MPQ7221

16-Channel, 80mA/Ch, LED Driver with Separated PWM Analog Dimming and I²C Interface, AEC-Q100 Qualified

DESCRIPTION

The MPQ7221 is a 16-channel LED driver that operates across a wide 4.5V to 16V input voltage (V_{IN}) range. The MPQ7221 applies 16 internal current sources in each LED string terminal. The LED current (I_{LED}) of each channel is set by an external current-setting resistor, with a maximum current up to 80mA.

The MPQ7221 integrates an I²C interface, where 10 different I²C addresses are configurable via an external resistor. This allows the MPQ7221 to support up to 10 cascaded devices to drive the LED array. Each channel can be enabled or disabled via the I2C.

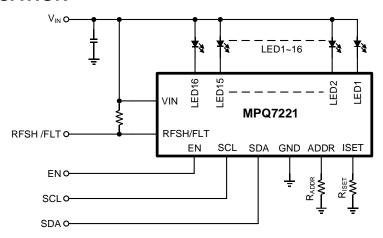
The MPQ7221 employs separated pulse-width modulation (PWM) dimming and analog dimming for each LED channel. Each channel uses 12-bit resolution PWM dimming and 6-bit analog dimming. The ILED ramp rate and phase shift can be configured to optimize the EMI and EMC performance.

The MPQ7221 can output a refresh signal from the RFSH/FLT pin, with the refresh signal frequency set via a register. Full protections include open-load protection, short-load protection, and over-temperature protection (OTP). If any of the protections is triggered, then the fault indicator is pulled low and the corresponding fault register is set.

The MPQ7221 is available in a QFN-24 (4mmx4mm) package, and is AECQ-100 qualified.

FEATURES

- Easy Scalability:
 - 16 Channels, 80mA/Channel Max
 - 10 Addresses Configurable via an **External Resistor**
- I²C Control:
 - o I²C Interface
 - 6-Bit Analog Dimming for Each Channel
 - 12-Bit Pulse-Width Modulation (PWM) Dimming for Each Channel
- Optimized for EMI and EMC:
 - Selectable PWM Dimming Frequency (f_{PWM}): 220Hz, 250Hz, 280Hz, and 330Hz
 - Configurable LED Current (ILED) Slew
 - 40µs Phase Shift
- Full Protection Features:
 - Fault Indicator
 - LED Open Protection
 - LED Short Protection with Configurable Threshold
 - Under-Voltage Lockout (UVLO)
 - Over-Temperature Protection (OTP)
- Additional Features:
 - 4.5V to 16V Wide Input Voltage (V_{IN}) Range
 - Refresh Signal Output
 - I_{LED} Configured by an External Resistor
 - Available in a QFN-24 (4mmx4mm) Package with Wettable Flanks
 - Available in AEC-Q100 Grade 1


APPLICATIONS

- Automotive Taillights
- **Automotive Turning Lights**

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

Figure 1: Typical Application Circuit

Figure 2: System Application Circuit with 2 LEDs in Series

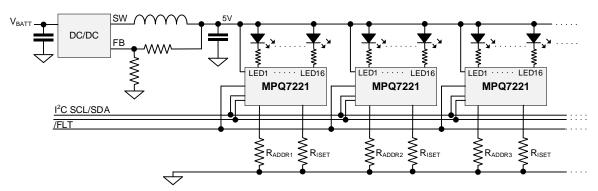


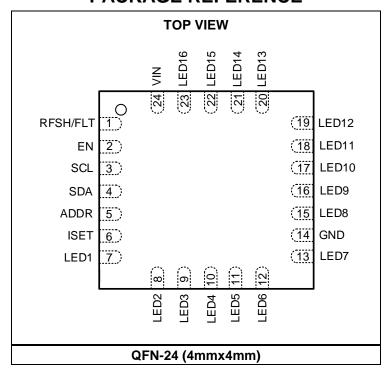
Figure 3: System Application Circuit with 1 LED and Resistor in Series

ORDERING INFORMATION

Part Number*	Package	Top Marking	MSL Level**
MPQ7221GRE-AEC1***	QFN-24 (4mmx4mm)	See Below	1

* For Tape & Reel, add suffix -Z (e.g. MPQ7221GRE-AEC1-Z).

** Moisture Sensitivity Level Rating


*** Wettable Flank

TOP MARKING

MPSYWW MP7221 LLLLLL E

MPS: MPS prefix Y: Year code WW: Week code MP7221: Part number LLLLL: Lot number E: Wettable flank

PACKAGE REFERENCE

6/22/2022

PIN FUNCTIONS

Pin#	Name	Description
1	RFSH/FLT	Refresh signal output or fault flag. If FLTEN = 0, the REFSH/FLT pin outputs a synchronized signal set via the FRFSH register. If FLTEN = 1, REFSH/FLT is an indicator for fault conditions. If a fault is triggered, pull REFSH/FLT low.
2	EN	Enable control. Pull the EN pin low to disable the IC; pull EN high to enable the IC.
3	SCL	I ² C interface clock input.
4	SDA	I ² C interface data input.
5	ADDR	I²C address setting. Configure the I ² C address via a separate ADDR resistor (R _{ADDR}) to GND. Use the four least significant bits (LSB) of the I ² C addresses. A total of 10 different addresses are configurable.
6	ISET	LED current setting. Connect a current-setting resistor from ISET to ground to configure the current in each LED string.
7	LED1	LED channel 1 current input. Connect the LED channel 1 cathode to this pin.
8	LED2	LED channel 2 current input. Connect the LED channel 2 cathode to this pin.
9	LED3	LED channel 3 current input. Connect the LED channel 3 cathode to this pin.
10	LED4	LED channel 4 current input. Connect the LED channel 4 cathode to this pin.
11	LED5	LED channel 5 current input. Connect the LED channel 5 cathode to this pin.
12	LED6	LED channel 6 current input. Connect the LED channel 6 cathode to this pin.
13	LED7	LED channel 7 current input. Connect the LED channel 7 cathode to this pin.
14	GND	Ground.
15	LED8	LED channel 8 current input. Connect the LED channel 8 cathode to this pin.
16	LED9	LED channel 9 current input. Connect the LED channel 9 cathode to this pin.
17	LED10	LED channel 10 current input. Connect the LED channel 10 cathode to this pin.
18	LED11	LED channel 11 current input. Connect the LED channel 11 cathode to this pin.
19	LED12	LED channel 12 current input. Connect the LED channel 12 cathode to this pin.
20	LED13	LED channel 13 current input. Connect the LED channel 13 cathode to this pin.
21	LED14	LED channel 14 current input. Connect the LED channel 14 cathode to this pin.
22	LED15	LED channel 15 current input. Connect the LED channel 15 cathode to this pin.
23	LED16	LED channel 16 current input. Connect the LED channel 16 cathode to this pin.
24	VIN	Power supply input. This pin supplies power to the IC, and must be locally bypassed.

6/22/2022

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-to-ambient thermal resistance, θ_{JA}, and the ambient temperature, T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation can produce an excessive die temperature, which may cause the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- 3) Per AEC-Q100-002.
- Per AEC-Q100-011.
- Operating devices at a junction temperature up to 150°C is possible. Contact MPS for more details.
- 6) Measured on JESD51-7, a 4-layer PCB. The values given in this table are only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application. The θ_{JC} value shows the thermal resistance from the junction-to-case bottom.
- Measured on a standard EVB: a 2-layer, 1oz copper thickness PCB (6.35cmx6.35cm). The θ_{JC} value shows the thermal resistance from the junction-to-case top.

