VIDEO CROSS-POINT SWITCHES

HA4344B

350MHz, 4 x 1 Video Crosspoint **Switch with Synchronous Controls**

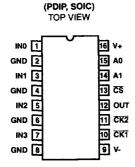
November 1996

Features
Low Power Dissipation
• Symmetrical Slew Rates 1400V/µs
0.1dB Gain Flatness100MHz
• -3dB Bandwidth
Off Isolation (100MHz)
Crosstalk Rejection (30MHz) 80dB
• Differential Gain and Phase 0.01%/0.01Degrees
• High ESD Rating>2000V
TTL Compatible Control Signals
Latched Control Lines for Synchronous Switching

Applications

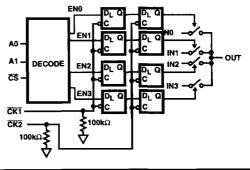
- · Professional Video Switching and Routing
- RGB Video Distribution Systems
- Computer Graphics
- · RF Switching and Routing

Description

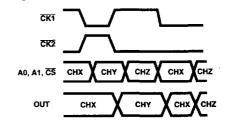

The HA4344B is a very wide bandwidth 4 x 1 crosspoint switch ideal for professional video switching, HDTV, computer display routing, and other high performance applications. This circuit features very low power dissipation, excellent differential gain and phase, high off isolation, symmetric slew rates, fast switching, and latched control signals. When disabled, the output is switched to a high impedance state, making the HA4344B ideal for matrix routers.

The latched control signals allow for synchronized channel switching. When CK1 is low the master control latch loads the next switching address (A0, A1, CS), while the closed (assuming CK2 is the inverse of CK1) slave control latch maintains the crosspoint in its current state. CK2 switching low closes the master latch (with previous assumption), loads the now open slave latch, and switches the crosspoint to the newly selected channel. Channel selection is asynchronous (changes with any control signal change) if both CK1 and CK2 are low.

Ordering Information


	TEMP.		PKG.				
PART NUMBER	RANGE (°C)	PACKAGE	NO.				
HA4344BCP	0 to 70	16 Ld PDIP	E16.3				
HA4344BCB	0 to 70	16 Ld SOIC	M16.15				

Pinout



HA4344B

Functional Diagram

Timing Diagram

File Number 3956.1

HA4344B

Absolute Maximum Ratings Thermal Information Thermal Resistance (Typical, Note 1) θ_{.ia} (°C/W) Input Voltage......VSUPPLY Digital Input Current (Note 2) ±25mA SOIC Package.... Analog Input Current (Note 2) ±5mA Maximum Junction Temperature (Die)......175°C Maximum Junction Temperature (Plastic Package) 150°C Maximum Storage Temperature Range -65°C to 150°C **Operating Conditions** (SOIC - Lead Tips Only) Temperature Range 0°C to 70°C

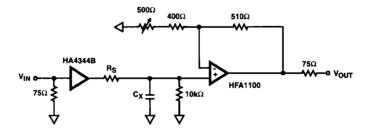
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

- 1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
- 2. If an input signal is applied before the supplies are powered up, the input current must be limited to these maximum values.

Electrical Specifications $V_{SUPPLY} = \pm 5V$, $P_L = 10k\Omega$, $V_{\overline{CS}} = 0.8V$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 4) TEMP. (°C)	MIN	ТҮР	MAX	UNITS
DC SUPPLY CHARACTERISTICS						
Supply Voltage		Full	±4.5	±5.0	±5.5	٧
Supply Current (V _{OUT} = 0V)	V _{CS} = 0.8V	25, 70	-	10.5	13	mA
	V _{CS} = 0.8V	0	-	-	15.5	mA
	V CS = 2.0V	25, 70		400	450	μА
	V _{CS} = 2.0V	0	-	400	580	μА
ANALOG DC CHARACTERISTICS						
Output Voltage Swing Without Clipping	$V_{OUT} = V_{IN} \pm V_{IO} \pm 20 \text{mV}$	25, 70	±2.7	±2.8	-	٧
		0	±2.4	±2.5	-	٧
Output Current		Full	15	20	-	mA
Input Bias Current		Full	-	30	50	μА
Output Offset Voltage		Full	-10	-	10	mV
Output Offset Voltage Drift (Note 3)		Full	-	25	50	μV/°C
SWITCHING CHARACTERISTICS					•	
Turn-On Time		25	-	160	-	ns
Turn-Off Time		25	-	320	-	กร
Output Glitch During Switching		25	-	±10	-	mV
DIGITAL DC CHARACTERISTICS					•	
Input Logic High Voltage		Fuli	2		-	٧
Input Logic Low Voltage		Full	-		0.8	٧
CLK1, CLK2 Input Current	0 to 4V	Full	-	40	50	μА
CS, A0, A1 Input Current	0 to 4V	Full	-2		2	μА
AC CHARACTERISTICS						
Insertion Loss	1V _{P-P}	25	-	0.055	0.063	dB
		Full	-	0.07	0.08	dB
Channel-to-Channel Insertion Loss Match		Full	-	±0.004	±0.006	dB


Electrical Specifications $V_{SUPPLY} = \pm 5V$, $R_L = 10k\Omega$, $V_{\overline{CS}} = 0.8V$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 4) TEMP. (°C)	MIN	ТҮР	MAX	UNITS
-3dB Bandwidth	$R_S = 47\Omega$, $C_L = 10pF$	25		350	•	MHz
	$R_S = 29\Omega$, $C_L = 20pF$	25		300		MHz
	$R_S = 16\Omega$, $C_L = 33pF$	25		220	-	MHz
	$R_S = 9\Omega$, $C_L = 52pF$	25	-	160	-	MHz
±0.1dB Flat Bandwidth	$R_S = 47\Omega$, $C_L = 10pF$	25	•	150	•	MHz
	$R_S = 29\Omega$, $C_L = 20pF$	25	-	110	-	MHz
	$R_S = 16\Omega$, $C_L = 33pF$	25		100	•	MHz
	$R_S = 9\Omega$, $C_L = 52pF$	25		70	-	MHz
Input Resistance		Full	200	400	-	kΩ
Input Capacitance		Full	-	1.5	-	pF
Enabled Output Resistance		Full		15	-	Ω
Disabled Output Capacitance	V _{CS} = 2.0V	Full	- "	2.5	•	pF
Differential Gain	4.43MHz, Note 3	25	-	0.01	0.02	%
Differential Phase	4.43MHz, Note 3	25		0.01	0.02	Degrees
Off Isolation	1V _{P-P} , 100MHz, V CS = 2.0V	Full	-	70	-	dB
Crosstalk Rejection	1V _{P-P} , 30MHz	Full	-	80	-	dB
Slew Rate (1.5V _{P-P} , +SR/-SR)	$R_S = 47\Omega$, $C_L = 10pF$	25	-	1400/1490	•	V/μs
	R _S = 29Ω, C _L = 20pF	25	-	1200/1260	-	V/μs
	$R_S = 16\Omega$, $C_L = 33pF$	25	-	870/940	•	V/μs
	$R_S = 9\Omega$, $C_L = 52pF$	25	-	750/710	-	V/µs
Total Harmonic Distortion (Note 3)		Full	-	0.01	0.1	%
Disabled Output Resistance	V _{CS} = 2.0V	Full		12	-	MΩ

NOTES:

- 3. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
- 4. Units are 100% tested at 25°C; guaranteed, but not tested at 0°C and 70°C.

AC Test Circuit

NOTE: C_L = C_X + Test Fixture Capacitance.