



# **UNIVERSAL FLASH STORAGE**

# (UFS 3.1)

# UFS64G-TX17-GA3A-DK UFS128-TX17-GA3A-DK

Datasheet v1.1

Kingston Solutions Inc.



# CONTENTS

| Product Features :                         | 3  |
|--------------------------------------------|----|
| 1 Introduction                             | 4  |
| 2 Specification                            | 4  |
| 2.1 Device Summary                         | 4  |
| 2.2 System Performance                     | 4  |
| 2.3 Power Consumption                      | 5  |
| 2.4 Capacity According To Partition        | 5  |
| 2.5 User Density                           | 5  |
| 3 Mechanical Specification                 | 6  |
| 3.1 Ball Definition                        | 6  |
| 3.2 Package Dimension                      | 8  |
| 11.5mm*13mm*0.8mm Max. : For 64GB          | 8  |
| 11.5mm*13mm*1.0mm Max. : For 128GB         | 8  |
| 3.3 UFS Block Diagram                      | 10 |
| 3.4 Reference Clock                        | 11 |
| 3.4.1 Reference Clock                      | 12 |
| 3.5 Power Mode                             | 13 |
| 3.5.2 Idle Power Mode                      | 14 |
| 3.5.3 Pre-Active Power Mode                | 14 |
| 3.5.4 UFS-Sleep Power Mode                 | 15 |
| 3.5.5 Pre-Sleep Power Mode                 | 15 |
| 3.5.6 Pre-DeepSleep Power Mode             | 16 |
| 3.5.7 UFS-PowerDown Power Mode             | 16 |
| 3.5.8 Pre-PowerDown Power Mode             | 16 |
| 3.5.9 Responses to SCSI commands           | 18 |
| 3.5.10 Responses to SCSI commands (cont'd) | 19 |
| 4 UFS SCSI Domain                          | 20 |
| 4.1 UFS Logical Unit Definition            | 20 |
| 4.2 SCSI Command                           |    |
| 5 UFS Supported Pages                      | 22 |
| 5.1 Control Mode Page                      |    |
| 5.2 Read-Write Error Recovery Mode Page    | 25 |
| 5.3 Caching Mode Page                      |    |
| 5.4 Caching Mode Page Parameters           |    |
| 5.5 Vital product data parameters          |    |
| 5.5.1 Overview                             |    |
| 5.5.2 VPD page format                      |    |
| 5.5.3 Supported VPD Pages VPD page         | 30 |
| 5.5.4 Mode Page Policy VPD page (cont'd)   | 32 |
| 6 Marking                                  | 33 |
| 7 Revision History                         | 34 |



# **Product Features :**

### <Common>

- Packaged NAND flash memory with UFS 3.1 interface
- Compliant with UFS Specification Ver.3.1
- Support for High Speed Gear Rates : Up to HS-GEAR4 (2 lane)
  - PWM: supports to Gear 1
  - HS-BURST: supports to Gear 1~4
- UFS layering :
  - -UFS Command Set Layer (UCS)
  - -UFS Transport Protocol Layer (UTP)
  - -UFS Interconnect Layer (UIC)
- Temperature :
  - Operation:  $-25^{\circ}$ C ~  $85^{\circ}$ C , Storage:  $-40^{\circ}$ C ~  $85^{\circ}$ C
- Operating voltage :
  - VCCQ= $1.14 \sim 1.26V, 1.2V$  (Typ) , VCC =  $2.4 \sim 2.7V, 2.5V$  (Typ)
- Error free memory access
  - Internal error correction code (ECC) to protect data communication
  - Internal enhanced data management algorithm
  - Solid protection of sudden power failure safe-update operations for data content
- Security
  - Discard
  - Replay Protected Memory Block (RPMB)
  - Support secure bad block erase commands
  - Enhanced write Protection with permanent and partial protection options
- Performance
  - High Priority Interrupt
  - Background Operation
  - Command Queuing
  - Data tag
  - Context ID
  - Cache Operation
  - Write Booster
  - Host Performance Booster
- Reliability
  - Dynamic Capacity
  - Real Time Clock
  - Production State Awareness (PSA)
- Quality
  - RoHS compliant (for detailed RoHS declaration, please contact your KSI representative.)
- Similar functional features as eMMC.
  - Multiple logical units with configurable characteristics
  - Reliable write operation
  - Task management
  - Device Health (EOL)
  - Field Firmware Update (FFU)



### **1** Introduction

Kingston UFS products follow the JEDEC UFS 3.1 standard. It is an ideal universal storage solution for many electronic devices, including smartphones, camera, Tablets, Electronic toys, Smart home, Wearable, Automotive sensor, Artificial intelligence robotics, Virtual reality (VR), Unmanned aerial vehicle that require mass storage. UFS encloses the 3D NAND and UFS controller inside as one JEDEC standard package, providing a standard interface to the host. The UFS controller directly manages NAND flash, including ECC, wear-leveling, IOPS optimization and read sensing.

## 2 Specification

### 2.1 Device Summary

| Product<br>Part Number | NAND<br>Density | Package | Operating<br>voltage           |  |  |  |
|------------------------|-----------------|---------|--------------------------------|--|--|--|
| UFS64G-TX17-GA3A-DK    | 64GB            |         | V <sub>CC</sub> = 2.4~2.7 V    |  |  |  |
| UFS128-TX17-GA3A-DK    | 128GB           | rduA153 | V <sub>CCQ</sub> = 1.14V~1.26V |  |  |  |

### 2.2 System Performance

|                                                                                                                                                                           | Write Booster value    |                         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|--|--|--|--|--|--|
| Products                                                                                                                                                                  | Sequential Read (MB/s) | Sequential Write (MB/s) |  |  |  |  |  |  |
| UFS64G-TX17-GA3A-DK                                                                                                                                                       | 1100                   | 390                     |  |  |  |  |  |  |
| UFS128-TX17-GA3A-DK                                                                                                                                                       | 1400                   | 780                     |  |  |  |  |  |  |
| Note 1: For performance number under other test conditions, please contact KSI representatives.<br>Note 2: Performance numbers might be subject to change without notice. |                        |                         |  |  |  |  |  |  |

|                                                                        | Турі                                                                                            | calvalue                |  |  |  |  |  |  |
|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|--|--|--|--|--|--|
| Products                                                               | Sequential Read (MB/s)                                                                          | Sequential Write (MB/s) |  |  |  |  |  |  |
| UFS64G-TX17-GA3A-DK                                                    | 1100                                                                                            | 80                      |  |  |  |  |  |  |
| UFS128-TX17-GA3A-DK                                                    | 1400                                                                                            | 170                     |  |  |  |  |  |  |
| Note 1: For performance num                                            | Note 1: For performance number under other test conditions, please contact KSI representatives. |                         |  |  |  |  |  |  |
| Note 2: Performance numbers might be subject to change without notice. |                                                                                                 |                         |  |  |  |  |  |  |

Note 3: Values given for an 2 lane bus width, a clock frequency of 26MHz(HS-Gear 4)



### 2.3 Power Consumption

| Products            | Read(mA)        |                | Write(mA)       |                | Idle(uA)        |                | Slee            | p(uA)          | Deep Sleep(uA)  |                |  |
|---------------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|-----------------|----------------|--|
| Products            | $V_{CCQ(1.2V)}$ | $V_{CC(2.5V)}$ |  |
| UFS64G-TX17-GA3A-DK | 600             | 270            | 420             | 150            | 1100            | 50             | 650             | 50(0)          | 350             | 50(0)          |  |
| UFS128-TX17-GA3A-DK | 640             | 300            | 470             | 250            | 1100            | 100            | 650             | 100            | 350             | 100            |  |

Note 1: Values given for an 2 lane bus width, a clock frequency of 26MHz(HS-Gear 4),100ms RMS current value,  $V_{cc}$  = 2.5V±5%,  $V_{cc0}$  = 1.2V±5%, Ta = 25°C

Note 2: Idle = Hibernate State, current is measured at  $Vcc=2.5V\pm5\%$ , 2 lane bus width without clock frequency.

