

6V, 3A, 2.4MHz, Synchronous Step-Down Converter with Power Good and Soft Start, MPSafe ${ }^{\text {TM }}$ QM, AEC-Q100 Qualified

DESCRIPTION

The MPQ2179A is a monolithic, step-down, switch-mode converter with integrated internal power MOSFETs. It can achieve up to 3A of output current (lout) across a 2.5 V to 6 V input voltage $\left(\mathrm{V}_{\mathbb{I}}\right)$ range, with excellent load and line regulation. The output voltage ($\mathrm{V}_{\text {Out }}$) can be regulated to as low as 0.6 V .
The MPQ2179A is ideal for a wide range of applications, including automotive clusters, telematics, and infotainment systems.
Constant-on-time (COT) control provides fast transient response and eases loop stabilization.

Full protection features include cycle-by-cycle current limiting, output over-voltage protection (OVP), and thermal shutdown.

The MPQ2179A requires a minimal number of readily available, standard external components, and is available in a compact QFN-8 (1.5mmx2mm) package.

FEATURES

- Designed for Automotive Applications:
- Wide 2.5V to 6V Operating Input Voltage (V_{IN}) Range
- Up to 3A Output Current (Iout)
- 1% Feedback (FB) Accuracy
- $-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Operating Junction Temperature (T_{J}) Range
- Available in AEC-Q100 Grade 1
- Increased Battery Life:
- $21 \mu \mathrm{~A}$ Sleep Mode Quiescent Current (I_{Q})
- AAM Mode for Increased Efficiency under Light-Load Conditions
- High Performance for Improved Thermals:
- $65 \mathrm{~m} \Omega$ and $35 \mathrm{~m} \Omega$ Integrated Internal Power MOSFETs
- Optimized for EMC and EMI Reduction:
- 2.4 MHz Switching Frequency (fsw)
- MeshConnect ${ }^{\text {TM }}$ Flip-Chip Package
- Optimized for Board Size and BOM:
- Integrated Internal Power MOSFETs
- Integrated Compensation Network
- Available in a Compact QFN-8 (1.5mmx2mm) Package
- Fixed Output Options ${ }^{(1)}: 0.7 \mathrm{~V}, 0.75 \mathrm{~V}$, $0.8 \mathrm{~V}, 0.85 \mathrm{~V}, 0.88 \mathrm{~V}, 0.9 \mathrm{~V}, 1.05 \mathrm{~V}, 1 \mathrm{~V}$, $1.1 \mathrm{~V}, 1.2 \mathrm{~V}, 1.25 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, 2.8 V , and 3.3 V
- Additional Features:
- Enable (EN) for Power Sequencing
- Power Good (PG)
- 100\% Duty Cycle
- External Soft Start (SS) Control
- Output Discharge
- OVP and SCP with Hiccup Mode
- Available in a Wettable Flank Package
- MPSafe ${ }^{\text {TM }}$ QM (Documentation Available)

Note:

1) See the Ordering Information section on page 3 for additional fixed output options.

APPLICATIONS

- Automotive Clusters, Telematics, and Infotainment Systems
- Camera Modules
- Key Fobs
- Industrial Supplies
- Battery-Powered Devices

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

ORDERING INFORMATION

Part Number* ${ }^{(2)}$	Package	Top Marking	MSL Rating**
MPQ2179AGQHE-AEC1***	QFN-8 (1.5mmx2mm)	See Below	1

* For Tape \& Reel, add suffix -Z (e.g. MPQ2179AGQHE-AEC1-Z).
** Moisture Sensitivity Level Rating
*** Wettable Flank
Note:

2) Contact an MPS FAE for more details on additional fixed output options.