ELECTRICAL CHARACTERISTICS

 $V_{IN} = 5V$, $V_{EN} = 5V$, $T_{J} = -40$ °C to +125°C, typical value is at $T_{J} = 25$ °C, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Supply Voltage						
Input voltage range	V _{IN}		4.5		16	V
Quiescent supply current	ΙQ				5	mA
Shutdown supply current	I _{SD}	V _{EN} = 0V, V _{IN} = 16V			2	μA
Input under-voltage lockout	Variando	Rising edge	3.6	3.8	4.2	V
(UVLO) threshold	V _{IN_UVLO}	Falling edge	3.3	3.5	3.7	V
Enable (EN)						
EN rising threshold	V _{EN_ON}	EN rising	2.1			V
EN falling threshold	V _{EN_OFF}	EN falling			0.8	V
EN pull-down resistor	Ren			1		МΩ
RFSH/FLT						
RFSH/FLT output frequency	f _{RFSH/FLT}	FRFSH[9:0] = 0x1A9, FPWM[2:0] = 01	285	300	315	Hz
RFSH/FLT pull-down resistor		FLTEN = 1, fault triggered			100	Ω
LED Regulator	•				•	
ISET voltage	VISET	T _J = 25°C	1.176	1.2	1.224	V
		$R_{ISET} = 24k\Omega$, $ICHx[5:0] = 0x3F$	-5%	50	+5%	mA
LED current	I	$R_{ISET} = 24k\Omega$, $ICHx[5:0] = 0x3F$, $T_J = 25^{\circ}C$	-3%	50	+3%	mA
LED current	ILED	$R_{ISET} = 15k\Omega$, $ICHx[5:0] = 0x3F$	-5%	80	+5%	mA
		$R_{ISET} = 15k\Omega$, $ICHx[5:0] = 0x3F$, $T_J = 25^{\circ}C$	-3%	80	+3%	mA
Current sink headroom	V:	I _{LED} = 50mA		200	300	mV
Current sink neadroom	V _{LEDx}	I _{LED} = 80mA		350	450	mV
Dimming						
Pulse-width modulation (PWM) frequency	f _{PWM}		240	250	260	Hz
PWM duty step	t _{PWM}	12-bit resolution, f _{PWM} = 250Hz		1		μs
Phase shift	t _{DELAY}	PS_EN = 1		40		μs
I _{LED} step		I _{LED} = 80mA, analog dimming step		1.25		mA
L. clay rate in DWM dimming		SLEW[2:0] = 01, rising edge		5		μs
I _{LED} slew rate in PWM dimming		SLEW[1:0] = 11, rising edge		20		μs
Protections						
LED short-string protection threshold	V _{SLP}	STH[1:0] = 01	2.85	3	3.15	V
LED short-string protection time	t _{SLP}	V _{LEDx} > STH		4		ms
LED short-string protection hiccup time	tslp_HICCUP			1		ms

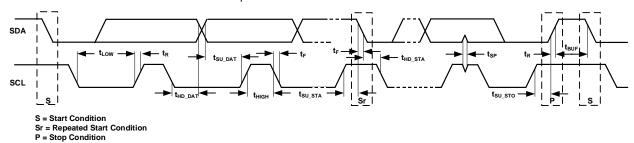
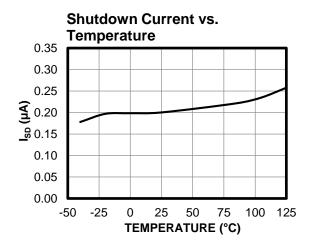
ELECTRICAL CHARACTERISTICS (continued)

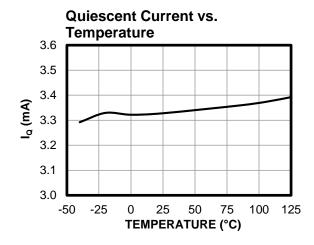
 $V_{IN} = 5V$, $V_{EN} = 5V$, $T_{J} = -40$ °C to +125°C, typical value is at $T_{J} = 25$ °C, unless otherwise noted.

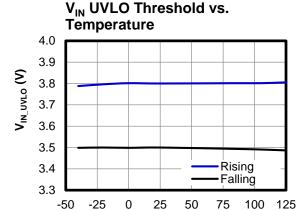
Parameter	Symbol	Condition	Min	Тур	Max	Units
LED short-string protection hiccup detection time	V _{SLP_DET}			32		μs
LED open-string protection threshold	VLED_UV			100	150	mV
LED open-string protection time	tLEDO	V _{LEDx} < 100mV		4		ms
LED open-string protection hiccup time	tslp_HICCUP			1		ms
LED open-string protection hiccup detection time	V _{SLP_DET}			32		μs
Thermal shutdown threshold (8)	T _{ST}			170		°C
Thermal shutdown hysteresis (8)	T _{ST_HYS}			20		°C
I ² C Interface						
Input logic low	VIL		0		0.4	V
Input logic high	ViH		1.3V			V
Output logic low	V_{OL}	$I_{LOAD} = 3mA$			0.4	V
SCL clock frequency	f _{SCL}				1200	kHz
SCL high time	thigh		0.32			μs
SCL low time	t _{LOW}		0.12			μs
Data set-up time	t _{SU_DAT}		10			ns
Data hold time	thd_dat		0		0.15	μs
Set-up time for a repeated start condition	t su_sta		0.16			μs
Hold time for a start condition	t _{HD_STA}		0.16			μs
Set-up time for a stop condition	t _{SU_STO}		0.16			μs
SCL rising time after a repeated start condition and an acknowledge bit	t _{R_CL1}		20		160	ns
SCL rising time	t _{R_CL}		20		80	ns
SCL falling time	t _{F_CL}		20		80	ns
SDA rising time	t _{R_DA}		20		160	ns
SDA falling time	t _{F_DA}		20		160	ns
Pulse width of suppressed spike	t sp		0		10	ns
Capacitance bus for each bus line	Св				400	pF

Note:

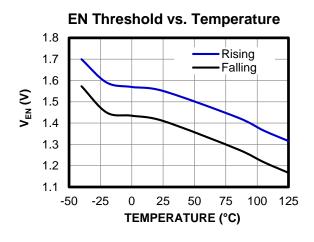
8) Derived from bench characterization. Not tested in production.