Note 3: Sleep = SSU(Sleep) + Hibernate. When in sleep state, VCC could be turned off and value will be 0.

Note 4: Deep Sleep = Power off for UniPro and M-PHY. When in deep sleep state, VCC could be turned off and value will be 0..

Note 5: Current numbers might be subject to change without notice.

### 2.4 Capacity According To Partition

| Capacity | Boot partition 1 | Boot partition 2 | RPMB |
|----------|------------------|------------------|------|
| 64 GB    | 4MB              | 4MB              | 4MB  |
| 128 GB   | 4MB              | 4MB              | 4MB  |

### 2.5 User Density

Total user density depends on device type. For example, 52MB in the SLC mode requires 156 MB in TLC.

| Device | User Density       |
|--------|--------------------|
| 64GB   | 640021856256 Bytes |
| 128GB  | 128043712512 Bytes |

### **Mechanical Specification** 3.1 Ball Definition 3

**Kingston** 

### Table 3-1 FBGA153 Ball information

| Name                              | Туре              | Description                                                                                                                                                |
|-----------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC                               | Supply            | Supply voltage for the memory devices                                                                                                                      |
| VCCQ                              | Supply            | Supply voltage used typically for the memory controller and optionally for the PHY interface, the memory IO, and any other internal very low voltage block |
| VDDiQ                             | Input             | Input terminal to provided by pass capacitor for VCCQ internal regulator                                                                                   |
| VDDi                              | Input             | Input terminal to provide bypass capacitor for VCC internal regulator                                                                                      |
| VSS                               | Supply            | Ground                                                                                                                                                     |
| RST_n                             | Input             | Input hardware reset signal. This is an active low signal                                                                                                  |
| REF_CLK                           | Input             | Input reference clock. When not active, this signal should be pull-down or driven low by the host SoC.                                                     |
| Differential input signa          | ls into UFS devic | ce from the host                                                                                                                                           |
| DIN_tor DIN0_t<br>DIN_c or DIN0_c | Input             | Downstream data lane 0<br>DIN_t is the positive node of the differential signal.                                                                           |
| DIN1_t, DIN1_c                    | Input             | Downstream data lane 1                                                                                                                                     |
| Differential output sign          | als from the UFS  | device to the host                                                                                                                                         |
| DOUT_torDOUT0_t                   | Output            | Downstream data lane 0                                                                                                                                     |
| DOUT_cor<br>DOUT0_c               |                   | DOUT_t is the positive node of the differential signal.                                                                                                    |
| DOUT1_c,DOUT1_c                   | Output            | Upstream data lane 1                                                                                                                                       |
| NC                                |                   | No connect. Need Keep floating.                                                                                                                            |
| VSF                               |                   | Vendor Specific Function. Need Keep floating.                                                                                                              |
| RFU                               |                   | No connect. Reserved for future use. Need Keep floating.                                                                                                   |

| 1       | 2       | 3     | 4         | 5    | 6    | 7    | 8   | 9    | 10   | 11  | 12  | 13  | 14 |
|---------|---------|-------|-----------|------|------|------|-----|------|------|-----|-----|-----|----|
|         |         |       |           |      |      |      |     |      |      |     |     |     |    |
| NC      | NC      | VDDiQ | VCCQ      | VCCQ | NC   | NC   | NC  | VDDi | NC   | NC  | NC  | NC  | N  |
| NC      | VSS     | RFU   | VCCQ      | VCCQ | NC   | NC   | VCC | VCC  | NC   | VSS | VSS | RFU | N  |
| VSS     | VSS     | VSS   | VCCQ      | VCCQ | NC   | NC   | VCC | VCC  | RFU  | VSS | VSS | RFU | RF |
| DIN1_t  | DIN1_c  | VSS   | NC(Index) |      |      |      |     |      |      |     | VSS | VSS | VS |
| VSS     | VSS     | VSS   |           | VCCQ | VSF1 | VSF2 | VCC | VSF3 | VSF4 |     | VSS | RFU | RF |
| DIN0_t  | DINO_c  | VSS   |           | VCCQ |      |      |     |      | VSF5 |     | VSS | VSS | V  |
| VSS     | VSS     | VSS   |           | VSF6 |      |      |     |      | VSS  |     | VSS | RFU | RF |
| REF_CLK | RST_n   | VSS   |           | VSS  |      |      |     |      | VSS  |     | VSS | VSS | V  |
| VSS     | VSS     | VSS   |           | VSS  |      |      |     |      | VSF7 |     | VSS | RFU | R  |
| DOUT0_c | DOUT0_t | VSS   |           | VSS  | NC   | NC   | VCC | NC   | VSF8 |     | VSS | VSS | V  |
| VSS     | VSS     | VSS   |           |      |      |      |     |      |      |     | VSS | RFU | RF |
| DOUT1_c | DOUT1_t | VSS   | VSS       | VSS  | RFU  | RFU  | NC  | NC   | RFU  | NC  | VSS | VSS | V  |
| NC      | VSS     | VSS   | VSS       | VSS  | RFU  | RFU  | VCC | VCC  | RFU  | VSS | VSS | RFU | N  |
| NC      | NC      | RFU   | VSS       | VSS  | RFU  | RFU  | VCC | VCC  | VSF9 | VSS | VSS | NC  | N  |

### Figure 3-1 Ball assignment for FBGA 153L

Р

A B

**Kingston** 

©2020 Kingston Solutions Inc.



- 3.2 Package Dimension
- 11.5mm\*13mm\*0.8mm Max. : For 64GB
- 11.5mm\*13mm\*1.0mm Max. : For 128GB







(BOTTOM VIEW)

### For 64GB

**<u><b>Ringston**</u>

| 0141001 | DIME    | NSION I            | N MM     | DIMEN      | ISION | I IN      | INCH  |  |
|---------|---------|--------------------|----------|------------|-------|-----------|-------|--|
| SIMBOL  | MIN.    | NOM.               | MAX.     | MIN.       | NO    | М.        | MAX.  |  |
| A       | 0.62    | 0.73               | 0.80     | 0.024      | 0.0   | 29        | 0.031 |  |
| A1      | 0.15    | 0.21               | 0.26     | 0.006      | 0.0   | 80        | 0.010 |  |
| A2      | 0.46    | 0.52               | 0.60     | 0.018      | 0.0   | 20        | 0.024 |  |
| b       | 0.25    | 0.30 0.35 0.010 0. |          | 0.0        | 12    | 0.014     |       |  |
| D       | 12.90   | 13.00              | 13.10    | 0.508      | 0.5   | 12        | 0.516 |  |
| E       | 11.40   | 11.50              | 11.60    | 0.449      | 0.4   | 53        | 0.457 |  |
| е       | C       | ).50 BS            | С.       | 0.020 BSC. |       |           |       |  |
| JEDEC   |         | MO-276(REF.)/MM    |          |            |       |           |       |  |
| aaa     |         |                    | 0.       | 15         |       |           |       |  |
| CCC     |         |                    | 0.       | 20         |       |           |       |  |
| ddd     |         |                    | 0.       | 08         |       |           |       |  |
| eee     |         |                    | 0.       | 15         |       |           |       |  |
| fff     |         |                    | 0.       | 05         |       |           |       |  |
| Ν       | SE (mr  | n) S               | D (mm)   | E1 (mr     | m)    | D1        | (mm)  |  |
| 153L    | 0.25 BS | SC. 0              | .25 BSC. | 6.50 BS    | SC.   | 6.50 BSC. |       |  |