TOP MARKING

MC
LL

MC: Product code of the MPQ2179AGQHE-AEC1
LL: Lot number

PACKAGE REFERENCE

PG	TOP VIEW		FB
	-1	8	
VIN	2	7	OUT
sw	3	6	ss
GND	4	5	EN

PIN FUNCTIONS

Pin \#	Name	Description
1	PG	Power good indicator. The PG pin is an open-drain output. Connect PG to a voltage source via an external resistor. If the feedback (FB) voltage (V_{FB}) exceeds 90% of the reference voltage ($\mathrm{V}_{\text {REF }}$), then PG is pulled high. If $\mathrm{V}_{\text {FB }}$ drops below 85% of $\mathrm{V}_{\text {REF }}$, then PG is pulled to GND. Float this pin if not used.
2	VIN	Supply voltage. The MPQ2179A operates from a 2.5 V to 6 V input. A decoupling capacitor is required to prevent large voltage spikes at the input.
3	SW	Output switching node. The SW pin is the drain of the internal P-channel high-side MOSFET (HS-FET). Connect the inductor to SW to complete the converter.
4	GND	Ground.
5	EN	Enable (EN) control. Pull the EN pin above 0.9 V to turn the converter on; pull EN below 0.65 V or float EN to turn it off. There is an internal $2 \mathrm{M} \Omega$ resistor connected between EN and GND.
6	SS	Soft start. Connect a capacitor between SS and GND to set the soft-start time (tss) and to avoid start-up inrush current. The recommended minimum soft-start capacitance (Css) is 1 nF .
7	OUT	Output voltage (Vout). The OUT pin is Vout's power rail and input sense. Connect OUT to the load. An output capacitor (C2) is required to reduce the output voltage ripple (Δ Vout).
8	FB	Feedback (FB). The FB pin is tapped to an external resistor divider connected between the output and GND. To set the regulation voltage, V_{FB} is compared to the internal $\mathrm{V}_{\mathrm{REF}}(0.6 \mathrm{~V})$.

ABSOLUTE MAXIMUM RATINGS

SW \qquad $-0.3 \mathrm{~V}(-1.5 \mathrm{~V}$ for $<10 \mathrm{~ns}$) to $+6.5 \mathrm{~V}(+7.5 \mathrm{~V}$ for $<10 \mathrm{~ns})$
All other pins
-0.3 V to +6.5 V
Junction temperature $150^{\circ} \mathrm{C}$
Lead temperature $260^{\circ} \mathrm{C}$
Continuous power dissipation ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (4) (7)Storage temperature
$\qquad$$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
ESD Ratings
Human body model (HBM) $\pm 2000 \mathrm{~V}$
Charged device model (CDM) $\pm 750 \mathrm{~V}$

Recommended Operating Conditions

Input voltage ($\mathrm{V}_{\text {IN }}$) 2.5 V to 6 V

Output voltage (Vout).............. 0.6 V to $\mathrm{V}_{\text {IN }}-0.5 \mathrm{~V}$
Operating junction temp (T_{J}) $\ldots . .40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Thermal Resistance	$\theta_{J A}$	$\theta J c$
QFN-8 (1.5mmx2mm)		
JESD51-7 ${ }^{(5)}{ }^{(6)}$.	.. 130	
EVQ2179A-QH-00A ${ }^{(7)}$.		

Notes:
3) Exceeding these ratings may damage the device.
4) The maximum allowable power dissipation is a function of the maximum junction temperature $\mathrm{T}_{\mathrm{J}}(\mathrm{MAX})$, the junction-toambient thermal resistance $\theta \mathrm{JA}$, and the ambient temperature TA. The maximum allowable continuous power dissipation at any ambient temperature is calculated by $\mathrm{P}_{\mathrm{D}}(\mathrm{MAX})=\left(\mathrm{T}_{J}\right.$ $\left.(\mathrm{MAX})-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{JA}}$. Exceeding the maximum allowable power dissipation can cause excessive die temperature, and the device may go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
5) Measured on JESD51-7, 4-layer PCB.
6) The values given in this table are only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application.
7) Measured on the EVQ2179A-QH-00A, a 4-layer, $6.3 \mathrm{~cm} \times 6.3 \mathrm{~cm}$ PCB with 2 oz per layer.