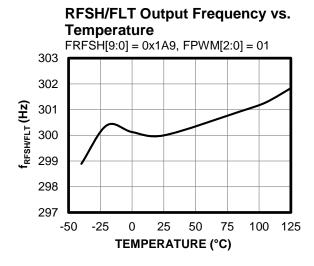



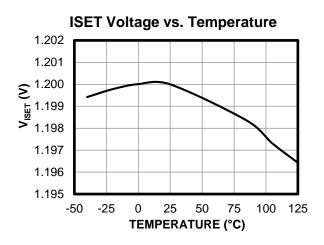

Figure 4: I²C-Compatible Interface Timing Diagram



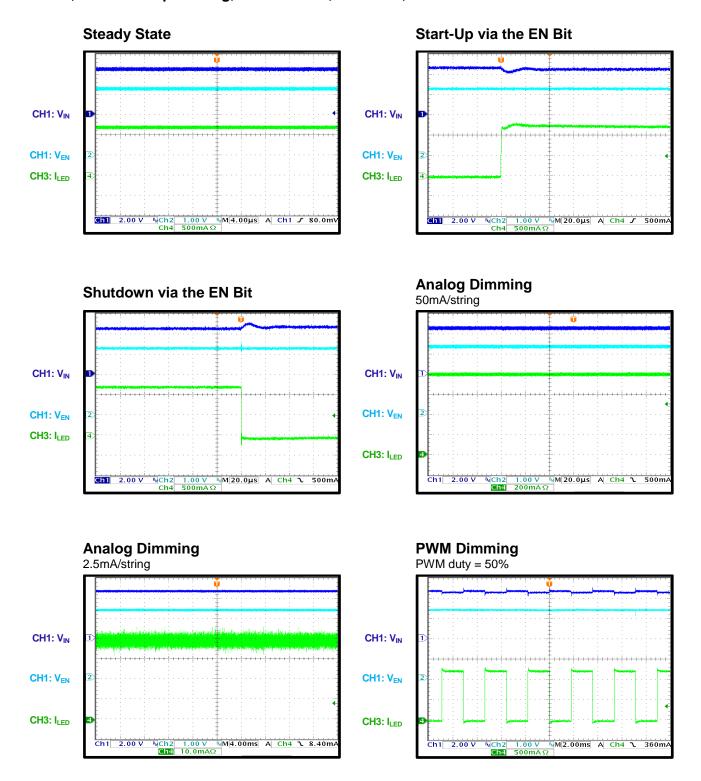
TYPICAL CHARACTERISTICS


 $V_{IN} = 5V$, $T_J = -40$ °C to +125°C, unless otherwise noted.

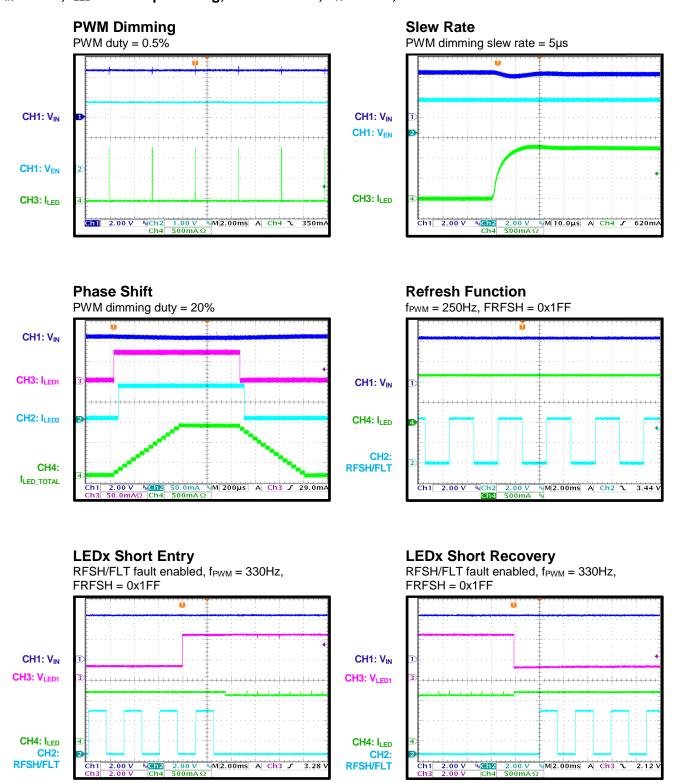




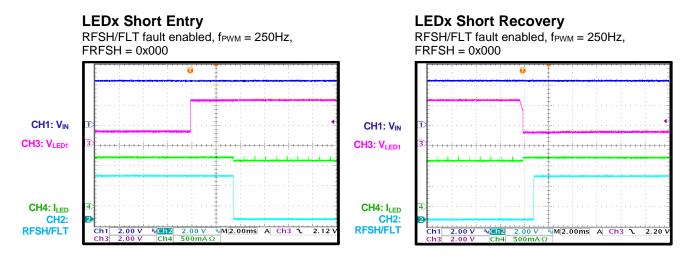
TEMPERATURE (°C)

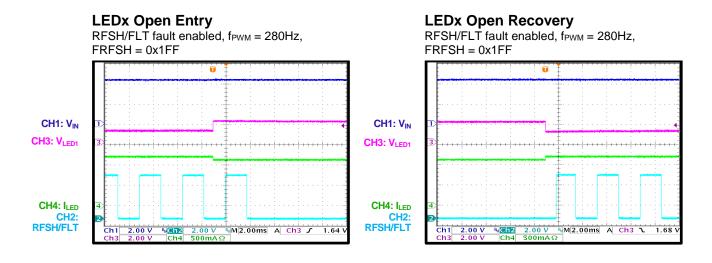


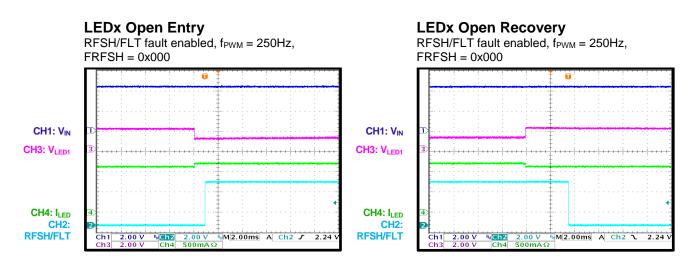
TYPICAL PERFORMANCE CHARACTERISTICS


 $V_{IN} = 4.5V$, $I_{LED} = 80$ mA per string, LED = 16P1S, $T_A = 25$ °C, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)


V_{IN} = 4.5V, I_{LED} = 80mA per string, LED = 16P1S, T_A = 25°C, unless otherwise noted.





TYPICAL PERFORMANCE CHARACTERISTICS (continued)

 $V_{IN} = 4.5V$, $I_{LED} = 80$ mA per string, LED = 16P1S, $T_A = 25$ °C, unless otherwise noted.

FUNCTIONAL BLOCK DIAGRAM

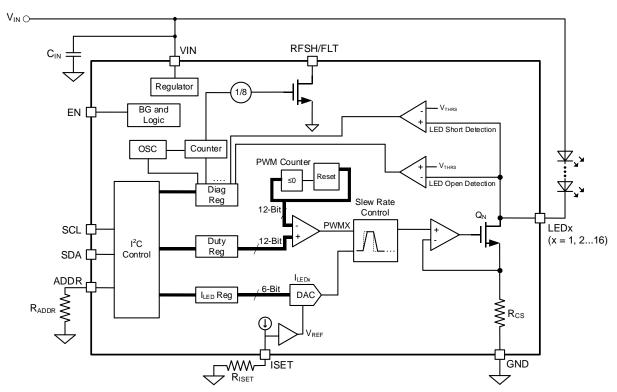


Figure 5: Functional Block Diagram

OPERATION

The MPQ7221 applies 16 internal current sources in each LED string terminal. The LED current (I_{LED}) of all the channels is set via an external current-setting resistor, with a maximum current up to 80mA.

Enable (EN) and Start-Up

Once the input voltage (V_{IN}) exceeds the undervoltage lockout (UVLO) threshold (V_{IN_UVLO}) and the EN pin exceeds the rising threshold (V_{EN_ON}) , the MPQ7221 enters standby mode and the I^2C interface is active. After setting the I^2C register, set the EN bit high to start up the system. The start-up sequence is as follows:

- 1. VIN
- 2. EN
- 3. I²C setting
- 4. Set the EN bit via the I2C

Channel Selection

The channel can be disabled by pulling the corresponding CHxEN bit (where x = 1, 2...16) low or connecting the channel to GND.