### For 128GB

| SYMDOL | DIME                | NSION IN | N MM    | DIMENSION IN INCH |             |         |       |  |
|--------|---------------------|----------|---------|-------------------|-------------|---------|-------|--|
| SIMBOL | MBOL MIN. NOM. MAX. |          | MAX.    | MIN.              | NC          | М.      | MAX.  |  |
| A      | 0.81                | 0.93     | 1.00    | 0.032             | 0.0         | 37      | 0.039 |  |
| A1     | 0.15                | 0.21     | 0.26    | 0.006             | 0.0         | 80      | 0.010 |  |
| A2     | 0.65                | 0.72     | 0.80    | 0.026             | 0.0         | 28      | 0.031 |  |
| b      | 0.25                | 0.30     | 0.35    | 0.010             | 0.0         | 12      | 0.014 |  |
| D      | 12.90               | 13.00    | 13.10   | 0.508             | 0.5         | 12      | 0.516 |  |
| E      | 11.40               | 11.50    | 11.60   | 0.449             | 0.4         | 53      | 0.457 |  |
| е      | C                   | ).50 BSC | D.      | 0.020 BSC.        |             |         |       |  |
| JEDEC  | MO-276(REF.)/MM     |          |         |                   |             |         |       |  |
| aaa    |                     |          | 0.      | 15                |             |         |       |  |
| CCC    |                     |          | 0.      | 20                |             |         |       |  |
| ddd    |                     |          | 0.      | 08                |             |         |       |  |
| eee    |                     |          | 0.      | 15                |             |         |       |  |
| fff    |                     | 0.05     |         |                   |             |         |       |  |
| N      | SE (mr              | m) SI    | ) (mm)  | E1 (mr            | n)          | D1 (mm) |       |  |
| 153L   | 0.25 BS             | SC. 0.1  | 25 BSC. | 6.50 BS           | 6.50 BSC. 6 |         |       |  |

©2020 Kingston Solutions Inc.

CONFIDENTIAL 9



### 3.3 UFS Block Diagram

Figure 3.2 represents a conceptual drawing of UFS device. Utilization of internal regulators and Connection of those to different parts of the sub-system may differ per implementation.



Table 3-2 - Power Supply Parameter

| Symbol | Min                                                                 | Max                                                    | Unit                                                                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                                                       |
|--------|---------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VCC    | 2.4                                                                 | 2.7                                                    | V                                                                                                                                                                                                                             | 3                                                                                                                                                                                                                                                                                                                                           |
| VCCQ   | 1.14                                                                | 1.26                                                   | V                                                                                                                                                                                                                             | 1,3                                                                                                                                                                                                                                                                                                                                         |
| tPRUH  |                                                                     | 35                                                     | ms                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                           |
| tPRUH  |                                                                     | 35                                                     | ms                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                           |
| tPRUV  |                                                                     | 20                                                     | Ms                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                                                                           |
| CVDDi  | 1                                                                   |                                                        | μF                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                             |
| CVDDiQ | 1                                                                   |                                                        | uF                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                             |
|        | Symbol<br>VCC<br>VCCQ<br>tPRUH<br>tPRUH<br>tPRUV<br>CVDDi<br>CVDDiQ | SymbolMinVCC2.4VCCQ1.14tPRUH-tPRUH-tPRUV-CVDDi1CVDDiQ1 | Symbol         Min         Max           VCC         2.4         2.7           VCCQ         1.14         1.26           tPRUH         35         35           tPRUH         20         20           CVDDi         1         1 | Symbol         Min         Max         Unit           VCC         2.4         2.7         V           VCCQ         1.14         1.26         V           tPRUH         35         ms           tPRUH         35         ms           tPRUH         20         Ms           CVDDi         1         μF           CVDDiQ         1         uF |

NOTE 1 See [JESD8-12A]

NOTE 2 Power up timing starts when the supply voltage crosses 300 mV and ends when it reaches the minimum operating value

NOTE 3 Depending on the vendor, valid power configuration may be defined in each UFS device vendor's data sheet. Refer to the vendor datasheet for the detail



### **3.4 Reference Clock**

The M-PHY specification defines the reference clock optional for the State Machine Type I [MIPI M-PHY]. As the PWM signaling is self-clocked the reference clock is not required for the data latching. Therefore, UFS devices shall be able to operate without reference clock in LS-MODE (LINE-CFG, SLEEP and PWM-BURST).

Still existence of the reference clock may be utilized to enable lower BER and faster HS-MODE PLL/DLL locking. Thus a UFS device shall implement a square wave single ended reference clock input and it requires the presence of a reference clock with the characteristics described in this section when operating in HS-MODE(STALL and HS-BURST). In order to avoid potential race conditions, it is recommended that such reference clock is already present when requesting a power mode change into Fast\_Mode or FastAuto\_Mode.

| Parameter                            | Symbol                        | Nom                                 | Unit                       | Notes |       |
|--------------------------------------|-------------------------------|-------------------------------------|----------------------------|-------|-------|
| Frequency                            | fref                          | 19.2 / 2                            | 19.2 / 26 / 38.4           |       | 1     |
| Parameter                            | Symbol                        | Min                                 | Max                        | Unit  | Notes |
| Frequency Error                      | fERROR                        | -150                                | +150                       | ppm   |       |
| Input High Voltage                   | VIH                           | 0.65 * VCCQ                         |                            | V     | 2     |
| Input Low Voltage                    | VIL                           |                                     | 0.35 * VCCQ                | V     | 2     |
| Input Clock Rise Time                | t <sub>IRISE</sub>            |                                     | 2                          | ns    | 3     |
| Input Clock Fall Time                | t <sub>IFALL</sub>            |                                     | 2                          | ns    | 3     |
| Duty Cycle                           | t <sub>DC</sub>               | 45                                  | 55                         | %     | 4     |
| Phase Noise                          | N                             |                                     | -66                        | dBc   | 5     |
| Noise Floor Density                  | N <sub>density</sub>          |                                     | -140                       | dBc/H | 6     |
|                                      | RL <sub>RX</sub>              | 100                                 |                            | kΩ    | 7     |
| Input Impedance                      | CL <sub>RX</sub>              |                                     | 5                          | pF    |       |
| NOTE 1 HS-BURST rates A and          | B are achieved                | with integer multipli               | iers of f <sub>ref</sub> . |       |       |
| NOTE 2 Figure 5-5 shows them         | iput ieveis v <sub>IL</sub> , | MAX to VIH,MIN.                     | $200/ = 200/ = 6 \pm b$    |       |       |
| window defined by Vu v               |                               | e Figure 3-3                        | 20% to 80% of the          |       |       |
| NOTE 4 Clock duty cycle shall b      | e measured at                 | the crossings of the F              | REF CLK signal with        |       |       |
| the midpoint V <sub>MID</sub> define | ed as: Vмin = (               | $V_{11. MAX} + V_{11. MIN} / 2. se$ | e Figure 3-3.              |       |       |
| NOTE 5 Integrated single side b      | and phase noi                 | ise from 50kHZ to 10M               | MHz. This                  |       |       |
| parameter refers to the              | random jitter                 | only.                               |                            |       |       |
| NOTE 6 White noise floor. This       | parameter ref                 | ers to the random jitt              | er only.                   |       |       |
|                                      |                               |                                     |                            |       |       |

NOTE 7  $\ \ RL_{RX}$  and  $CL_{RX}$  include Rx package and Rx input impedance.