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, typical values are tested at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
Input voltage	Vin		2.5		6	V
Under-voltage lockout (UVLO) rising threshold	Vuvlo_ RIIING			2.3	2.45	V
UVLO threshold hysteresis	VuvLO_HYs			200		mV
Shutdown current	Isd	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$		0.01	1	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}{ }^{(8)}$			3	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$			20	$\mu \mathrm{A}$
Quiescent current	lo	$\begin{aligned} & \mathrm{V}_{E N}=2 \mathrm{~V}, \mathrm{~V}_{F B}=0.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{~T}_{J}=25^{\circ} \mathrm{C} \end{aligned}$		21	30	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\text {EN }}=2 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { (8) } \end{aligned}$			40	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\text {EN }}=2 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.63 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \end{aligned}$			80	$\mu \mathrm{A}$
Feedback (FB) voltage	$V_{\text {Fb }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	594	600	606	mV
		$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	591	600	609	
FB current	Ifb	$\mathrm{V}_{\mathrm{FB}}=0.63 \mathrm{~V}$		50	100	nA
P-channel high-side MOSFET (HS-FET) on resistance	RDs(ON)_Hs	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$		65	85	$\mathrm{m} \Omega$
N-channel low-side MOSFET (LS-FET) on resistance	Rds(on)_ss	V IN $=5 \mathrm{~V}$		35	55	$\mathrm{m} \Omega$
Zero-current detection (ZCD) threshold				50		mA
Switch leakage current		$\begin{aligned} & \mathrm{V}_{E N}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SW}}=0 \mathrm{~V} \text { or } 6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$		0	1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=6 \mathrm{~V}, \mathrm{~V}_{\text {sw }}=0 \mathrm{~V} \text { or } 6 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{J}=}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \text { (8) } \end{aligned}$			30	$\mu \mathrm{A}$
Switching frequency	fsw	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{CCM}$	2000	2400	2640	kHz
Minimum on time ${ }^{(8)}$	ton_min	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$		50		ns
Minimum off time ${ }^{(8)}$	toff_Min	V IN $=5 \mathrm{~V}$		80		ns
P-channel HS-FET peak current limit	ILIMIT_PEAK		4	5	6	A
N-channel LS-FET valley current limit	Ilimit_valley		1.5	3	4.5	A
Soft-start current	Iss		1.5	3	4.5	$\mu \mathrm{A}$
Maximum duty cycle				100		\%
Power good (PG) UVLO rising threshold	VPG_UVLO_ RIIING	FB rising edge	87	90	93	\% $\mathrm{V}_{\text {FB }}$
PG UVLO falling threshold	VpG_uvlo_ FALLING	FB falling edge	82	85	88	\% $\mathrm{V}_{\text {FB }}$
PG delay	tDELAY_PG	PG rising/falling edge		80		Ms
PG sink current capability	VpG_Low	1 mA sink current			0.4	V
PG logic high voltage	$\mathrm{VPG}_{\text {PIIGH }}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}, \mathrm{~V}_{\text {FB }}=0.6 \mathrm{~V}$	4.9			V
Self-biased PG		$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{PG}$ is pulled up between 3 V and 6 V via a $100 \mathrm{k} \Omega$ resistor			0.7	V
PG leakage current and logic high		5 V logic high			100	nA
Enable (EN) start-up delay		EN on to activate SW		100		HS
EN shutdown delay		EN off to stop switching		30		Ms
EN input logic low voltage			0.4	0.65		V

ELECTRICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~T}_{J}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, typical values are tested at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Typ	Max	Units
EN input logic high voltage				0.9	1.2	V
EN pull-down resistor				2		$\mathrm{M} \Omega$
Output discharge resistor	RDischarge	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}$		150		Ω
EN input current		$\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}$		1.2		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$		0		$\mu \mathrm{A}$
Output over-voltage protection (OVP) rising threshold	Vovp_rising		110	115	120	\% $\mathrm{V}_{\text {FB }}$
Output OVP hysteresis	Vovp_hYs			10		$\% \mathrm{~V}_{\text {FB }}$
Output over-voltage delay				2		us
Low-side MOSFET (LS-FET) current limit		Current flows from SW to GND		1.2		A
Absolute Vin over-voltage protection (OVP)		After Vout OVP is enabled		6.1		V
Absolute V 1 IN OVP hysteresis				160		mV
Thermal shutdown ${ }^{(8)}$				170		${ }^{\circ} \mathrm{C}$
Thermal shutdown hysteresis ${ }^{(8)}$				20		${ }^{\circ} \mathrm{C}$

Note:

8) Guaranteed by design and bench characterization. Not tested in production.

TYPICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted.

TYPICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted.

