AGC TOUCH CONTROL LIGHT SWITCH with SOFT-OFF

FEATURES:

- Touch or pushbutton control of incandescent lamps.
- Touch Sensitivity guaranteed to 600 pF Touch Plate Capacitance.
- Touch Operation is independent of line plug polarity.
-. See OPERATION description below.
- 50/60 Hz Line Frequency.
- 5V Operation (VDD - Vss).
-LS7540 (DIP); LS7540-S (SOIC) - See Figure 1 -

APPLICATIONS:

- Wall switches and adapter modules for converting small table lamps and large floor lamps to touch control.

DESCRIPTION:

The LS7540 is a CMOS integrated circuit for controlling the brightness of incandescent lamps by touch (Figures 5, 6, 8) or pushbutton (Figures 7, 9). When the LS7540 TOUCH input is connected to a lamp body, any metallic part of the lamp becomes a touch plate. A built-in AGC circuit allows for a wide range of lamp sizes to be used, ranging from small table lamps to large floor lamps. The brightness is controlled by varying the conduction angle of a triac in series with the lamp and triggered by the TRIG/ output. Between off and maximum, there are 124 steps of brightness levels, level zero being off and level 124 being maximum. The phase reference of the TRIG/ signal with respect to the AC line is maintained through the SYNC input.

OPERATION

The On/Off and brightness control of the lamp is described below:

- In the off-state, a single touch will turn the lamp to full-on.
- At full-on, a single touch will start a soft-off dim-cycle causing the brightness to diminish gradually until the lamp turns off. The soft-off feature provides light for the User to exit the area. The soft-off dim-cycle time is programmed by an external RC con nected to Pin 6. With no RC connected to Pin 6, the soft-off dimcycle time $=0$.
- During a dim-cycle a single touch will stop the dim-cycle and lock in the brightness present at that time. Another touch will restart the dim-cycle from the present brightness causing the brightness to ramp down towards off again. The start and stop of dim-cycle can be repeated over and over again until the lamp turns off. This feature gives the User full control in setting the light intensity.

INPUT/OUTPUT DESCRIPTION:

CLOCK Input (Pin 1)

An external resistor connected between this input and VDD, along with an internal capacitor and oscillator stage, generates a clock which is used for all timing functions. The recommended value of this resistor for 50 Hz and 60 Hz operation is specified in the

SYNC Input (Pin 2)

50 Hz or 60 Hz AC input for zero crossing detection.

Vdd (Pin 3)

Supply voltage positive terminal.

TOUCH Input (Pin 4)

Input for sensing that a touch has been made on a lamp surface or other touch plate. This action alters the state of the TRIG/ output as described in the Touch Operation section of the General Description.

CONTROL I/O (Pin 5)

An external R-C network connected between this pin and Vdd establishes the controlling feedback for the AGC Loop.

RAMP Input/Output (Pin 6)
The ramp down rate of the brightness in the dimming cycle is regulated by a resistor-capacitor (RC) pair connected to the RAMP input. The ramp rate is equal to 4TRC per step, where TRC $=0.48 R C$. Total ramp down time (TT) from maximum brightness to off is equal to 496Trc.

Example: $\quad \mathrm{R}=200 \mathrm{k} \Omega, \mathrm{C}=0.22 \mathrm{uF}$;
TRC $=0.48 \times\left(200 \times 10^{3}\right) \times\left(0.22 \times 10^{-6}\right)=0.02 \mathrm{sec}$.
Ramp rate $=4 \times$ TrC $=0.08 \mathrm{sec} /$ step;
Total ramp time, $\mathrm{T} T=496 \times$ TRC $=9.92 \mathrm{sec}$.
Vss (Pin 7)
Supply voltage negative terminal.