### **3.4.1 Reference Clock**



Figure 3-3- Clock input levels, rise time and fall time

### 3.5 Power Mode

kingston

The UFS device support multiple power mode which controlled by the START STOP UNIT command and some attributes. UFS will support seven power mode (Active, Idle, Pre-active, UFS sleep, Pre-sleep, UFS-PowerDown, Pre-Power down) defined by JEDEC UFS 3.1 specification.



Figure 3-4- Power Mode state Machine

- (1) This transition may occur only if the SSU command that caused the transition to Pre-Sleep had IMMED set to one.
- (2) This transition may occur only if the SSU command that caused the transition to Pre-PowerDown had IMMED set to one.
- (3) This automatic transition shall occur at the end of device initialization if bInitPowerMode = 00h.
- (4) The only way to exit from UFS-DeepSleep power mode is using a hardware reset or a power cycle.

| UFS Power mode | Unipro Power Mode | M-phy Power Mode | VCC Power |
|----------------|-------------------|------------------|-----------|
| ACTIVE         | FAST_STATE        | HS-BURST         | ON        |
| IDLE           | HIB_STATE         | Hibern8          | ON        |
| SLEEP          | HIB_STATE         | Hibern8          | OFF/ON    |
| DEEP SLEEP     | OFF_STATE         | UNPOWERED        | OFF/ON    |
| POWER DOWN     | HIB_STATE         | Hibern8          | OFF/ON    |



### 3.5.1 Active Power Mode

Valid values for the bActiveICCLevel are from "00h" to "0Fh", other values are reserved and should not be set. UFS devices should primarily use settings of "06h" and "0Ch", for normal (battery) and high (plugged in) power operating modes.

The bInitActiveICCLevel parameter in the Device Descriptor allows the user to configure the Active ICC level after power on or reset.

The bInitPowerMode parameter in the Device Descriptor defines the power mode to which the device shall transition to after completing the initialization phase (fDeviceInit cleared to zero). Active Mode can be entered from the Powered On mode or the Pre-Active mode after the completion of all setup necessary to handle commands.

The following power mode may be: Idle, Pre-Sleep, or Pre-PowerDown. All supported commands are available in Active Mode.

### 3.5.2 Idle Power Mode

The Idle power mode is reached when the device is not executing any operation. In general, the M-PHY interface may be in STALL, SLEEP or HIBERN8 state. If background operations are continuing, the device should be considered Active power mode.

This mode can only be entered from an Active power mode, and the following state is always the Active power mode. The receipt of any command will transition the device into Active power mode.

### 3.5.3 Pre-Active Power Mode

The Pre-Active power mode is a transitional mode associated with Active power mode. The power consumed will be no more than that consumed in Active power mode. The device shall remain in this power mode until all of the preparation needed to accept commands has been completed.

Pre-Active power mode can be entered from Pre-Sleep, Sleep, Pre-PowerDown, or PowerDown. The following power mode is the Active power mode.

- a. The Device well known logical unit may successfully complete only: START STOP UNIT command and REQUEST SENSE command; other commands may be terminated with CHECK CONDITION status, with the sense key set to NOT READY, with the additional sense code set to LOGICAL UNIT IS IN PROCESS OF BECOMING READY. See table 3-4 for further detail.
- b. A REQUEST SENSE command shall terminated with GOOD status and provide pollable sense data with the sense key set to NO SENSE, and the additional sense code set to LOGICAL UNIT TRANSITIONING TO ANOTHER POWER CONDITION.



### 3.5.4 UFS-Sleep Power Mode

The UFS-Sleep power mode allows to reduce considerably the power consumption of the device.

VCC powersupply can be removed in this state.

The UFS-Sleep power mode is entered from Pre-Sleep power mode.

While in UFS-Sleep power mode:

- a. the Device well known logical unit may successfully complete only: START STOP UNIT command and REQUEST SENSE command; other commands may be terminated with CHECK CONDITION status, with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, INITIALIZING COMMAND REQUIRED. See table 3-4 for further detail.
- b. REQUEST SENSE command shall be terminated with GOOD status and provide pollable sense data with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, INITIALZING COMMAND REQUIRED.

It is recommended to put the link in HIBERN8 state, although it is actually under host control and can come up and down independently of the UFS power mode.

VCC power supply should be restored before issuing START STOP UNIT command to request transition to Active power mode or PowerDown power mode.

### 3.5.5 Pre-Sleep Power Mode

The Pre-Sleep Mode is a transitional mode associated with UFS-Sleepentry. The power consumed will be no more than that consumed in Active power mode. Pre-Sleep can be entered from Active power mode.

The device will automatically advance to Sleep power mode once any outstanding operations and management activities have been completed.

The device will transition from Pre-Sleep power mode to Pre-Active power mode if START STOP UNIT command with POWER CONDITION = 1h is issued.

While in Pre-Sleep power mode:

- a. The Device well known logical unit may successfully complete only: START STOP UNIT command, REQUEST SENSE command and task management functions; other commands may be terminated with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST. See table 3-4 for further detail.
- b. A REQUEST SENSE command shall be terminated with GOOD status and provide pollable sense data with the sense key set to NO SENSE and the additional sense code set to LOGICAL UNIT TRANSITIONING TO ANOTHER POWER CONDITION.



### 3.5.6 Pre-DeepSleep Power Mode

The Pre-DeepSleep power mode is a transitional mode associated with UFS-DeepSleep entry. The power consumed shall be no more than that consumed in Active power mode. Pre-DeepSleep may be entered from Active or UFS-Sleep power mode.

The device sends the response with GOOD status to START STOP UNIT command with the POWER CONDITION field set to 4h after any outstanding operations and management activities have been completed. Then the device waits for HIBERN8 state transition. The host is expected to put the link in HIBERN8 state after receiving the response to the START STOP UNIT command. The device shall transit to UFS-DeepSleep power mode after HIBERN8 state transition is completed. While in Pre-DeepSleep power mode, the Device does not respond to any host commands

### 3.5.7 UFS-PowerDown Power Mode

The UFS-PowerDown power mode is the maximum power saving mode. All volatile data may be lost and VCC or all power supplies can be removed.

This mode is automatically entered from the Pre-PowerDown power mode, at the completion of the power mode transition.

While in UFS-PowerDown power mode:

- a. The Device well known logical unit may successfully complete only: START STOP UNIT command and REQUEST SENSE command; other commands may be terminated with CHECK CONDITION status, with the sense key set to NOT READY and the additional sense code set to LOGICAL UNIT NOT READY, INITIALIZING COMMAND REQUIRED. See table 3-4 for further detail.
- b. A REQUEST SENSE command shall be terminated with GOOD status and provide pollable sense data with the sense key set to NOT READY, and the additional sense code set to LOGICAL UNIT NOT READY, INITIALIZING COMMAND REQUIRED.

### 3.5.8 Pre-PowerDown Power Mode

The Pre-PowerDown power mode is a transitional mode associated with UFS-PowerDown entry. The power consumed will be no more than that consumed in Active power mode. Pre-PowerDown can be entered from Active or Sleep.

The device will automatically advance to PowerDown power mode once any outstanding operations and management activities have been completed.