LED Current Setting

Connect a resistor from the ISET pin to GND to set the 16-channel I_{LED} . The ISET current (I_{SET}) can be calculated using Equation (1):

$$I_{SET}(mA) = \frac{1200}{R_{ISET}}(k\Omega)$$
 (1)

Dimming

Each channel includes a separate 6-bit analog dimming register and 12-bit pulse-width modulation (PWM) dimming register. The MPQ7221 can support analog dimming and PWM dimming for each channel.

In analog dimming, the I_{LED} amplitude changes when the analog dimming register changes. Change the code in ICHx (x = 1, 2...16) to apply analog dimming for the corresponding channel. The change in the I_{LED} amplitude (I_{LED}) can be calculated using Equation (2):

$$I_{LED}(mA) = \frac{ICHx}{63} \times ISET$$
 (2)

Where ICHx is the analog dimming code for channel x (x = 1, 2...16).

If ICHx is set to 0, then I_{LED} is 0.

In PWM dimming, the LED current is chopped, the high value of I_{LED} remains the same, and the I_{LED} duty varies with the PWM dimming register.

The PWM dimming duty (D_{PWM}) is set by the register PWMx (x = 1, 2...16), and can be calculated using Equation (3):

$$D_{PWM} = \frac{PWMx}{4095} \tag{3}$$

Where PWMx is the D_{PWM} code for channel x (x = 1, 2...16).

The duty changes only when the PWM duty register's 8 most significant bits (MSB) are written. If PWMx is set to 0, then the corresponding channel I_{LED} is 0mA.

The PWM dimming frequency (f_{PWM}) can be selected by the register FPWM[1:0], where:

- FPWM[1:0] = 00, 220Hz
- FPWM[1:0] = 01, 250Hz (default)
- FPWM[1:0] = 10, 280Hz
- FPWM[1:0] = 11, 330Hz

To avoid glitches during operation, two steps are required:

- 1. Change the FPWM value only when the EN bit is set to 0.
- Write the FPWM register, there is a10µs delay before other registers can be written.

Phase Shift

The channel-by-channel phase-shift function is enabled by setting the PS_EN bit high via the I²C interface.

When the phase shift function is enabled, the channel x + 1 (x = 1, 2...15) I_{LED} rising edge occurs 40µs after the channel x I_{LED} rising edge.

SYNC Output

The fault indicator function can be enabled via the FLTEN bit.

If FLTEN = 0, then the fault indicator function is disabled and the RFSH/FLT pin keeps the output refresh signal, even when protection is triggered.

If FLTEN = 1, then the fault indicator function is enabled and the SYNC/FLT pin is pulled low when protection is triggered.

Table 1 shows the RFSH/FLT output status, which depends on the fault condition.

Table 1: RFSH/FLT Output Status

FLTEN	FRFS = 0x0		FRFSH = 0x001 - 0x12B		
	No fault	Fault	No fault	Fault	
1	Pull high externally	Low	Rectangle signal	Low	
0	Pull high ex	xternally	Rectangle	signal	

The refresh signal frequency ($f_{REFRESH}$) is set via the FRFSH[9:0] register. If FRFSH[9:0] = 0x000, then RFSH/FLT outputs high. If FRFSH[9:0] = 0x001 to 0x3FF, then RFSH/FLT outputs a rectangle signal (FPWM[1:0] = 01, 250Hz f_{PWM}). $f_{REFRESH}$ can be estimated using Equation (4):

$$f_{REFRESH} = \frac{127500}{FRFSH[9:0]} \tag{4}$$

The relationship between $f_{REFRESH}$ and f_{PWM} when FRFSH[9:0] > 0 can be estimated using Equation (5):

$$f_{REFRESH} = \frac{127500}{FRFSH} \times \frac{f_{PWM}}{250} (Hz)$$
 (5)

Where FRFSH is the register FRFSH[9:0] value, and f_{PWM} is set by register FPWM[1:0], meaning f_{PWM} is selectable as 220Hz, 250Hz, 280Hz, and 330Hz.

It should be noted that all the values in Equation (5) are decimal-based. In addition, $f_{REFRESH}$ does not change until the 8MSB are written. The FRFSH register value is reset when FRFSH[9:0] = 0x000 is written.

The clock for f_{REFRESH} generation divides the internal oscillator by 8. The FRFSH register sets the counter number.

Figure 6 shows the f_{REFRESH} generation.

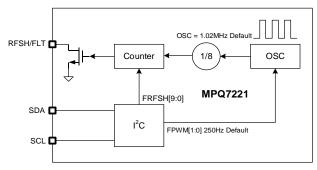


Figure 6: Refresh Frequency Generation

LED Current Slew Rate Control

To sufficiently optimize the EMI performance, change the I_{LED} rising and falling slew rate in PWM dimming. The I_{LED} rising and falling slew rate is controlled by the SLEW[1:0] register, where:

- SLEW[1:0] = 00, no slew rate
- SLEW[1:0] = 01, $5\mu s$
- SLEW[1:0] = 10, 10µs
- SLEW[1:0] = 11, 20µs

Protections

The MPQ7221 employs V_{IN} UVLO, LED short protection, LED open protection, and thermal shutdown.

The /FLT pin is an active low, open-drain output that is pulled high to an external voltage source. If a protection is triggered, the corresponding fault bit is set and /FLT is pulled low.

In hiccup mode, /FLT is pulled high once all fault conditions are removed. In latch-off mode, /FLT is released once all fault bits are read.

For LED open and short protection, hiccup mode or latch-off mode can be selected via the LATCH bit in the I²C.

If LATCH = 1, the MPQ7221 enters latch-off mode. Once a fault is triggered, the fault channel remains off until the power is cycled on VIN or EN turns off, which resets the fault channel.

If LATCH = 0, the MPQ7221 enters hiccup mode, during which the fault channel tries to conduct for 20µs every 1ms to detect whether the fault has been cleared. Once the fault condition is removed. /FLT is released.

V_{IN} Under-Voltage Lockout (UVLO)

When V_{IN} drops below $V_{\text{IN_UVLO}}$, the IC stops working and all the I²C registers are reset.

LED Open Protection

When LED is open, the LEDx (x=1, 2...16) voltage (V_{LEDx}) drops. If V_{LEDx} drops below the 100mV protection threshold for 4ms, then LED open protection is triggered, the fault channel turns off, the corresponding open fault bit (CHxO, where x=1, 2...16) is set, and /FLT is pulled low. The fault bit is reset when it is read, and then /FLT is released high.

LED Short Protection

In an LED short condition, V_{IN} - V_{LEDx} drops low and LED short protection is triggered once V_{LEDx} (x = 1, 2...16) exceeds the voltage set by STH for 4ms. Then the short channel turns off, the corresponding fault bit CHxS (x = 1, 2...16) is set, and /FLT is pulled low.

The LED short protection threshold is configured via the STH[1:0] register, where:

- STH[1:0] = 00, 2V short protection threshold
- STH[1:0] = 01, 3V short protection threshold
- STH[1:0] = 10, 4V short protection threshold
- STH[1:0] = 11, 5V short protection threshold

The fault bit is reset when it is read, and then /FLT is released high.

Over-Temperature Protection (OTP)

If the IC temperature exceeds 170°C, then overtemperature protection (OTP) is triggered, all channels turn off, /FLT is pulled low, and FT_OTP is set. Once the temperature drops by 20°C, all the channels turn on and the IC resumes normal operation.

I²C INTERFACE

I²C Chip Address

The device address is 0x30~0x39, and is configured via the ADDR resistor (RADDR). The internal current source flows to R_{ADDR}, and the ADDR voltage determines the I²C address. Ten different addresses can be configured via RADDR.

