping Pin 1, 6 face the perforation side of the tape Qty 3 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office.


Part number for sample order: μ PC8236T6N-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Document No. PU10713EJ01V0DS (1st edition)
Date Published March 2008 NS

PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name	
1	Vcc	
2	GND	
3	INPUT	
4	Power Save	
5	OUTPUT	
6	Vcc	

Remark Exposed pad: GND

ABSOLUTE MAXIMUM RATINGS

Parameter	Parameter Symbol Test Conditions		Ratings	Unit
Supply Voltage	Vcc	TA = +25°C	4.0	V
Power-Saving Voltage	Vps	TA = +25°C	4.0	V
Total Power Dissipation Ptot			150	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Input Power	Pin		+10	dBm

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	1.6	2.7	3.3	V
Operating Ambient Temperature	TA	-40	+25	+85	°C
Power Save Turn-on Voltage	VPSon	1.0	-	Vcc	V
Power Save Turn-off Voltage	VPSoff	0	-	0.4	V

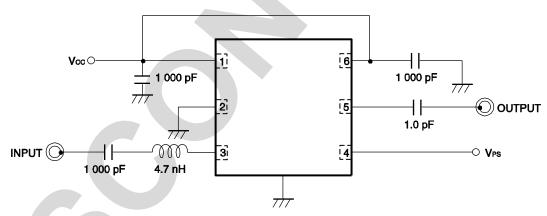
ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcc = Vps = 2.7 V, fin = 1 575 MHz, unless otherwise specified)

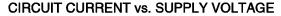
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	No Signal (VPS = 2.7 V)	5.0	6.5	8.0	mA
		At Power-Saving Mode (VPS = 0 V)	-	-	1	μΑ
Power Gain	GP	Pin = -35 dBm	17	19.5	22	dB
Noise Figure	NF		-	0.8	1.1	dB
Input Return Loss	RLin		7.5	11	-	dB
Output Return Loss	RLout		11	14	-	dB

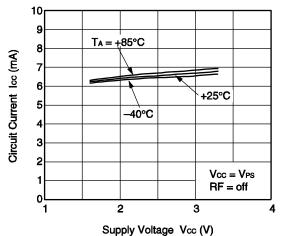
STANDARD CHARACTERISTICS FOR REFERENCE 1

(TA = +25°C, Vcc = Vps = 2.7 V, fin = 1 575 MHz, unless otherwise specified)

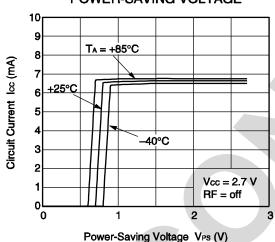

Parameter	Symbol	Test Conditions	Reference	Unit
Input 3rd Order Intercept Point	IIP3	fin1 = 1 575 MHz, fin2 = 1 574 MHz	-3	dBm
Isolation	ISL		39	dB
Gain 1 dB Compression Input Power	Pin (1 dB)		-18	dBm

STANDARD CHARACTERISTICS FOR REFERENCE 2

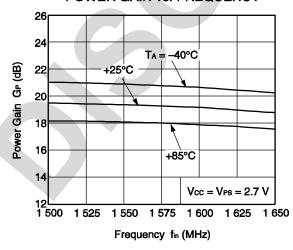

(TA = +25°C, Vcc = VPS = 1.8 V, fin = 1 575 MHz, unless otherwise specified)


Parameter	Symbol	Test Conditions	Reference	Unit
Circuit Current	Icc	No Signal (VPS = 1.8 V)	6.2	mA
Power Gain	G₽	Pin = -35 dBm	19.1	dB
Noise Figure	NF		0.8	dB
Input 3rd Order Intercept Point	IIP3	fin1 = 1 575 MHz, fin2 = 1 574 MHz	- 5	dBm
Input Return Loss	RLin		11	dB
Output Return Loss	RLout		14	dB
Isolation	ISL		39	dB
Gain 1 dB Compression Input Power	Pin (1 dB)		–19	dBm