TRIG/ Output (Pin 8)

The TRIG/ output produces a negative pulse every half cycle of the AC line period to turn on a triac in series with the lamp or any other load device. The brightness of the lamp is regulated by regulating the conduction angle, \varnothing (See Fig. 2) of the TRIG/ signal. The conduction angles at maximum brightness (level 124) and mimimum brightness (level 1) are 162° and 50° with 0.91° incremental steps.

ABSOLUTE MAXIMUM RATINGS:

PARAMETER
DC supply voltage
Any input voltage
Operating temperature
Storage temperature

SYMBOL
VdD - Vss
VIN
TA
TstG

VALUE

```
+6
Vss -0.3 to VDD +0.3
-20 to +85
-65 to +150
```

UNIT

V
V
${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$

ELECTRICAL AND TRANSIENT CHARACTERISTICS:

(All voltages referenced to Vss. $\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	CONDITIONS
Supply Voltage	VDD	+4.5	5.0	+5.5	V	-
Supply Current	IDD	-	-	500	uA	Output off, VDD $=+5.0 \mathrm{~V}$
TRIG/ Sink Current $\mathrm{Vo}=\mathrm{VDD}-3 \mathrm{~V}$	Io	-50	-	-	mA	$\mathrm{VDD}=+5.0 \mathrm{~V}$
TRIG/ Source Current $\mathrm{Vo}=\mathrm{VDD}-0.2 \mathrm{~V}$	10	+0.1	-	-	mA	$\mathrm{VDD}=+5.0 \mathrm{~V}$
TRIG/ Pulse Width	Tw		$\begin{aligned} & 105 \\ & 126 \end{aligned}$		$\mu \mathrm{sec}$ $\mu \mathrm{sec}$	$\begin{aligned} & \mathrm{RC}=300 \mathrm{k} \Omega, 60 \mathrm{~Hz} \\ & \mathrm{RC}=360 \mathrm{k} \Omega, 50 \mathrm{~Hz} \end{aligned}$
CLOCK Resistor			$\begin{aligned} & 350 \\ & 420 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$
CONTROL Resistor CONTROL Capacitor	-	-	$\begin{gathered} 10 \\ 1 \end{gathered}$	-	$\underset{\mu \mathrm{F}}{\mathrm{M} \Omega}$	-
Touch Plate Capacitance	-	-	-	600	pF	-
Touch Duration	$\begin{aligned} & \text { Ts } \\ & \text { Ts } \end{aligned}$	$\begin{aligned} & 67 \\ & 80 \end{aligned}$		-	$\begin{aligned} & \mathrm{ms} \\ & \mathrm{~ms} \end{aligned}$	$60 \mathrm{~Hz}$
Conduction Angle	\varnothing	50	-	162	deg	-
Ø incremental steps (Note 1)	$\Delta \varnothing$	-	0.91	-	deg	-
RAMP Resistor	R	2	-	no limit	k Ω	-
RAMP Capacitor	C	200	-	no limit	pF	
RAMP RC	Trc	25	-	no limit	$\mu \mathrm{s}$	60 Hz
RAMP RC	Trc	30	-	no limit	$\mu \mathrm{s}$	50 Hz
RAMP Rate	-	-	4TRC	-	sec/step	-
Max to off slew time	TT		496 Tri		sec	-

Note 1: Total number of steps $=124$.

FIGURE 3. TOUCH vs tRIG/ CONDUCTION ANGLE, ø

FIGURE 4. LS7540 BLOCK DIAGRAM

FIGURE 5. TOUCH LAMP APPLICATION SCHEMATIC

115VAC APPLICATION

$\mathrm{R} 1=20 \mathrm{k} \Omega, 1 \mathrm{~W}$
C4 $=1000 \mathrm{pF}, 1 \mathrm{kV}$
$\mathrm{R} 2=470 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
$R 3=1 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
$\mathrm{C} 5=0.03 \mu \mathrm{~F}, 16 \mathrm{~V}$ (only for Figure 5)
$\mathrm{C} 6=1 \mu \mathrm{~F}, 16 \mathrm{~V}$
(1) R4 $=350 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}, 1 \%$