Table 2 shows the I2C address setting details.

Table 2: I²C Address Setting

R _{ADDR} / R _{ISET}	I ² C Address (A3A2A1A0)
<0.05	0000
>0.05, <0.15	0001
>0.15, <0.25	0010
>0.25, <0.35	0011
>0.35, <0.45	0100
>0.45, <0.55	0101
>0.55, <0.65	0110
>0.65, <0.75	0111
>0.75, <0.85	1000
>0.85, <0.95	1001

At start-up, the IC checks the I²C address first. The address remains the same during operation until the IC's power is reset.

After a start (S) command, the I²C-compatible master sends a 7-bit address, followed by an 8th data direction bit (where 1 = read and 0 = write, respectively).

Figure 7 shows the register address to/from which the data is written and read.

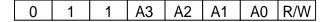


Figure 7: I²C Compatible Device Address

To avoid glitches during operation, two steps are required:

- 1. Change the FPWM value only when the EN bit is set to 0.
- 2. Write the FPWM register, then resume writing the other registers after a 10µs delay.

REGISTER MAP

Add	Default	D7	D6	D5	D4	D3	D2	D1	D0
00h	01		•	RESI	ERVED			FPWN	Л[1:0]
01h	00	FLTEN	LATCH	STH	·[1:0]	SLEV	V[1:0]	PS_EN	EN
02h	01			RESERVED)		FT_OTP	FRFSI	H[1:0]
03h	6A				FRFS	H[9:2]			
04h	FF	CH16EN	CH15EN	CH14EN	CH13EN	CH12EN	CH11EN	CH10EN	CH9EN
05h	FF	CH8EN	CH7EN	CH6EN	CH5EN	CH4EN	CH3EN	CH2EN	CH1EN
06h	00	CH16O	CH15O	CH14O	CH13O	CH12O	CH110	CH10O	CH9O
07h	00	CH8O	CH7O	CH6O	CH5O	CH4O	CH3O	CH2O	CH1O
08h	00	CH16S	CH15S	CH14S	CH13S	CH12S	CH11S	CH10S	CH9S
09h	00	CH8S	CH7S	CH6S	CH5S	CH4S	CH3S	CH2S	CH1S
0Ah	3F	RESE	RVED			ICH1	[5:0]		
0Bh	0F		RESE	RVED			PWM ²	1[3:0]	
0Ch	FF				PWM	1[11:4]			
0Dh	3F	RESE	RVED			ICH2	<u>2[5:0]</u>		
0Eh	0F		RESE	RVED			PWM2	2[3:0]	
0Fh	FF				PWM	2[11:4]			
10h	3F	RESE	RVED			ICH3	3[5:0]		
11h	0F		RESE	RVED			PWM	3[3:0]	
12h	FF		PWM3[11:4]						
13h	3F	RESERVED ICH4[5:0]							
14h	0F	RESERVED PWM4[3:0]						4[3:0]	
15h	FF				PWM	4[11:4]			
16h	3F	RESE	RVED			ICH5	5[5:0]		
17h	0F		RESE	RVED			PWM	5[3:0]	
18h	FF				PWM	5[11:4]			
19h	3F	RESE	RVED			ICH6	6[5:0]		
1Ah	0F		R	ESERVED			Р	WM6[3:0]	
1Bh	FF				PWM	6[11:4]			
1Ch	3F	RESE	RVED			ICH7	7[5:0]		
1Dh	0F		RESE	RVED			PWM	7[3:0]	
1Eh	FF				PWM	7[11:4]			
1Fh	3F	RESE				ICH	3[5:0]		
20h	0F		RESE	RVED			PWM	8[3:0]	
21h	FF	PWM8 11:4							
22h	3F	RESERVED				ICH	9[5:0]		
23h	0F		R	ESERVED			Р	WM9[3:0]	
24h	FF	PWM9[11:4]							
25h	3F	RESERVED ICH10[5:0]							
26h	0F		R	ESERVED			P\	NM10[3:0]	
27h	FF			1	PWM1	0[11:4]			
28h	3F	RESE				ICH1	1[5:0]		
29h	0F		R	ESERVED			P\	NM11[3:0]	

REGISTER MAP (continued)

Add	Default	D7	D6	D5	D4	D3	D2	D1	D0	
2Ah	FF		PWM11[11:4]							
2Bh	3F	RESEI	RVED			ICI	H12[5:0]			
2Ch	0F		ı	RESERVED			P	WM12[3:0]		
2Dh	FF				PWM	12[11:4]				
2Eh	3F	RESEI	RVED			ICI	H13[5:0]			
2Fh	0F		ı	RESERVED			P	WM13[3:0]		
30h	FF		PWM13[11:4]							
31h	3F	RESEI	RVED			ICH	ICH14[5:0]			
32h	0F			RESERVED			PWM14[3:0]			
33h	FF				PWM	14[11:4]				
34h	3F	RESEI	RVED			ICH	H15[5:0]			
35h	0F		ı	RESERVED			P	WM15[3:0]		
36h	FF		PWM15[11:4]							
37h	3F	RESEI	RESERVED ICH16[5:0]							
38h	0F		RESERVED PWM16[3:0]							
39h	FF				PWM	16[11:4]				

REG00h

Addr: 0x00							
Bits	Bit Name	Access	Default	Description			
7:2	N/A	R	000000	Reserved.			
1:0	FPWM	RW	01	Sets the pulse-width modulation (PWM) dimming frequency (D _{PWM}). Change the FPWM value only when the EN bit is set to 0. Write the FPWM register, then allow for a 10µs delay before writing to other registers. 00: 220Hz 01: 250Hz 10: 280Hz 11: 330Hz			

REG01h

				Addr: 0x01
Bits	Bit Name	Access	Default	Description
				Enables the RFSH/FLT fault indicator.
7	FLTEN	RW	0	Disabled, where the fault indicator function is disabled and RFSH/FLT is the refresh signal output Enabled, where the fault indicator function is enabled
				Enables latching off if a fault occurs.
6	LATCH	RW	0	Disabled, hiccup mode used if a fault occurs Enabled, fault latches if a fault occurs
				Sets the LED short protection threshold.
5:4	S_TH[1:0]	RW	00	00: 2V 01: 3V 10: 4V 11: 5V
				Sets the LED current (I _{LED}) slew rate.
3:2	SLEW[1:0]	RW	00	00: No slew rate 01: 5μs 10: 10μs 11: 20μs
				Enables the phase shift.
1	1 PS_EN RW 0	0	0: Disabled 1: Enabled, where channel x + 1's rising edge occurs $40\mu s$ after channel x (x = 1, 215)	
				Enables the IC.
0	EN	RW	0	0: Disabled 1: Enabled

REG02h

	Addr: 0x02							
Bits	Bit Name	Access	Default	Description				
7:3	N/A	R	0	Reserved.				
				Sets the over-temperature (OT) fault.				
2	FT_OTP	R	0	0: No over-temperature protection (OTP) fault 1: OTP fault				
				Sets the refresh frequency (frefresh), 2 least significant bits (LSB).				
				FRFSH[9:0] = 0x000, high FRFSH[9:0] > 0				
1:0	FRFSH[1:0]	RW	01	$f_{REFRESH} = \frac{127500}{FRFSH} \times \frac{f_{PWM}}{250} (Hz)$				
			Where all values in the equation are decimal-based, and freeresh does not change until the 8 most significant bits (MSB) are written.					
				The default frefresh is 300Hz.				