The device will transition to Pre-Active mode if START STOP UNIT command with POWER CONDITION field set to 1h is issued.

The following power mode may be PowerDown or Pre-Active.

While in Pre-PowerDown power mode:

a. The Device well known logical unit may successfully complete only: START STOP UNIT command REQUEST SENSE command and task management functions; other commands may be terminated



with CHECK CONDITION status, with the sense key set to ILLEGAL REQUEST. See table 3-4 for further detail.

b. A REQUEST SENSE command shall be terminated with GOOD status and provide pollable sense data with the sense key set to NO SENSE and the additional sense code set to LOGICAL UNITTRANSITIONING TO ANOTHER POWER CONDITION.



### 3.5.9 Responses to SCSI commands

Table 3-4 - defines the Device well known logical unit response to a START STOP UNIT command for a given power mode. It is assumed that the IMMED bit in START STOP UNIT commands is set to zero.

| Current<br>Power Mode                                                                                       | РС           | STATUS              | SENSE KEY          | ASC, ASCQ                                             |  |
|-------------------------------------------------------------------------------------------------------------|--------------|---------------------|--------------------|-------------------------------------------------------|--|
|                                                                                                             | 1h           | G00D <sup>(1)</sup> | -                  | -                                                     |  |
| Pre-Active                                                                                                  | Others       | CHECK<br>CONDITION  | NOT READY          | LOGICAL UNIT NOT READY,<br>START STOP UNIT COMMAND IN |  |
|                                                                                                             | 1h, 2h, 3h   | GOOD <sup>(1)</sup> | -                  |                                                       |  |
| Active                                                                                                      | Others       | CHECK<br>CONDITION  | ILLEGAL<br>REQUEST | INVALID FIELD IN<br>CDB                               |  |
|                                                                                                             | 2h           | G00D <sup>(1)</sup> | -                  | -                                                     |  |
| Pre-Sleep                                                                                                   | Others       | CHECK<br>CONDITION  | NOT READY          | LOGICAL UNIT NOT READY,<br>START STOP UNIT COMMAND IN |  |
|                                                                                                             | 1h, 2h, 3h   | G00D <sup>(1)</sup> | -                  | -                                                     |  |
| UFS-Sleep                                                                                                   | Others       | CHECK<br>CONDITION  | ILLEGAL<br>REQUEST | INVALID FIELD IN<br>CDB                               |  |
| Pre-DeepSleep                                                                                               | Device is no | t able to accept    | START STOP         | UNIT command in this power mode                       |  |
| UFS-DeepSleep                                                                                               | Device is no | t able to accept    | START STOP         | UNIT command in this power mode                       |  |
|                                                                                                             | 3h           | G00D <sup>(1)</sup> | -                  | -                                                     |  |
| Pre-PowerDown                                                                                               | Others       | CHECK<br>CONDITION  | NOT READY          | LOGICAL UNIT NOT READY,<br>START STOP UNIT COMMAND IN |  |
|                                                                                                             | 1h, 3h       | G00D <sup>(1)</sup> | -                  | -                                                     |  |
| UFS-PowerDown                                                                                               | Others       | CHECK<br>CONDITION  | ILLEGAL<br>REQUEST | INVALID FIELD IN<br>CDB                               |  |
| NOTE 1 The START STOP UNIT command may not terminate with GOOD status for condition not due to CDB content. |              |                     |                    |                                                       |  |

Table 3-4 - Device Well Known Logical Unit Responses to SSU command



### 3.5.10 Responses to SCSI commands (cont'd)

Table 3-5 - summarizes the response that the Device well known logical unit may provide to a command other than START STOP UNIT for various device power modes.

| Power Mode                                                                                                                                                   | Command                                                      | STATUS              | SENSE KEY          | ASC, ASCQ                                       |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------|--------------------|-------------------------------------------------|--|--|
| Dro-Activo                                                                                                                                                   | REQUEST<br>SENSE                                             | GOOD <sup>(1)</sup> | -                  | -                                               |  |  |
| TTO HOUVE                                                                                                                                                    | Others <sup>(1)</sup>                                        | CHECK<br>CONDITION  | NOT READY          | LOGICAL UNIT IS IN PROCESS OF<br>BECOMING READY |  |  |
| Pre-Sleep,<br>PrePowerDown                                                                                                                                   | REQUEST<br>SENSE                                             | GOOD <sup>(1)</sup> | -                  | -                                               |  |  |
|                                                                                                                                                              | Others <sup>(1)</sup>                                        | CHECK<br>CONDITION  | ILLEGAL<br>REQUEST | -                                               |  |  |
| UFS-Sleep,                                                                                                                                                   | REQUEST<br>SENSE                                             | GOOD <sup>(1)</sup> | -                  | -                                               |  |  |
| UFS-PowerDown                                                                                                                                                | Others <sup>(1)</sup>                                        | CHECK<br>CONDITION  | NOT READY          | LOGICAL UNIT NOT READY,<br>INITIALIZING COMMAND |  |  |
| Pre-DeepSleep<br>UFS-DeepSleep                                                                                                                               | Device is not able to accept any command in this power mode. |                     |                    |                                                 |  |  |
| NOTE 1 Rows identified with "Others" define Device well known logical unit response to command other than START STOP UNIT command and REQUEST SENSE command. |                                                              |                     |                    |                                                 |  |  |

| Table 3-5 - Device Well Known Logical Unit Res | ponses to commands other than SSU |
|------------------------------------------------|-----------------------------------|
|------------------------------------------------|-----------------------------------|

Table 3-6 defines the pollable sense data for various device power modes.

| Table 3-6 Pollable Sense Data | for each Power Modes |
|-------------------------------|----------------------|
|-------------------------------|----------------------|

| Power Mode                                 | SENSE KEY | ASC, ASCQ                                                |
|--------------------------------------------|-----------|----------------------------------------------------------|
| Pre-Active,<br>Pre-Sleep,<br>Pre-PowerDown | NO SENSE  | LOGICAL UNIT TRANSITIONING TO<br>ANOTHER POWER CONDITION |
| UFS-PowerDown,<br>UFS-Sleep                | NOT READY | LOGICAL UNIT NOT READY,<br>INITIALIZING COMMAND REQUIRED |



### 4 UFS SCSI Domain 4.1UFS Logical Unit Definition



Figure 4-1- UFS SCSI Domain

### 1. A logical unit (LU):

.

It is an externally addressable, independent, processing entity that processes SCSI tasks (commands) and performs task management functions.

1.1 Each logical unit is independent of other logical units in a device

1.2 UFS shall support the amount of logical units specified by bMaxNumberLU, in addition to the well known logical units defined in JESD220D\_10.8.5

 $1.3\,logical\,units\,may\,be\,used\,to\,store\,boot\,code, application\,code\,and\,mass\,storage\,data\,applications$ 

- **2. DEVICE SERVER**: A conceptual object within a logical unit that processes SCSI commands.
- **3. TASK MANAGER**: A conceptual object within a logical unit that controls the sequencing of commands and performs task management functions.
- **4. TASK SET**: A conceptual group of 1 or more commands (a list, queue, etc.)
- 5. UniPro:

It is responsible for management of the link, including the PHY.

The basic interface to the interconnect layer is UniPro definition of a CPort. CPort is used for all data

20

transfer as well as all control and configuration messages. In general, multiple CPorts can be supported on a device and the number of CPorts is implementation dependent.