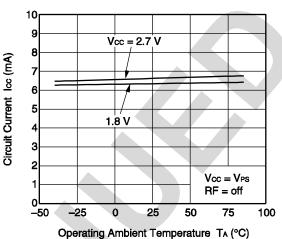
TEST CIRCUIT



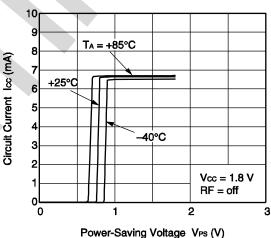
TYPICAL CHARACTERISTICS (T_A = +25°C, unless otherwise specified)



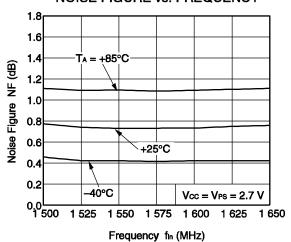
CIRCUIT CURRENT vs.
POWER-SAVING VOLTAGE

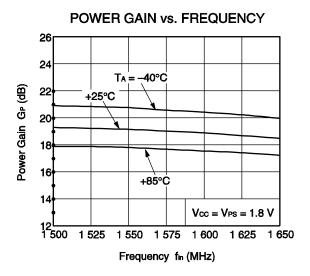


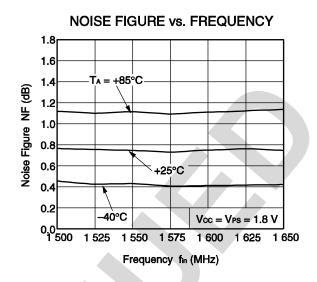
POWER GAIN vs. FREQUENCY

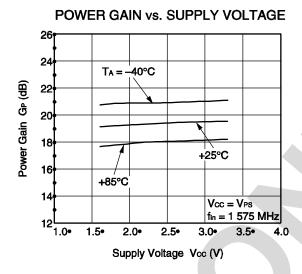


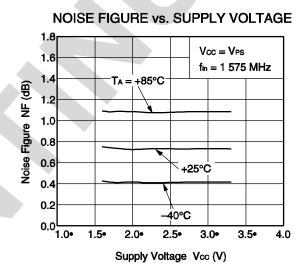
Remark The graphs indicate nominal characteristics.