TYPICAL CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUt }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C} 2=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C} 2=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}, \mathrm{~V}_{\text {OUt }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C}_{\text {OUt }}=22 \mu \mathrm{~F}$, Iout $=3 \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

CISPR25 Class 5 Peak Radiated Emissions
150 kHz to 30 MHz

CISPR25 Class 5 Peak Radiated Emissions
Horizontal, 30 MHz to 1 GHz

CISPR25 Class 5 Peak Radiated Emissions
Vertical, 30 MHz to 1 GHz

CISPR25 Class 5 Average Conducted Emissions
150 kHz to 108 MHz

CISPR25 Class 5 Average Radiated Emissions
 150 kHz to 30 MHz

CISPR25 Class 5 Average

Radiated Emissions

Horizontal, 30 MHz to 1 GHz

CISPR25 Class 5 Average Radiated Emissions
Vertical, 30 MHz to 1 GHz

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C} 2=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Start-Up through VIN

lout $=0 \mathrm{~A}$

Shutdown through VIN

lout $=0 \mathrm{~A}$

Steady State
lout = 3A

Start-Up through VIN

lout = 3A

Shutdown through VIN

lout $=$ 3A

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C} 2=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Shutdown through EN

lout = 0A

SCP Entry
lout $=0 \mathrm{~A}$

Start-Up through EN
lout = 3A

$1 \mathrm{~ms} /$ div.

Shutdown through EN

lout = 3A

SCP Entry
lout $=3 \mathrm{~A}$

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C} 2=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

$400 \mu \mathrm{~s} / \mathrm{div}$.

Short Circuit Protection

PG Shutdown through VIN
lout $=3$ A

SCP Recovery
lout $=3 \mathrm{~A}$

$400 \mu \mathrm{~s} / \mathrm{div}$.

PG Start-Up through VIN
lout $=3 \mathrm{~A}$

$1 \mathrm{~ms} / \mathrm{div}$.

PG Start-Up through EN

TYPICAL PERFORMANCE CHARACTERISTICS (continued)

$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.2 \mathrm{~V}, \mathrm{~L}=1 \mu \mathrm{H}, \mathrm{C} 2=22 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

PG Shutdown through EN
lout $=3$ A

Load Transient

lout $=1.5$ to $3 \mathrm{~A}, 1 \mathrm{~A} / \mu \mathrm{s}$

FUNCTIONAL BLOCK DIAGRAM

Figure 1: Functional Block Diagram

OPERATION

The MPQ2179A employs input voltage (V_{IN}) feed-forward and constant-on-time (COT) control to stabilize the switching frequency (fsw) across the entire $\mathrm{V}_{\mathbb{I N}}$ range. It can achieve 3A of output current (lout) across a 2.5 V to $6 \mathrm{~V} \mathrm{~V}_{\mathrm{IN}}$ range, with excellent load and line regulation. The output voltage ($\mathrm{V}_{\text {OUT }}$) can be regulated to as low as 0.6 V . A 100% maximum duty cycle can be reached in low-dropout mode.

Constant-On-Time (COT) Control

COT control provides a simpler control loop and faster transient response. The MPQ2179A's switching cycles have a fixed minimum off time (toff_min) to prevent inductor current (I) runaway during load transient. If the low-side MOSFET (LS-FET) turns on remains on for at least $t_{\text {min_off }}$ (typically 80ns). The high-side MOSFET (HS-FET) turns on once the feedback (FB) voltage (V_{FB}) drops below the reference voltage ($\mathrm{V}_{\mathrm{REF}}$). This indicates an insufficient Vout. Input voltage feed-forward allows the device to maintain a nearly constant f_{sw} across the input range and load range. The f_{sw} on time (ton) can be calculated with Equation (1):

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ON}}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}} \times 400 \mathrm{~ns} \tag{1}
\end{equation*}
$$

Sleep Mode

The MPQ2179A employs sleep mode for high efficiency under light-load conditions. In sleep mode, most of the circuit block input currents (l_{N}) decrease, specifically the error amplifier (EA) and pulse-width modulation (PWM) comparator.
As the load becomes lighter, the converter's f_{sw} decreases. If the load continues to decrease and the off time (toff) exceeds $3.5 \mu \mathrm{~s}$, then the MPQ2179A enters sleep mode. To further improve light-load efficiency, the converter consumes a very low quiescent current (l_{Q}) while in sleep mode.
Once an HS-FET pulse occurs, the MPQ2179A exits sleep mode.

Advanced Asynchronous Modulation (AAM) Mode under Light-Load Conditions

The device features advanced asynchronous modulation (AAM) mode and a zero-current detection (ZCD) circuit for light-load operation.

The AAM current ($\mathrm{I}_{\mathrm{AAM}}$) is set internally. The SW pin's on time (ton) is determined by the on-timer generator and AAM comparator. Under lightload conditions, SW's ton exceeds the AAM comparator's ton. Figure 2 shows the simplified AAM control logic.