### 4.2 SCSI Command

### Table 4-1 - UFS SCSI Command Set

| Command name                       | Opcode        | <b>Command Support</b> | Support | Note |
|------------------------------------|---------------|------------------------|---------|------|
| FORMAT UNIT                        | 04h           | М                      | Yes     |      |
| INQUIRY                            | 12h           | М                      | Yes     |      |
| MODE SELECT (10)                   | 55h           | М                      | Yes     |      |
| MODE SENSE (10)                    | 5Ah           | М                      | Yes     |      |
| PRE-FETCH (10)                     | 34h           | М                      | Yes     |      |
| PRE-FETCH (16)                     | 90h           | 0                      | Yes     |      |
| READ (6)                           | 08h           | М                      | Yes     |      |
| READ (10)                          | 28h           | М                      | Yes     |      |
| READ (16)                          | 88h           | 0                      | Yes     |      |
| READ BUFFER                        | 3Ch           | М                      | Yes     |      |
| READ CAPACITY (10)                 | 25h           | М                      | Yes     |      |
| READ CAPACITY (16)                 | 9Eh           | М                      | Yes     |      |
| <b>REPORT LUNS</b>                 | A0h           | М                      | Yes     |      |
| <b>REQUEST SENSE</b>               | 03h           | М                      | Yes     |      |
| SECURITY PROTOCOL IN               | A2h           | М                      | Yes     |      |
| SECURITY PROTOCOL OUT              | B5h           | М                      | Yes     |      |
| SEND DIAGNOSTIC                    | 1Dh           | М                      | Yes     |      |
| START STOP UNIT                    | 1Bh           | М                      | Yes     |      |
| SYNCHRONIZE CACHE (10)             | 35h           | М                      | Yes     |      |
| SYNCHRONIZE CACHE (16)             | 91h           | 0                      | No      |      |
| TEST UNIT READY                    | 00h           | М                      | Yes     |      |
| UNMAP                              | 42H           | М                      | Yes     |      |
| VERIFY (10)                        | 2Fh           | М                      | Yes     |      |
| WRITE (6)                          | 0Ah           | М                      | Yes     |      |
| WRITE (10)                         | 2Ah           | М                      | Yes     |      |
| WRITE(16)                          | 8Ah           | 0                      | Yes     |      |
| WRITE BUFFER                       | 3Bh           | М                      | Yes     |      |
| NOTE 1 SECURITY PROTOCOL IN co     | M: manda      | atory, 0: optional     |         |      |
| OUT command are supported by the I | RPMB well kno | own logical unit.      |         |      |



## **5** UFS Supported Pages

Table 5-1 shows the mode pages supported by UFS device. This standard does not define any additional subpages.

| PAGE NAME                       | PAGE<br>CODE | SUBPAGE CODE | DESCRIPTION                                    |
|---------------------------------|--------------|--------------|------------------------------------------------|
| CONTROL                         | 0Ah          | 00h          | Return CONTROL mode page                       |
| READ-WRITE<br>ERROR<br>RECOVERY | 01h          | 00h          | Return READ-WRITE ERROR RECOVERY mode page     |
| CACHING                         | 08h          | 00h          | Return CACHING mode page                       |
| ALL PAGES                       | 3Fh          | 00h          | Return all mode pages (not including subpages) |
| ALL SUBPAGES                    | 3Fh          | FFh          | Return all mode pages and subpages             |

### Table 5-1 — UFS Supported Pages

If the device has more than one logical unit, host should read Mode Page Policy VPD in order to know whether the logical unit maintains its own copy of the mode page and subpage or all logical units share the mode page and subpage.



### 5.1 Control Mode Page

The Control mode page provides controls over SCSI features that are applicable to all device types (e.g., task set management and error logging).

Table 5-2 defines the Control mode page default value (PC = 10b).

### Table 5-2 — Control Mode Page default value

| Bit<br>Byte                        | 7             | 6                                                           | 5             | 4                | 3             | 2                       | 1                | 0            |
|------------------------------------|---------------|-------------------------------------------------------------|---------------|------------------|---------------|-------------------------|------------------|--------------|
| 0                                  | PS            | SPF (0)                                                     |               |                  | PAGE CO       | DE (0Ah)                |                  |              |
| 1                                  |               | PAGE LENGTH (0Ah)                                           |               |                  |               |                         |                  |              |
| 2                                  |               | TST = 000b                                                  |               | TMF_ONLY<br>=0b  | DPICZ<br>= 0b | D_SENSE<br>=0b          | GLTSD<br>= 0b    | RLEC<br>= 0b |
| 3                                  | QU            | QUEUE ALGORITHM MODIFIER NUAR QERR<br>= 0001b = 0b = 00b    |               |                  |               | RR<br>10b               | Obsolete<br>= 0b |              |
| 4                                  | VS<br>= 0b    | RACUA_INTLCK_CTRLSWPObsolete $= 0b$ $= 00b$ $= 0b$ $= 000b$ |               |                  |               |                         |                  |              |
| 5                                  | ATO<br>= 0b   | TAS<br>= 0b                                                 | ATMPE<br>= 0b | RWWP<br>= 0b     | Reserv<br>ed  | AUTOLOAD MODE<br>= 000b |                  |              |
| 6                                  |               |                                                             |               | Ohaol            | 1.040         |                         |                  |              |
| 7                                  |               | Obsolete = 0000h                                            |               |                  |               |                         |                  |              |
| 8                                  | (MSB)         | BUSY TIMEOUT PERIOD (LSB)                                   |               |                  |               |                         |                  |              |
| 9                                  |               |                                                             |               |                  |               |                         | (LSB)            |              |
| 10                                 | (MSB)         |                                                             | EVTENDED      |                  |               |                         |                  |              |
| 11                                 |               | EXTENDED SELF-TEST COMPLETION TIME (LSB)                    |               |                  |               |                         | (LSB)            |              |
| NOTE 1 Default<br>device specific. | values for PS | bit, BUSY TIM                                               | 1EOUT PERIC   | )D field and EXT | 'ENDED SEI    | LF-TEST COMP            | PLETION TIM      | E field are  |

The following Control mode page field shall be changeable: SWP. The following Control mode page fields are not changeable: TST and BUSY TIMEOUT PERIOD. Other fields may or may not be changeable, refer to the vendor datasheet for details.



| Byte                          | Bit                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                               |                                                                                                                                                                                                                                                                                                                                                            | TST: Indicates Task Set Type.                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 1                             | 7:5                                                                                                                                                                                                                                                                                                                                                        | 000b indicates the logical unit maintains one task set for all I_T nexuses.<br>Others: reserved.                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 4                             | 3:3                                                                                                                                                                                                                                                                                                                                                        | <b>SWP</b> : A software write protect (SWP) bit set to one specifies that the logical unit shall inhibit writing to the medium after writing all cached or buffered write data, if any. When SWP is one, all commands requiring writes to the medium shall be terminated with CHECK CONDITION status, with the sense key set to DATA PROTECT              |  |  |  |  |  |
| 8:9                           | 7:0                                                                                                                                                                                                                                                                                                                                                        | <b>BUSY TIMEOUT PERIOD</b> : The BUSY TIMEOUT PERIOD field specifies the maximum time, in 100 milliseconds increments, that the application client allows for the device server to return BUSY status for commands from the application client. A 0000h value in this field is undefined. An FFFFh value in this field is defined as an unlimited period. |  |  |  |  |  |
| NOTE 1<br>power o<br>write pr | NOTE 1 In addition to the software write protection, logical units may be configured as permanently write protected or power on write protected. A logical unit is writeable if all types of write protection are disabled. Logical units may be write protected setting SWP to one or using one of the methods described in 12.3. Device Data Protection. |                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |