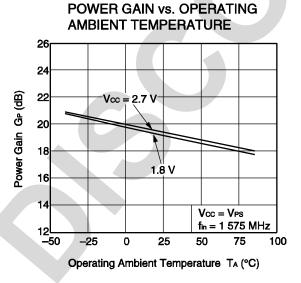

CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE

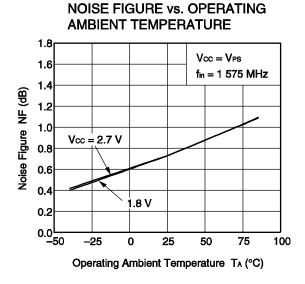


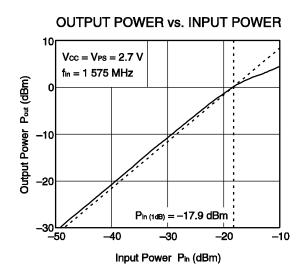

CIRCUIT CURRENT vs. POWER-SAVING VOLTAGE



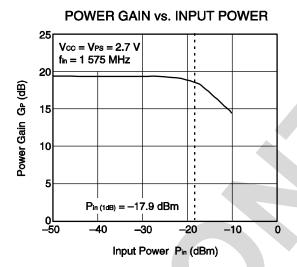

NOISE FIGURE vs. FREQUENCY

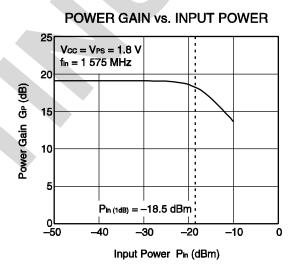


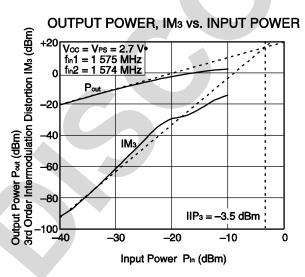


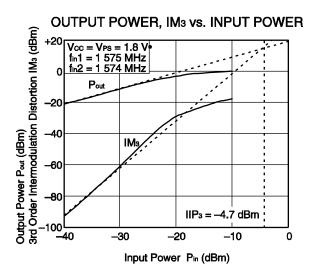


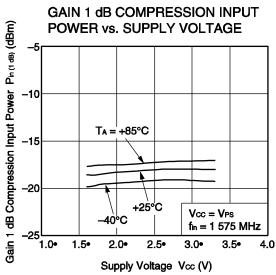


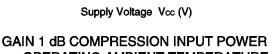


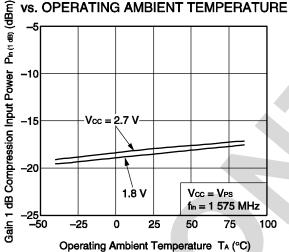


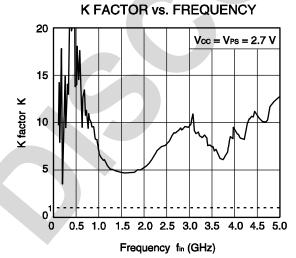

Remark The graphs indicate nominal characteristics.



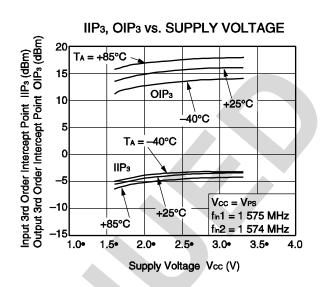


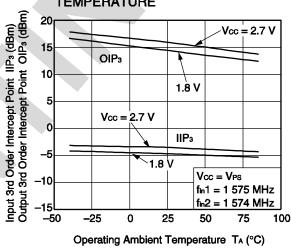


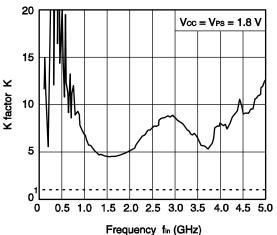


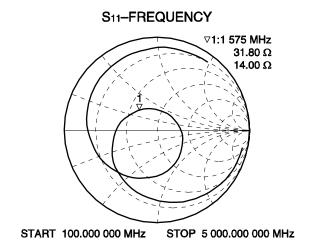


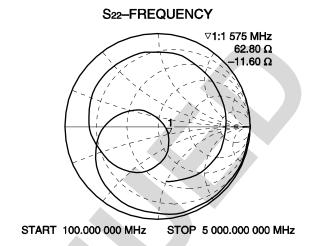
Remark The graphs indicate nominal characteristics.

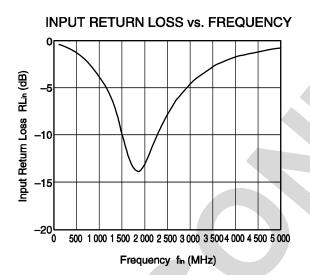


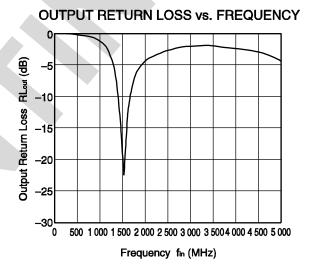


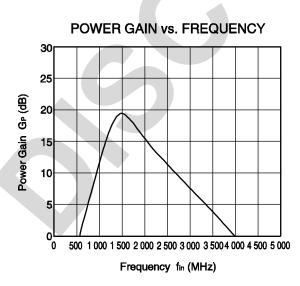

Remark The graphs indicate nominal characteristics.