REG03h

	Addr: 0x03							
Bits	Bit Name	Access	Default	Description				
				Sets frefresh, 8MSB.				
				FRFSH[9:0] = 0x000, high FRFSH[9:0] > 0				
7:0	FRFSH[9:2]	RW	6A	$f_{REFRESH} = \frac{127500}{FRFSH} \times \frac{f_{PWM}}{250} (Hz)$				
				Where all values in the equation are decimal-based and frefresh does not change until the 8MSB are written.				
				The default frefresh is 300Hz.				

REG04h

				Addr: 0x04
Bits	Bit Name	Access	Default	Description
	01110=11			Enables channel 16.
7	CH16EN	RW	1	0: Disabled 1: Enabled
				Enables channel 15.
6	CH15EN	RW	1	0: Disabled 1: Enabled
				Enables channel 14.
5	CH14EN RW	1	0: Disabled 1: Enabled	
			Enables channel 13.	
4	4 CH13EN	RW	1	0: Disabled 1: Enabled
		N RW	2W 1	Enables channel 12.
3	CH12EN			0: Disabled 1: Enabled
			1	Enables channel 11.
2	CH11EN	RW		0: Disabled 1: Enabled
				Enables channel 10.
1	CH10EN	RW	1	0: Disabled 1: Enabled
				Enables channel 9.
0	CH9EN	RW	1	0: Disabled 1: Enabled

REG05h

	Addr: 0x05						
Bits	Bit Name	Access	Default	Description			
7	CH8EN	RW	1	Enables channel 8. 0: Disabled 1: Enabled			
6	CH7EN	RW	1	Enables channel 7. 0: Disabled 1: Enabled			
5	CH6EN	RW	1	Enables channel 6. 0: Disabled 1: Enabled			
4	CH5EN	RW	1	Enables channel 5. 0: Disabled 1: Enabled			
3	CH4EN	RW	1	Enables channel 4. 0: Disabled 1: Enabled			
2	CH3EN	RW	1	Enables channel 3. 0: Disabled 1: Enabled			
1	CH2EN	RW	1	Enables channel 2. 0: Disabled 1: Enabled			
0	CH1EN	RW	1	Enables channel 1. 0: Disabled 1: Enabled			

REG06h

	Addr: 0x06						
Bits	Bit Name	Access	Default	Description			
7	CH16O	R	0	Channel 16 open protection fault flag.			
7	CHIOO	K	0	0: No fault 1: Fault			
				Channel 15 open protection fault flag.			
6	CH15O	R	0	0: No fault 1: Fault			
				Channel 14 open protection fault flag.			
5	CH14O	R	0	0: No fault 1: Fault			
	4 CH13O			Channel 13 open protection fault flag.			
4		R	0	0: No fault 1: Fault			
			0	Channel 12 open protection fault flag.			
3	CH12O	R		0: No fault 1: Fault			
				Channel 11 open protection fault flag.			
2	CH110	R	0	0: No fault 1: Fault			
				Channel 10 open protection fault flag.			
1	CH10O	R	0	0: No fault 1: Fault			
				Channel 9 open protection fault flag.			
0	CH9O	R	0	0: No fault 1: Fault			

REG07h

	Addr: 0x07						
Bits	Bit Name	Access	Default	Description			
				Channel 8 open protection fault flag.			
7	CH8O	R	0	0: No fault 1: Fault			
				Channel 7 open protection fault flag.			
6	CH7O	R	0	0: No fault 1: Fault			
				Channel 6 open protection fault flag.			
5	CH6O	R	0	0: No fault 1: Fault			
	4 CH5O R		0	Channel 5 open protection fault flag.			
4		R		0: No fault 1: Fault			
				Channel 4 open protection fault flag.			
3	CH4O	R	0	0: No fault 1: Fault			
			0	Channel 3 open protection fault flag.			
2	CH3O R	R		0: No fault 1: Fault			
	1 CH2O R			Channel 2 open protection fault flag.			
1		R	0	0: No fault 1: Fault			
				Channel 1 open protection fault flag.			
0	CH1O	H1O R	0	0: No fault 1: Fault			

REG08h

				Addr: 0x08
Bits	Bit Name	Access	Default	Description
			Channel 16 short protection fault flag.	
7	CH16S	R	0	0: No fault 1: Fault
				Channel 15 short protection fault flag.
6	CH15S	R	0	0: No fault 1: Fault
				Channel 14 short protection fault flag.
5	CH14S	R	R 0	0: No fault 1: Fault
		CH13S R	0	Channel 13 short protection fault flag.
4	CH13S			0: No fault 1: Fault
				Channel 12 short protection fault flag.
3	CH12S	R	0	0: No fault 1: Fault
			R 0	Channel 11 short protection fault flag.
2	CH11S	CH11S R		0: No fault 1: Fault
	1 CH10S R			Channel 10 short protection fault flag.
1		0	0: No fault 1: Fault	
				Channel 9 short protection fault flag.
0	0 CH9S	R	0	0: No fault 1: Fault

REG09h

	Addr: 0x09						
Bits	Bit Name	Access	Default	Description			
7	CH8S	R	0	Channel 8 short protection fault flag. 0: No fault 1: Fault			
6	CH7S	R	0	Channel 7 short protection fault flag. 0: No fault 1: Fault			
5	CH6S	R	0	Channel 6 short protection fault flag. 0: No fault 1: Fault			
4	CH5S	R	0	Channel 5 short protection fault flag. 0: No fault 1: Fault			
3	CH4S	R	0	Channel 4 short protection fault flag. 0: No fault 1: Fault			
2	CH3S	R	0	Channel 3 short protection fault flag. 0: No fault 1: Fault			
1	CH2S	R	0	Channel 2 short protection fault flag. 0: No fault 1: Fault			
0	CH1S	R	0	Channel 1 short protection fault flag. 0: No fault 1: Fault			

REG0Ah

	Addr: 0x0A					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
				Channel 1 I _{LED} analog dimming register.		
5:0	ICH1[5:0]	RW	111111	$I_{LED} = \frac{Code}{63} \times I_{SET}$		
				Where Code is the register value.		

REG0Bh

	Addr: 0x0B					
Bits	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM1[3:0]	RW	1111	Sets the channel 1 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when the 8MSB are written.		

REG0Ch

	Addr: 0x0C					
Bits	Bit Name	Access	Default	Description		
7:0	PWM1[11:4]	RW	11111111	Sets the channel 1 I _{LED} D _{PWM} , 8MSB. D _{PWM} only changes when the 8MSB are written.		

REG0Dh

	Addr: 0x0D					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
				Channel 2 I _{LED} analog dimming register. Code		
5:0	ICH2[5:0]	RW	111111	$I_{LED} = \frac{1}{63} \times I_{SET}$ Where Code is the register value.		

REG0Eh

	Addr: 0x0E					
Bit	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM2[3:0]	RW	1111	Sets the channel 2 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when the 8MSB are written.		

REG0Fh

	Addr: 0x0F					
Bits	Bit Name	Access	Default	Description		
7:0	PWM2[11:4]	RW	11111111	Sets the channel 2 I _{LED} D _{PWM} , 8MSB. D _{PWM} only changes when the 8MSB are written.		

REG10h

	Addr: 0x10					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
				Channel 3 I _{LED} analog dimming register.		
5:0	ICH3[5:0]	RW	111111	$I_{LED} = \frac{Code}{63} \times I_{SET}$		
				Where Code is the register value.		