### Table 5-3 — Control Mode Page Parameters



### 5.2 Read-Write Error Recovery Mode Page

The Read-Write Error Recovery mode page specifies the error recovery parameters the device server shall use during any command that performs a read or write operation to the medium (e.g., READ command, WRITE command, or VERIFY command)

Table 5-4 defines the Read-Write Error Recovery mode page default value (PC = 10b).

| Bit<br>Byte    | 7                                                 | 6                        | 5                         | 4            | 3           | 2              | 1           | 0                |  |  |
|----------------|---------------------------------------------------|--------------------------|---------------------------|--------------|-------------|----------------|-------------|------------------|--|--|
| 0              | PS                                                | SPF (0b) PAGE CODE (01h) |                           |              |             |                |             |                  |  |  |
| 1              |                                                   | PAGE LENGTH (0Ah)        |                           |              |             |                |             |                  |  |  |
| 2              | AWRE<br>= 1b                                      | ARRE<br>= 0b             | TB<br>= 0b                | RC<br>= 0b   | EER<br>= 0b | PER<br>= 0b    | DTE<br>= 0b | DCR<br>= 0b      |  |  |
| 3              | READ RETRY COUNT                                  |                          |                           |              |             |                |             |                  |  |  |
| 4              | Obsolete = 00h                                    |                          |                           |              |             |                |             |                  |  |  |
| 5              | Obsolete = 00h                                    |                          |                           |              |             |                |             |                  |  |  |
| 6              | Obsolete = 00h                                    |                          |                           |              |             |                |             |                  |  |  |
| 7              | TPERERestricted for<br>MMC-6= 0bReserved = 00000b |                          |                           |              |             |                |             | cted for<br>IC-6 |  |  |
| 8              |                                                   |                          |                           | WRITE RE     | ΓRY COUNT   |                |             |                  |  |  |
| 9              | Reserved = 00h                                    |                          |                           |              |             |                |             |                  |  |  |
| 10             | (MSB)                                             |                          |                           | DECOVEL      |             | <br>IT         |             |                  |  |  |
| 11             |                                                   | _                        | RECOVERY TIME LIMIT (LSB) |              |             |                |             |                  |  |  |
| NOTE 1 Default | values for PS                                     | field, READ R            | ETRY COUNT                | field, WRITE | RETRY COUN  | T field and RF | ECOVERY TIM | E LIMIT          |  |  |

 Table 5-4 — Read-Write Error Recovery Mode Page default value

NOTE 1 Default values for PS field, READ RETRY COUNT field, WRITE RETRY COUNT field and RECOVERY TIME LIMIT are device specific.

This standard does not define which Read-Write Error Recovery mode page fields are changeable, refer to vendor datasheet for details.



| Byte  | Bit | Description                                                                                                                                                                                                                                                                                                                              |
|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | 7:0 | <b>READ RETRY COUNT</b> : The READ RETRY COUNT field specifies the number of times that the device server shall attempt its recovery algorithm during read operations.                                                                                                                                                                   |
| 8     | 7:0 | <b>WRITE RETRY COUNT</b> : The WRITE RETRY COUNT field specifies the number of times that the device server shall attempt its recovery algorithm during write operations.                                                                                                                                                                |
| 10:11 | 7:0 | <b>RECOVERY TIME LIMIT</b> : The RECOVERY TIME LIMIT field specifies in milliseconds the maximum time duration that the device server shall use for data error recovery procedures. When both a retry count and a recovery time limit are specified, the field that specifies the recovery action of least duration shall have priority. |

### Table 5-5 — Read-Write Error Recovery Parameters



### 5.3 Caching Mode Page

The Caching mode page defines the parameters that affect the use of the cache. A UFS device shall implement support for following parameters.

Table 5-6 defines the Caching mode page default value (PC = 10b).

| Bit Byte | 7                              | 6                                       | 5                        | 4        | 3        | 2         | 1          | 0      |  |  |
|----------|--------------------------------|-----------------------------------------|--------------------------|----------|----------|-----------|------------|--------|--|--|
| 0        | PS                             | SPF (0b)                                | SPF (0b) PAGE CODE (08h) |          |          |           |            |        |  |  |
| 1        |                                |                                         |                          | PAGE LEN | GTH(12h) |           |            |        |  |  |
| 2        | IC                             | ABPF                                    | CAP                      | DISC     | SIZE     | WCE       | MF         | RCD    |  |  |
| 2        | = 0b                           | = 0b                                    | = 0b                     | = 0b     | = 0b     | =1b       | = 0b       | =0b    |  |  |
| 3        | DEMA                           | ND READ RE'                             | TENTION PR               | IORITY   | WR       | ITE RETEN | TION PRIOR | ITY    |  |  |
| 5        |                                | = 00                                    | 00b                      |          |          | = 00      | 000b       |        |  |  |
| 4        | (MSB)                          | (MSB) DISABLE PRE-FETCH TRANSFER LENGTH |                          |          |          |           |            |        |  |  |
| 5        |                                | = 0000h                                 |                          |          |          |           |            |        |  |  |
| 6        | (MSB)                          | (MSB) MINIMUM PRE-FETCH                 |                          |          |          |           |            |        |  |  |
| 7        |                                | = 0000h                                 |                          |          |          |           |            |        |  |  |
| 8        | (MSB)                          | ISB) MAXIMUM PRE-FETCH                  |                          |          |          |           |            |        |  |  |
| 9        |                                |                                         | (LSB)                    |          |          |           |            |        |  |  |
| 10       | (MSB)                          | (B) MAXIMUM PRE-FETCH CEILING           |                          |          |          |           |            |        |  |  |
| 11       |                                | = 0000h                                 |                          |          |          |           |            |        |  |  |
| 12       | FSW                            | LBCSS                                   | DRA                      | Vendor   | Specific | Rese      | erved      | NV_DIS |  |  |
|          | = 0b                           | = 0b                                    | = 0b                     | = 0      | 0b       | = 0       | 00b        | = 0b   |  |  |
| 13       | NUMBER OF CACHE SEGMENTS = 00h |                                         |                          |          |          |           |            |        |  |  |
| 14       | (MSB) CACHE SEGMENT SIZE       |                                         |                          |          |          |           |            |        |  |  |
| 15       | = 0000h (LSB)                  |                                         |                          |          |          |           |            |        |  |  |
| 16       |                                |                                         |                          | Reserve  | ed = 00h |           |            |        |  |  |
| 17       |                                |                                         |                          |          |          |           |            |        |  |  |
| 18       |                                |                                         |                          |          |          |           |            |        |  |  |
| 19       |                                | Obsolete = 000000h                      |                          |          |          |           |            |        |  |  |

### Table 5-6 — Caching Mode Page default value

The following Caching mode page fields shall be changeable: WCE and RCD. Other fields may or may not be changeable, refer to the vendor datasheet for details



### 5.4 Caching Mode Page Parameters

| Byte                                                                                                                                                                                                         | Bit | Description                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2                                                                                                                                                                                                            | 2:2 | <b>WCE</b> : WRITE BACK CACHE ENABLE. A writeback cache enable bit set to zero specifies that the device server shall complete a WRITE command with GOOD status only after writing all of the data to the medium without error. A WCE bit set to one specifies that the device server may complete a WRITE command with GOOD status after receiving the data without error and prior to having written the data to the medium. |  |  |  |  |
| 2                                                                                                                                                                                                            | 0:0 | <b>RCD</b> : READ CACHE DISABLE. A read cache disable bit set to zero specifies that the device server may return data requested by a READ command by accessing either the cache or medium. A RCD bit set to one specifies that the device server shall transfer all of the data requested by a READ command from the medium (i.e., data shall not be transferred from the cache).                                             |  |  |  |  |
| NOTE 1 Fields that are not supported by UFS should be set to zero, and are documented assigning a value of zero to them (e.g., PS=0b). The device may ignore values in fields that are not supported by UFS. |     |                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

### Table 5-7 — Caching Mode Page Parameters

### 5.5 Vital product data parameters

### 5.5.1 Overview

The vital product data (VPD) pages are returned by an INQUIRY command with the EVPD bit set to one and contain vendor specific product information about a logical unit and SCSI target device.