Figure 2: Simplified AAM Control Logic
If the AAM comparator's ton exceeds the ontimer's pulse, then the AAM comparator controls SW's ton (see Figure 3).

Figure 3: AAM Comparator Controls SW's ton
When using a lower-value inductor, the AAM comparator's ton is below the on-timer, the operation mode is below in Figure 4. The HSFET depends on the on-timer, therefore the ontimer controls ton (see Figure 4).

Figure 4: On-Timer Controls SW's ton

Aside from the on-timer method, the AAM circuit has another AAM blanking time (150ns) for sleep mode. This means that if the on-timer drops below 150ns, then the HS-FET turns off after an on-timer pulse is generated without AAM control. In this scenario, I_{L} may not reach the AAM threshold (see Figure 5).

Figure 5: AAM Blanking Time during Sleep Mode
In sleep mode, the on-timer's pulse is about 40% greater than its pulse during discontinuous conduction mode (DCM) and continuous conduction mode (CCM). Figure 6 shows how the AAM threshold decreases as ton increases gradually. For CCM, lout must exceed half of the AAM threshold.

Figure 6: AAM Threshold Decreases as ton Increases

The MPQ2179A employs ZCD to determine whether I_{L} begins to reverse. If I_{L} reaches the ZCD threshold (typically 50 mA), then the LSFET turns off.

Even if $\mathrm{V}_{\text {out }}$ is close to $\mathrm{V}_{\text {IN }}$, $A A M$ mode and ZCD allow the device to operate continually in DCM under light-load conditions.

Enable (EN) Control

The enable (EN) pin is a digital control pin that turns the MPQ2179A on and off. Pull EN above 0.9 V to turn the converter on; pull EN below 0.65 V or float EN to turn it off. Pulling EN to GND also disables the device. There is an internal $2 \mathrm{M} \Omega$ resistor connected between EN and GND.

Output Discharge

If the MPQ2179A shuts down, the device initiates output discharge mode. The internal discharge MOSFET provides a resistive discharge path for the output capacitor (C2) between the OUT pin and GND. To block the output discharge path, add an external capacitor between Vout and the OUT pin (see the Output Discharge Blocking section on page 21).

Soft Start (SS)

The MPQ2179A features external soft start (SS). To avoid overshoot during start-up, the SS pin ramps up Vout at a controlled slew rate. The SS pin's charge current is typically $3 \mu \mathrm{~A}$. The soft-start time (tss) is determined by the external soft-start capacitor (Css). tss can be calculated with Equation (2):

$$
\begin{equation*}
\mathrm{t}_{\mathrm{ss}}(\mathrm{~ms})=\frac{\mathrm{C}_{\mathrm{ss}}(\mathrm{nF}) \times 0.6 \mathrm{~V}}{\mathrm{I}_{\mathrm{ss}}(\mu \mathrm{~A})} \tag{2}
\end{equation*}
$$

Where Iss is the internal soft-start charge current $(3 \mu \mathrm{~A})$.
It is recommended that C_{ss} be $\geq 1 \mathrm{nF}$.
The device has a pre-biased start-up function. Once EN is pulled above 0.9V, the converter starts up regardless of any pre-biased voltage on the output. Pre-biased start-up works even while the output discharge path is blocked.

Peak Current Limit and Valley Current Limit

Both the HS-FET and LS-FET feature currentlimit protection. If I_{L} reaches the HS-FET's peak current limit (limit_peak) threshold (typically 5A), the HS-FET turns off and the LS-FET turns on to discharge the energy. The HS-FET does not turn again until I_{L} drops below the valley current limit (limit_valley) threshold (typically 3A). This prevents current runaway during overload and short-circuit events.

Short-Circuit Protection (SCP) and SCP Recovery

Short-circuit protection (SCP) protects the circuitries from over-current (OC) faults. If a Vout short to GND occurs and the device has exceeded its current limit, then SCP is triggered and the IC attempts to recover via hiccup mode. In hiccup mode, the output power stage is disabled and the SS voltage $\left(\mathrm{V}_{\mathrm{ss}}\right)$ is
discharged. Once $V_{S S}$ is discharged completely, the device initiates a new SS. This process repeats until the fault condition is removed.