REG11h

	Addr: 0x11					
Bit	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM3[3:0]	RW	1111	Sets the channel 3 I_{LED} D_{PWM} , 4LSB. D_{PWM} only changes when the 8MSB are written.		

REG12h

	Addr: 0x12				
Bits	Bit Name	Access	Default	Description	
7:0	PWM3[11:4]	RW	11111111	Sets the channel 3 I_{LED} $D_{\text{PWM}},8\text{MSB}.$ D_{PWM} only changes when the 8MSB are written.	

REG13h

	Addr: 0x13					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
5:0	ICH4[5:0]	RW	111111	Channel 4 I _{LED} analog dimming register. $I_{LED} = \frac{Code}{63} \times I_{SET}$		
				Where Code is the register value.		

REG14h

	Addr: 0x14					
Bits	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM4[3:0]	RW	1111	Sets the channel 4 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when the 8MSB are written.		

REG15h

	Addr: 0x15				
Bits	Bit Name	Access	Default	Description	
7:0	PWM4[11:4]	RW	11111111	Sets the channel 4 I_{LED} D_{PWM} , 8MSB. D_{PWM} only changes when the 8MSB are written.	

REG16h

	Addr: 0x16					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
				Channel 5 I _{LED} analog dimming register.		
5:0	ICH5[5:0]	RW	111111	$I_{LED} = \frac{Code}{63} \times I_{SET}$		
				Where Code is the register value.		

REG17h

	Addr: 0x17						
Bits	Bit Name	Access	Default	Description			
7:4	N/A	R	0000	Reserved.			
3:0	PWM5[3:0]	RW	1111	Sets the channel 5 I_{LED} $D_{\text{PWM}},$ 4LSB. D_{PWM} only changes when the 8MSB are written.			

REG18h

	Addr: 0x18				
Bits	Bit Name	Access	Default	Description	
7:0	PWM5[11:4]	RW	11111111	Sets the channel 5 I_{LED} $D_{\text{PWM}},8\text{MSB}.$ D_{PWM} only changes when the 8MSB are written.	

REG19h

	Addr: 0x19					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
5:0	ICH6[5:0]	RW	111111	Channel 6 I _{LED} analog dimming register. $I_{LED} = \frac{Code}{63} \times I_{SET}$		
	,			Where Code is the register value.		

REG1Ah

	Addr: 0x1A						
Bits	Bit Name	Access	Default	Description			
7:4	N/A	R	0000	Reserved.			
3:0	PWM6[3:0]	RW	1111	Sets the channel 6 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when 8MSB is written.			

REG1Bh

	Addr: 0x1B				
Bits	Bit Name	Access	Default	Description	
7:0	PWM6[11:4]	RW	11111111	Sets the channel 6 I_{LED} D_{PWM} , 8MSB. D_{PWM} only changes when the 8MSB are written.	

REG1Ch

	Addr: 0x1C					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
				Channel 7 I _{LED} analog dimming register.		
5:0	ICH7[5:0]	RW	111111	$I_{LED} = \frac{Code}{63} \times I_{SET}$		
				Where Code is the register value.		

REG1Dh

	Addr: 0x1D					
Bits	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM7[3:0]	RW	1111	Sets the channel 7 I_{LED} D_{PWM} , 4LSB. D_{PWM} only changes when the 8MSB are written.		

REG1Eh

	Addr: 0x1E				
Bits	Bit Name	Access	Default	Description	
7:0	PWM7[11:4]	RW	11111111	Sets the channel 7 I _{LED} D _{PWM} , 8MSB. D _{PWM} only changes when the 8MSB are written.	

REG1Fh

	Addr: 0x1F						
Bits	Bit Name	Access	Default	Description			
7:6	N/A	R	00	Reserved.			
5:0	ICH8[5:0]	RW	111111	Channel 8 I _{LED} analog dimming register. $I_{LED} = \frac{Code}{63} \times I_{SET}$ Where Code is the register value.			

REG20h

	Addr: 0x20						
Bits	Bit Name	Access	Default	Description			
7:4	N/A	R	0000	Reserved.			
3:0	PWM8[3:0]	RW	1111	Sets the channel 8 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when the 8MSB are written.			

REG21h

	Addr: 0x21				
Bits	Bit Name	Access	Default	Description	
7:0	PWM8[11:4]	RW	11111111	Sets the channel 8 I_{LED} $D_{\text{PWM}},\ 8\text{MSB}.$ D_{PWM} only changes when the 8MSB are written.	

REG22h

	Addr: 0x22						
Bits	Bit Name	Access	Default	Description			
7:6	N/A	R	00	Reserved.			
				Channel 9 I _{LED} analog dimming register.			
5:0	ICH9[5:0]	RW	111111	$I_{LED} = \frac{Code}{63} \times I_{SET}$			
				Where Code is the register value.			

REG23h

	Addr: 0x23						
Bits	Bit Name	Access	Default	Description			
7:4	N/A	R	0000	Reserved.			
3:0	PWM9[3:0]	RW	1111	Sets the channel 9 I_{LED} D_{PWM} , 4LSB. D_{PWM} only changes when the 8MSB are written.			

REG24h

	Addr: 0x24				
Bits	Bit Name	Access	Default	Description	
7:0	PWM9[11:4]	RW	11111111	Sets the channel 9 I_{LED} $D_{\text{PWM}},~8\text{MSB}.$ D_{PWM} only changes when the 8MSB are written.	

REG25h

	Addr: 0x25					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
5:0	ICH10[5:0]	RW	111111	Channel 10 I _{LED} analog dimming register. $I_{LED} = \frac{Code}{63} \times I_{SET}$ Where Code is the register value.		

REG26h

	Addr: 0x26					
Bits	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM10[3:0]	RW	1111	Sets the channel 10 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when the 8MSB are written.		

REG27h

	Addr: 0x27					
Bits	Bit Name	Access	Default	Description		
7:0	PWM10[11:4]	RW	11111111	Sets the channel 10 I _{LED} D _{PWM} , 8MSB. D _{PWM} only changes when the 8MSB are written.		

REG28h

	Addr: 0x28					
Bits	Bit Name	Access	Default	Description		
7:6	NA	R	00	Reserved.		
				Channel 11 I _{LED} analog dimming register.		
5:0	ICH11[5:0]	RW	111111	$I_{LED} = \frac{Code}{63} \times I_{SET}$		
				Where Code is the register value.		

REG29h

	Addr: 0x29					
Bits	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM11[3:0]	RW	1111	Sets the channel 11 I_{LED} D_{PWM} , 4LSB. D_{PWM} only changes when the 8MSB are written.		

REG2Ah

	Addr: 0x2A				
Bits	Bit Name	Access	Default	Description	
7:0	PWM11[11:4]	RW	11111111	Sets the channel 11 I _{LED} D _{PWM} , 8MSB. D _{PWM} only changes when the 8MSB are written.	

REG2Bh

	Addr: 0x2B					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
5:0	ICH12[5:0]	RW	111111	Channel 12 I _{LED} analog dimming register. $I_{LED} = \frac{Code}{63} \times I_{SET}$ Where Code is the register value.		

REG2Ch

	Addr: 0x2C					
Bits	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM12[3:0]	RW	1111	Sets the channel 12 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when the 8MSB are written.		

REG2Dh

	Addr: 0x2D				
Bits	Bit Name	Access	Default	Description	
7:0	PWM12[11:4]	RW	11111111	Sets the channel 12 I_{LED} D_{PWM} , 8MSB. D_{PWM} only changes when the 8MSB are written.	