A UFS device shall support the following VPD pages:

- Supported VPD Pages
- Mode Page Policy

Support for other VPD pages is optional.



### 5.5.2 VPD page format

Table 5- shows the VPD page structure.

Table 5-8 — VPD page format

| Bit  |                                             |                    |                |   |   |   |   |   |  |
|------|---------------------------------------------|--------------------|----------------|---|---|---|---|---|--|
| Byte | 7                                           | 6                  | 5              | 4 | 3 | 2 | 1 | 0 |  |
| 0    | PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE |                    |                |   |   |   |   |   |  |
| 1    | PAGE CODE                                   |                    |                |   |   |   |   |   |  |
| 2    | (MSB)                                       |                    |                |   |   |   |   |   |  |
| 3    |                                             | PAGE LENGTH(n-3) - |                |   |   |   |   |   |  |
| 4    | (MSB)                                       |                    |                |   |   |   |   |   |  |
| N    |                                             | -                  | VPD parameters |   |   |   |   |   |  |

The PERIPHERAL QUALIFIER field and the PERIPHERAL DEVICE TYPE field are the same as defined for standard INQUIRY data (see 11.3.2.2 JESD220D\_10.8.5).

The PAGE CODE field identifies the VPD page and contains the same value as in the PAGE CODE field in the INQUIRY CDB (see 11.3.2 JESD 220D\_10.8.5).

The PAGE LENGTH field indicates the length in bytes of the VPD parameters that follow this field. See [SPC] for further details.



### 5.5.3 Supported VPD Pages VPD page

The Supported VDP Pages VPD page contains a list of the VPD page codes supported by the logical unit (see Table 5-9).

| Bit<br>Byte | 7                                           | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|-------------|---------------------------------------------|---|---|---|---|---|---|---|
| 0           | PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE |   |   |   |   |   |   |   |
| 1           | PAGE CODE (00h)                             |   |   |   |   |   |   |   |
| 2           | (MSB)                                       |   |   |   |   |   |   |   |
| 3           | PAGE LENGTH(n-3) (LS                        |   |   |   |   |   |   |   |
| 4           |                                             | _ |   |   |   |   |   |   |
| N           | Supported VPD page list                     |   |   |   |   |   |   |   |

### Table 5-9— Supported VPD Pages VPD page

The supported VPD page list shall contain a list of all VPD page codes implemented by the logical unit in ascending order beginning with page code 00h.

The Mode Page Policy VPD page (see Table 5-10) indicates which mode page policy is in effect for each mode page supported by the logical unit.



| Bit<br>Byte | 7                                           | 6               | 5   | 4              | 3            | 2        | 1     | 0 |  |  |
|-------------|---------------------------------------------|-----------------|-----|----------------|--------------|----------|-------|---|--|--|
| 0           | PERIPHERAL QUALIFIER PERIPHERAL DEVICE TYPE |                 |     |                |              |          | ETYPE |   |  |  |
| 1           |                                             | PAGE CODE (87h) |     |                |              |          |       |   |  |  |
| 2           | (MSB)                                       | (MSB)           |     |                |              |          |       |   |  |  |
| 3           | (LSB)                                       |                 |     |                |              |          |       |   |  |  |
|             | Mode page policy descriptor list            |                 |     |                |              |          |       |   |  |  |
| 4           | Madagasa nalisu dagarintan [finat]          |                 |     |                |              |          |       |   |  |  |
| 7           | Mode page policy descriptor [first]         |                 |     |                |              |          |       |   |  |  |
|             |                                             |                 |     |                |              |          |       |   |  |  |
| n-3         | Mada nogo naligu dagavintar [last]          |                 |     |                |              |          |       |   |  |  |
| Ν           |                                             |                 | MOC | ie page politi | ly descripto | i [iasi] |       |   |  |  |

### Table 5-10 — Mode Page Policy VPD page

Each mode page policy descriptor (see Table 5-11) contains information describing the mode page policy for one or more mode pages or subpages.

| Bit<br>Byte | 7                   | 6                         | 5 | 4 | 3 | 2 | 1           | 0            |
|-------------|---------------------|---------------------------|---|---|---|---|-------------|--------------|
| 0           | Reser               | Reserved POLICY PAGE CODE |   |   |   |   |             |              |
| 1           | POLICY SUBPAGE CODE |                           |   |   |   |   |             |              |
| 2           | MLUS                | Reserved                  |   |   |   |   | MODE<br>POL | PAGE<br>JICY |
| 3           | Reserved            |                           |   |   |   |   |             |              |

### Table 5-11 — Mode page policy descriptor

The POLICY PAGE CODE field and POLICY SUBPAGE CODE field indicate the mode page and subpage to which the descriptor applies. See [SPC] for further details.

### 5.5.4 Mode Page Policy VPD page (cont'd)

If more than one logical unit are configured in the device, a multiple logical units share (MLUS) bit set to one indicates the mode page and subpage identified by the POLICY PAGE CODE field and POLICY SUBPAGE CODE field is shared by more than one logical unit.

A MLUS bit set to zero indicates the logical unit maintains its own copy of the mode page and subpage identified by the POLICY PAGE CODE field and POLICY SUBPAGE CODE field.

| Code Description |                 |  |  |  |
|------------------|-----------------|--|--|--|
| 00b              | Shared          |  |  |  |
| 01b              | Per target port |  |  |  |
| 10b              | Obsolete        |  |  |  |
| 11b              | Per I_T nexus   |  |  |  |

Table 5-12 describes the mode page policies.

NOTE: This standard defines only one target port and one initator port.

MODE PAGE POLICY field shall be set to zero (Shared).

See [SPC] for further details about Mode Page Policy VPD page



### 6 Marking



Line 1: Kingston logo

Line 2: 240xxxx-xxx xxxx-x: Internal control number

Line 3: YYWW: Date code (YY-Last 2 digital of year, WW- Work week)

PPPPPPPPPPP Internal control number (within 12 digits)

Line 4: Part Number: XXXXX-XXXXXX

Line 5: xxxxxxxxxx Internal control number (within 12 digits)

Line 6: Country of Origin (CoQ): TAIWAN or CHINA



# 7 Revision History

| Rev. | History                            | Date      | Remark | Editor |
|------|------------------------------------|-----------|--------|--------|
| v1.0 | Initial Release                    | 02 / 2022 |        | МС     |
| v1.1 | Added Kingston Contact Information | 06 / 2023 |        | KV     |



# **Contact Kingston**

# **FILLE CHUNGLOG**

For more information, visit us at: <u>https://www.kingston.com/en/solutions/embedded-and-industrial</u>

For direct support, please contact us at: <u>https://www.kingston.com/en/form/embedded</u>

For quick questions, please email us at: <a href="mailto:emmc@kingston.com">emmc@kingston.com</a>