
BIAS DRIVER

MECL MC350 series

MC354

Bias driver that compensates for changes in circuit parameters with temperature.

ELECTRICAL CHARACTERISTICS

	Test Conditions Vdc ±1%
@ Test (.ecc	-5.20
Tomperature +25°C	-5.20
+75°C	5.20

				Symbol			Test	t Limits					
1 .	V _{EE}	L	Ground	Pin No			0°C		0°C +25°C		+75°C		Unit
Characteristic		Pin No Pin No			Min	Max	Min	Max	Mia	Max			
Power Supply Brain Current	2		3	ls (2)	_	4.6	_	4.4	_	4.0	mAdc		
Output Voltage	2	10	3	Van	1.14	-1.27	-1.09	-1.22	-1.04	-1.18	Vác		

Pins not listed are left open.

CIRCUIT DESCRIPTION -

Circuit Operation:

The divider network R₁, R₂, D₁, D₂ compensates for temperature variations of the base-emitter voltages of Q₁, and of the driven gates, producing a bias voltage for the MECL logic circuits that maintains a constant set of dc operating conditions over the temperature range of 0 to +75 °C. In addition, compensation for power supply variations is achieved, since the bias output voltage is derived from the system supply.

Either of the supply voltage nodes may be used as ground, however the ground potential of the bias driver must coincide with that of the logic system. Thus, if $V_{\rm CC}$ is grounded in the logic system, then —

$$V_{CC} = 0;$$
 $V_{EE} = -5.2 \text{ V};$ $V_{BB} = -1.15$ nominal output voltage at 25°C

 $[\]odot$ Current test conditions: no load = 0; full load = -2.5 mAdc $\pm 5\%$.