Over-Voltage Protection (OVP)

The MPQ2179A monitors $\mathrm{V}_{\text {FB }}$ to detect overvoltage (OV) conditions. If V_{FB} exceeds 115% of $V_{\text {REF }}$, then the converter enters its dynamic regulation period. During this period, the LSFET remains on until the LS-FET current reaches -1.2A. This process discharges $\mathrm{V}_{\text {out }}$ to keep it within its normal range. If the OV condition still remains after this process, there is a $1.5 \mu \mathrm{~s}$ delay and then the LS-FET turns on again. Once V_{FB} falls below 105% of $\mathrm{V}_{\text {REF }}$, the converter exits the regulation period. If the dynamic regulation period cannot prevent $\mathrm{V}_{\text {OUT }}$ from increasing and a $6.1 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ is detected, then over-voltage protection (OVP) is triggered. The device stops switching until V_{IN} drops below 6 V . Once V_{IN} drops below 6V, the MPQ2179A resumes normal operation.

Power Good (PG) Indicator

The MPQ2179A has a power good (PG) output to indicate whether the converter is operating normally after start-up. PG is the open drain of an internal MOSFET. It is recommended that this MOSFET's maximum $R_{D S(O N)}$ be below 400Ω. PG can be connected to V_{IN} or an external voltage source via an external resistor ($10 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$). Once V_{IN} is applied, the MOSFET turns on and PG is pulled to GND before $S S$ is ready. After $V_{F B}$ reaches 90% of $\mathrm{V}_{\text {REF }}$, PG is pulled high by the external voltage source. If $\mathrm{V}_{\text {FB }}$ drops to 85% of $\mathrm{V}_{\text {REF }}$, then the PG voltage (V_{PG}) is pulled to GND to indicate an output failure.

If VIN and EN are not available, and PG is pulled up via an external power supply, then PG self-biases and asserts. If a $100 \mathrm{k} \Omega$ pull-up resistor is being used, then $V_{P G}$ should be below 0.7 V .

APPLICATION INFORMATION

Setting the Output Voltage

The external resistor divider sets the MPQ2179A's adjustable output voltage (Vout). Select a feedback (FB) resistor (R1) to reduce the Vout leakage current (typically between $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$). Then R2 can then be calculated with Equation (3):

$$
\begin{equation*}
\mathrm{R} 2=\frac{\mathrm{R} 1}{\frac{\mathrm{~V}_{\text {OUT }}}{0.6}-1} \tag{3}
\end{equation*}
$$

Figure 7 shows the FB network.

Figure 7: Feedback Network
Table 1 shows the recommended resistor values for common output voltages.

Table 1: Resistor Values for Common Output Voltages

$\mathbf{V}_{\text {Out }}(\mathbf{V})$	R1 (k $\boldsymbol{\Omega})$	R2 (k $\boldsymbol{\Omega})$
1	$30.9(1 \%)$	$47(1 \%)$
1.2	$100(1 \%)$	$100(1 \%)$
1.8	$36(1 \%)$	$18(1 \%)$
2.5	$51(1 \%)$	$16(1 \%)$
3.3	$68(1 \%)$	$15(1 \%)$

Frequency Scaling at Low Input Voltages

Under heavy-load conditions, the HS-FET voltage decreases as the on time (ton) increases and the duty cycle is extended. If the minimum off time (toff_min) is reached at a low input voltage and under heavy-load conditions, then f_{sw} scales down. To maintain a constant $\mathrm{f}_{\text {sw }}$ during heavy-load operation, a larger Vout is required for a larger $\mathrm{V}_{\text {in }}$. For a 1.8 V Vout at a 2 A load, $\mathrm{V}_{\text {IN }}$ should be above 2.9 V to keep f_{sw} above 2 MHz . If the frequency begins to scale down, $\mathrm{V}_{\mathbb{I N}}$ can be estimated with Equation (4):

$$
\begin{equation*}
\mathrm{V}_{\mathrm{IN}}=\frac{\mathrm{V}_{\mathrm{OUT}}+\mathrm{R}_{\mathrm{DS}(\mathrm{ON}) \mathrm{HS}} \times \mathrm{I}_{\mathrm{OUT}}}{1-\frac{\mathrm{t}_{\mathrm{OFF} _\mathrm{MIN}}}{400 \times 10^{-9}}} \tag{4}
\end{equation*}
$$

Where the maximum toff_min is 125 ns. ${ }^{(9)}$

Note:

9) Guaranteed by design and bench characterization. Not tested in production.

Selecting the Inductor

A $0.47 \mu \mathrm{H}$ to $1.5 \mu \mathrm{H}$ inductor is recommended for most applications. For high efficiency, select an inductor with a DC resistance below $25 \mathrm{~m} \Omega$.