REG2Eh

	Addr: 0x2E					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
				Channel 13 I _{LED} analog dimming register.		
5:0	ICH13[5:0]	RW	111111	$I_{LED} = \frac{Code}{63} \times I_{SET}$		
				Where Code is the register value.		

REG2Fh

	Addr: 0x2F					
Bits	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM13[3:0]	RW	1111	Sets the channel 13 I_{LED} D_{PWM} , 4LSB. D_{PWM} only changes when the 8MSB are written.		

REG30h

	Addr: 0x30				
Bits	Bit Name	Access	Default	Description	
7:0	PWM13[11:4]	RW	11111111	Sets the channel 13 I_{LED} $D_{\text{PWM}},8\text{MSB}.$ D_{PWM} only changes when the 8MSB are written.	

REG31h

	Addr: 0x31					
Bits	Bit Name	Access	Default	Description		
7:6	N/A	R	00	Reserved.		
5:0	ICH14[5:0]	RW	111111	Channel 14 I _{LED} analog dimming register. $I_{LED} = \frac{Code}{63} \times I_{SET}$		
				Where Code is the register value.		

REG32h

	Addr: 0x32					
Bits	Bit Name	Access	Default	Description		
7:4	N/A	R	0000	Reserved.		
3:0	PWM14[3:0]	RW	1111	Sets the channel 14 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when the 8MSB are written.		

REG33h

	Addr: 0x33				
Bits	Bit Name	Access	Default	Description	
7:0	PWM14[11:4]	RW	11111111	Sets the channel 14 I_{LED} D_{PWM} , 8MSB. D_{PWM} only changes when the 8MSB are written.	

REG34h

	Addr: 0x34							
Bits Bit Name Access Default				Description				
7:6	N/A	R	00	Reserved.				
				Channel 15 I _{LED} analog dimming register.				
5:0	ICH15[5:0]	RW	111111	$I_{LED} = \frac{Code}{63} \times I_{SET}$				
				Where Code is the register value.				

REG35h

	Addr: 0x35							
Bits Bit Name Access Default Description								
7:4	N/A	R	0000	Reserved.				
3:0	PWM15[3:0]	RW	1111	Sets the channel 15 I_{LED} D_{PWM} , 4LSB. D_{PWM} only changes when the 8MSB are written.				

REG36h

	Addr: 0x36							
Bits	Bit Name	Access	Default	Description				
7:0	PWM15[11:4]	RW	11111111	Sets the channel 15 I_{LED} $D_{\text{PWM}},8\text{MSB}.$ D_{PWM} only changes when the 8MSB are written.				

REG37h

	Addr: 0x37						
Bits Bit Name Access Default				Description			
7:6	N/A	R	00	Reserved.			
5:0	ICH16[5:0]	RW	111111	Channel 16 I _{LED} analog dimming register. $I_{LED} = \frac{Code}{63} \times I_{SET}$ Where Code is the register value.			

REG38h

	Addr: 0x38							
Bits	Description							
7:4	N/A	R	0000	Reserved.				
3:0	PWM16[3:0]	RW	1111	Channel 16 I _{LED} D _{PWM} , 4LSB. D _{PWM} only changes when the 8MSB are written.				

REG39h

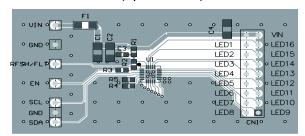
Addr: 0x39							
Bits Bit Name Access Default				Description			
7:0	PWM16[11:4]	RW	11111111	Sets the channel 16 I_{LED} D_{PWM} , 8MSB. D_{PWM} only changes when the 8MSB are written.			

6/22/2022

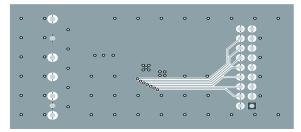
APPLICATION INFORMATION

LED Current Setting

Connect a resistor from the ISET pin to GND to set I_{LED} for all 16 channels. I_{LED} can be calculated using Equation (6):


$$I_{LED}(mA) = \frac{1200}{R_{ISET}(k\Omega)}$$
 (6)

For a maximum 80mA I_{LED} , ensure that $V_{IN} \ge 4.5V$ to power the IC.


PCB Layout Guidelines

Efficient PCB layout is critical for stable operation. For the best results, refer to Figure 8 and follow the guidelines below:

1. Ensure that the traces from the LED anode to the LEDx pins are wide enough to support the set current (up to 80mA).

Top Layer

Bottom Layer

Figure 8: Recommended PCB Layout (9)

Note:

9) The recommended layout is based on Figure 9 on page 35.

TYPICAL APPLICATION CIRCUITS

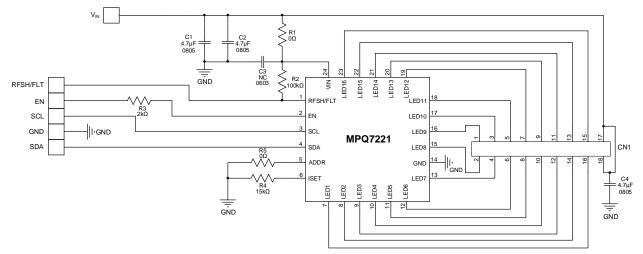


Figure 9: Typical Application Circuit (I_{LED} = 80mA/Channel)

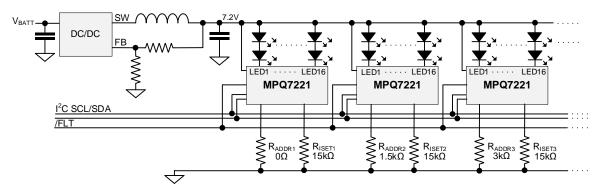
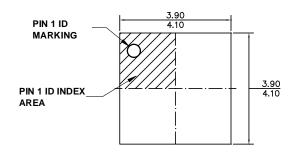
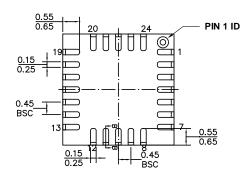
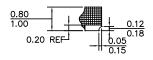
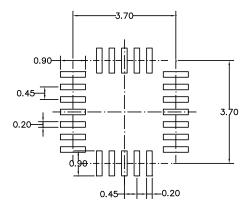




Figure 10: Typical System Application Circuit (2 LEDs in Series, I_{LED} = 80mA/Channel)

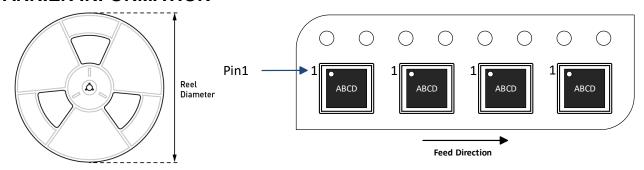
PACKAGE INFORMATION

QFN-24 (4mmx4mm) Wettable Flank




TOP VIEW

SECTION B-B


NOTE:

- 1) THE LEAD SIDE IS WETTABLE.
- 2) ALL DIMENSIONS ARE IN MILLIMETERS.
- 3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
- 4) JEDEC REFERENCE IS MO-220.
- 5) DRAWING IS NOT TO SCALE.

RECOMMENDED LAND PATTERN

CARRIER INFORMATION

Part Number	Package	Quantity/	Quantity/	Reel	Carrier	Carrier
	Description	Reel	Tube	Diameter	Tape Width	Tape Pitch
MPQ7221GRE-AEC1-Z	QFN-24 (4mmx4mm)	5000	N/A	13in	12mm	8mm

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	6/22/2022	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.