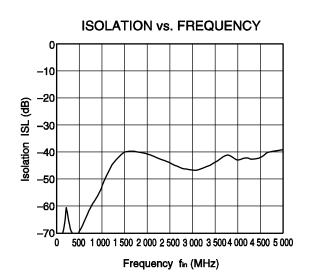

IIP3, OIP3 vs. OPERATING AMBIENT **TEMPERATURE**

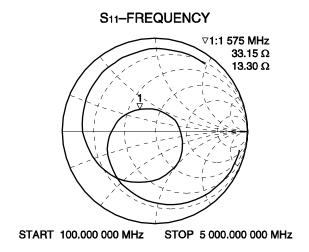


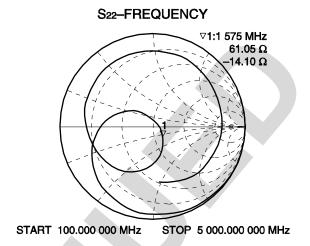

K FACTOR vs. FREQUENCY

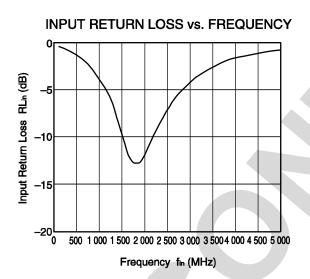


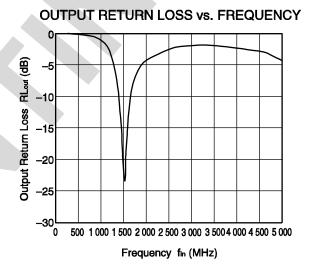

S-PARAMETERS (TA = +25°C, Vcc = VPS = 2.7 V, monitored at connector on board)

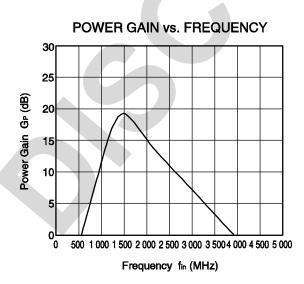


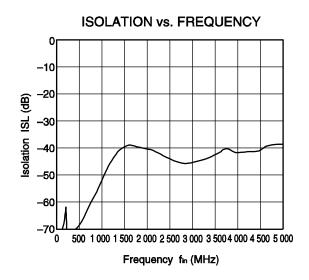


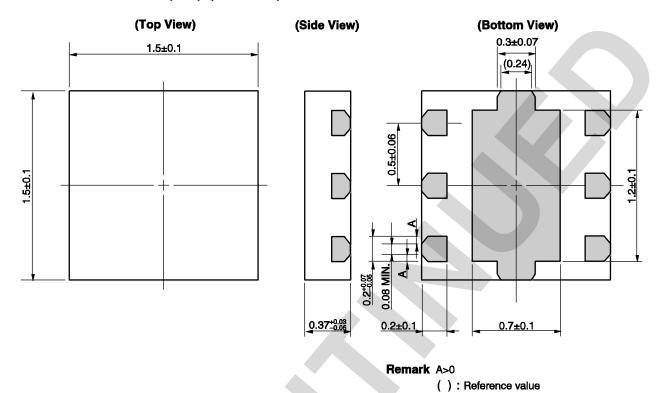





Remark The graphs indicate nominal characteristics.


S-PARAMETERS (TA = +25°C, Vcc = VPS = 1.8 V, monitored at connector on board)





Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

6-PIN PLASTIC TSON (T6N) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.
- (4) Do not supply DC voltage to INPUT pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature)	: 260°C or below	IR260
	Time at peak temperature	: 10 seconds or less	
	Time at temperature of 220°C or higher	: 60 seconds or less	
	Preheating time at 120 to 180°C	: 120±30 seconds	
	Maximum number of reflow processes	: 3 times	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Wave Soldering	Peak temperature (molten solder temperature)	: 260°C or below	WS260
	Time at peak temperature	: 10 seconds or less	
	Preheating temperature (package surface temperature)	: 120°C or below	
	Maximum number of flow processes	: 1 time	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	
Partial Heating	Peak temperature (terminal temperature)	: 350°C or below	HS350
	Soldering time (per side of device)	: 3 seconds or less	
	Maximum chlorine content of rosin flux (% mass)	: 0.2%(Wt.) or below	

Caution Do not use different soldering methods together (except for partial heating).