High-frequency, switch-mode power supplies with magnetic devices (such as the MPQ2179A) can have strong electromagnetic inference (EMI). It is recommended to avoid using unshielded power inductors, as they provide poor magnetic shielding. Shielded inductors (e.g. metal alloy or multi-layer chip power inductors) are highly recommended for their effective EMI reduction.

For most designs, the inductance $\left(\mathrm{L}_{1}\right)$ can be estimated with Equation (5):

$$
\begin{equation*}
L_{1}=\frac{V_{\text {OUT }} \times\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}{V_{\mathrm{IN}} \times \Delta \mathrm{I}_{\mathrm{L}} \times \mathrm{f}_{\mathrm{sW}}} \tag{5}
\end{equation*}
$$

Where ΔI_{L} is the inductor ripple current.
Choose an inductor with a ripple current rating that is approximately 30% of the maximum load current (load). The maximum inductor peak current ($\mathrm{I}_{\text {_MAX }}$) can be calculated with Equation (6):

$$
\begin{equation*}
\mathrm{I}_{\mathrm{L}_{-} \mathrm{MAX}}=\mathrm{I}_{\mathrm{LOAD}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2} \tag{6}
\end{equation*}
$$

Selecting the Input Capacitor

The step-down converter has a discontinuous input current ($\mathrm{l}_{\mathbb{N}}$), and requires a capacitor to supply AC current to the converter while maintaining the DC input voltage. For the best performance, it is recommended to use lowESR capacitors. Ceramic capacitors with X5R or X7R dielectrics are strongly recommended due to their low ESR and small temperature coefficients. For most applications, a $10 \mu \mathrm{~F}$ capacitor is sufficient. Higher output voltages
may require a $22 \mu \mathrm{~F}$ capacitor to increase system stability.
The input capacitor (C1) requires an adequate ripple current rating to absorb the switching I_{N}.
C1's RMS current rating ($\mathrm{I}_{\mathrm{c} 1}$) can be estimated with Equation (7):

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{LOAD}} \times \sqrt{\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right)} \tag{7}
\end{equation*}
$$

The worst-case scenario occurs at $\mathrm{V}_{\mathrm{IN}}=2 \times \mathrm{V}_{\text {OUT }}$, which can be calculated with Equation (8):

$$
\begin{equation*}
\mathrm{I}_{\mathrm{C} 1}=\frac{\mathrm{I}_{\mathrm{LOAD}}}{2} \tag{8}
\end{equation*}
$$

For simplification, choose an input capacitor with an RMS current rating greater than half of the maximum load current.

C1 can be an electrolytic, tantalum, or ceramic capacitor. When using electrolytic or tantalum capacitors, place a small, high-quality, $0.1 \mu \mathrm{~F}$ ceramic capacitor as close to the IC as possible. When using ceramic capacitors, ensure that the capacitor has enough capacitance to prevent excessive voltage ripple at the input. The input voltage ripple ($\Delta \mathrm{V}_{\mathrm{IN}}$) can be estimated with Equation (9):

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{IN}}=\frac{\mathrm{I}_{\mathrm{LOAD}}}{\mathrm{f}_{\mathrm{SW}} \times \mathrm{C} 1} \times \frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right) \tag{9}
\end{equation*}
$$

Selecting the Output Capacitor

The output capacitor (C2) stabilizes the DC $V_{\text {out. }}$. It is recommended to use ceramic capacitors for C2. Low-ESR capacitors are recommended, as they effectively limit the output voltage ripple ($\Delta \mathrm{V}_{\text {out }}$). $\Delta \mathrm{V}_{\text {OUt }}$ can be estimated with Equation (10):

$$
\Delta V_{\text {OUT }}=\frac{V_{\text {OUT }}}{f_{\text {SW }} \times L_{1}} \times\left(1-\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right) \times\left(R_{\text {ESR }}+\frac{1}{8 \times f_{\text {sw }} \times C 2}\right)(10)
$$

Where L_{1} is the inductance, and $R_{\text {ESR }}$ is C2's equivalent series resistance (ESR).
When using ceramic capacitors, the capacitance dominates the impedance at the switching frequency and causes the majority of $\Delta V_{\text {out. }}$

For simplification, $\Delta \mathrm{V}_{\text {OUT }}$ can be estimated with Equation (11):