C7 $=$ See Note 1
$R 5=10 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$
$\mathrm{Z} 1=5.1 \mathrm{~V}, 1 / 4 \mathrm{~W}$ Zener
$R 6=100 \Omega, 1 / 4 \mathrm{~W}$
D1 $=1$ N4004
R7 = See Note 1
D2 $=1$ N4148
$\mathrm{C} 1=47 \mu \mathrm{~F}, 16 \mathrm{~V}$
D3 $=1 \mathrm{~N} 4148$
$\mathrm{C} 2=1000 \mathrm{pF}, 16 \mathrm{~V}$
$\mathrm{C} 3=1000 \mathrm{pF}, 1 \mathrm{kV}$
$\mathrm{T} 1=\mathrm{Q} 2004 \mathrm{~L} 4$ (Typical Triac)
or Q2004F41 (Typical Triac)

220VAC APPLICATION

$$
\begin{aligned}
& \mathrm{R} 1=39 \mathrm{k} \Omega, 2 \mathrm{~W} \\
& \mathrm{R} 2=910 \mathrm{k} \Omega, 1 / 4 \mathrm{~W} \\
& \text { (1) } \mathrm{R} 4=420 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}, 1 \% \\
& \mathrm{D} 1=1 \mathrm{~N} 4005 \\
& \mathrm{~T} 1=\mathrm{Q} 4004 \mathrm{~L} 4 \text { (Typical Triac) } \\
& \text { or Q4004F41 (Typical Triac) }
\end{aligned}
$$

All other values remain the same.
(1) Resistor should be placed adjacent to Pin 1.

NOTE 1: See RAMP input description for determining values for R7 and C 7 .
NOTE 2: A good PCB layout using through-hole components will provide protection for ESD introduced at the Touch Plate in the range of 25 kV . Using surface mount components and/or a poor PCB layout can reduce the ESD protection. The OEM can increase the ESD protection provided by the product with any combination of the following steps:

Step 1: The most effective and least costly way to increase ESD protection is to create a spark gap around the Touch Plate input on the PCB. This will increase ESD protection on a good PCB layout to abut 35 kV . The gap should be made with a split metal ring with each side of the metal ring connected back to opposite sides of the AC line. This ensures that a path for the spark back to house ground through AC Neutral exists independent of line plug polarity. The split ring and the center conduction plate should be constructed so that the spacing between them conforms to UL requirements. The spark gap will absorb most of the ESD leaving a remnant of about 10 kV for the rest of the circuit to absorb.

Step 2: Increase R3 from $1 \mathrm{k} \Omega$ to $5.1 \mathrm{k} \Omega$ and add C 8 , a $0.1 \mu \mathrm{~F}$ capacitor, between VDD and Vss. (A minimal loss in touch sensitivity may be experienced.)

Step 3: Replace diodes D2 and D3 (1N4148) with Schottky diodes (1N5819 or similar)

FIGURE 6. TOUCH LAMP APPLICATION SCHEMATIC

The Figure 6 Application Schematic functions identically to that shown in Figure 5 with one less component. Referencing Triac T1 to the +V power supply of the IC eliminates the need to AC couple the TRIAC/ pulse to the Triac Gate thereby eliminating component C5.

FIGURE 7. PUSHBUTTON APPLICATION SCHEMATIC

Using the Figure 6 schematic as an example, components R3, C4, C7, D1 and D2 are eliminated and Pushbutton Switch, S1, is connected from one end of C3 to Vss. Each depression of S1 causes the Brightness Level to change in the same way as a Touch does in Figure 6.

FIGURE 8. A Touch Wall Switch Using the LS7540 IC.

All resistors 1/4W, Capacitors10V, unless otherwise noted.

FIGURE 9. A Pushbutton Wall Switch Using the LS7540 IC.

All resistors 1/4W, Capacitors10V, unless otherwise noted.