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {OUT }}=\frac{\mathrm{V}_{\text {OUT }}}{8 \times \mathrm{f}_{\text {SW }}{ }^{2} \times \mathrm{L}_{1} \times \mathrm{C} 2} \times\left(1-\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\right) \tag{11}
\end{equation*}
$$

Ceramic capacitors with X7R or X5R dielectrics are highly recommended due to their low ESR and small temperature coefficients.
For tantalum or electrolytic capacitors, the ESR dominates the impedance at the switching frequency. For simplification, $\Delta \mathrm{V}_{\text {OUT }}$ can be estimated with Equation (12):

$$
\begin{equation*}
\Delta \mathrm{V}_{\mathrm{OUT}}=\frac{\mathrm{V}_{\text {OUT }}}{\mathrm{f}_{\mathrm{SW}} \times \mathrm{L}_{1}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\text {IN }}}\right) \times \mathrm{R}_{\mathrm{ESR}} \tag{12}
\end{equation*}
$$

C2's characteristics can also affect the stability of the regulation system.

Output Discharge Blocking

When the device is disabled, an internal resistive discharge path from the OUT pin to GND is enabled to discharge the output capacitor (C2). The discharge path can be blocked by adding an external capacitor between the output and the OUT pin (see Figure 8).

Figure 8: Circuit with Vout Discharge Blocking Capacitor
In order to avoid influencing the loop and load transient, the blocking capacitor should be at least 10 nF . Larger-value blocking capacitors have no impact on loop performance, but are not necessary and have greater costs. A capacitor between 10 nF and 100 nF is recommended.

PCB Layout Guidelines

Efficient PCB layout is critical for stable operation. Poor layout design can result in poor line regulation, load regulation, and stability issues. For the best results, refer to Figure 9 and follow the guidelines below:

1. Place the high-current paths (GND, VIN, and SW) close to the IC with short, direct, and wide traces.
2. Place the input capacitor (C1) as close to the VIN and GND pins as possible.
3. Place the output capacitor (C2) close to the GND pin.
4. For the adjustable output version, place the external feedback resistors close to the FB pin.
5. Keep the switching node (SW) short and away from the feedback network.
6. Keep the $\mathrm{V}_{\text {out_sense }}$ line (OUT) as short as possible, and place it as far away from the inductor as possible. OUT should not surround the inductor or be close to SW.

Top Layer

Mid-Layer 1

Mid-Layer 2

Bottom Layer
Figure 9: Recommended PCB Layout

TYPICAL APPLICATION CIRCUITS

Figure 10: Typical Application Circuit (1.2V Output)

Figure 11: Typical Application Circuit (1.8V Output)

Figure 12: Typical Application Circuit with EMI Filter (1.2V Output)

PACKAGE INFORMATION

QFN-8 (1.5mmx2mm)
Wettable Flank

TOP VIEW

SIDE VIEW

RECOMMENDED LAND PATTERN

BOTTOM VIEW

SECTION A-A

NOTE:

1) THE LEAD SIDE IS WETTABLE.
2) ALL DIMENSIONS ARE IN MILLIMETERS.
3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.
4) JEDEC REFERENCE IS MO-220.
5) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package Description	Quantity /Reel	Quantity /Tube	Quantity /Tube	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MPQ2179AGQHE- AEC1-Z	QFN-8 $(1.5 \mathrm{~mm} \times 2 \mathrm{~mm})$	5000	N/A	N/A	13 in	8 mm	4 mm

REVISION HISTORY

Revision \#	Revision Date	Description	Pages Updated
1.0	08/06/2021	Initial Release	-
1.1	5/25/2023	Added the fixed output options in the Features section; added note 1; updated formatting; added the MPSafe logo below the Features section	1
		Updated Ordering Information section with "Output Voltage" column; added Note 2	3
		Added the SW voltage range in the Absolute Maximum Ratings section; updated the supply voltage range to " 2.5 V to 6 V " in the Recommended Operating Conditions section; updated the evaluation board part number to "EVQ2179A-QH-00A"; updated Note 6	4
		Updated the input voltage parameter's maximum value to " 6 "	5
		Added the emissions curves in the Typical Performance Characteristics section	12
		Updated the V_{IN} range to " 2.5 V to 6 V " in the Operation section	18
		Added the Output Discharge Blocking section	22
		Updated Figure 9	23
		Added Figure 12	24
		Updated voltage in header to " 6 V "	All

NOTICE: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.

