

ARRIS HGTG12N60D1D

12A, 600V N-Channel IGBT with Anti-Parallel Ultrafast Diode

April 1995

Features

- 12A, 600V
- Latch Free Operation
- Typical Fall Time <500ns
- Low Conduction Loss
- With Anti-Parallel Diode
- t_{BB} < 60ns

Description

The IGBT is a MOS gated high voltage switching device combining the best features of MOSFETs and bipolar transistors. The device has the high input impedance of a MOSFET and the low on-state conduction loss of a bipolar transistor. The much lower on-state voltage drop varies only moderately between +25°C and +150°C. The diode used in parallel with the IGBT is an ultrafast (t_{BB} < 60ns) with soft recovery characteristic.

The IGBTs are ideal for many high voltage switching applications operating at frequencies where low conduction losses are essential, such as: AC and DC motor controls, power supplies and drivers for solenoids, relays and contactors.

PACKAGING AVAILABILITY

PART NUMBER	PACKAGE	BRAND
HGTG12N60D1D	TO-220AB	G12N60D1D

NOTE: When ordering, use the entire part number

Package

JEDEC STYLE TO-247

Terminal Diagram

N-CHANNEL ENHANCEMENT MODE

Absolute Maximum Ratings	$T_{\rm C} = +25^{\rm o}{\rm C}$	Unless Otherwise Specified
---------------------------------	----------------------------------	----------------------------

	HGTG12N60D1D	UNITS
Collector-Emitter Voltage	600	V
Collector-Gate Voltage R _{GE} = 1MΩ	600	V
Collector Current Continuous at T _C = +25°C	21	Α
at T _C = +90°C	12	Α
Collector Current Pulsed (Note 1)	48	Α
Gate-Emitter Voltage Continuous	<u>+</u> 20	V
Switching Safe Operating Area at T _J = +150°C	30A at 0.8 BV _{CES}	
Diode Forward Current at T _C = +25°C	21	Α
at T _C = +90°C	12	Α
Power Dissipation Total at T _C = +25°C P _D	75	W
Power Dissipation Derating T _C > +25°C	0.6	W/°C
Operating and Storage Junction Temperature Range	-55 to +150	οС
Maximum Lead Temperature for Soldering	260	°C

(0.125 inches from case for 5s)

1. Repetitive Rating: Pulse width limited by maximum junction temperature

HARRIS SEMICONDUCTOR IGBT PRODUCT IS COVERED BY ONE OR MORE OF THE FOLLOWING U.S.	PATENTS:
---	----------

4,364,073	4,417,385	4,430,792	4,443,931	4,466,176	4,516,143	4,532,534	4,567,641
4,587,713	4,598,461	4,605,948	4,618,872	4,620,211	4,631,564	4,639,754	4,639,762
4,641,162	4,644,637	4,682,195	4,684,413	4,694,313	4,717,679	4,743,952	4,783,690
4,794,432	4,801,986	4,803,533	4,809,045	4,809,047	4,810,665	4,823,176	4,837,606
4,860,080	4,883,767	4,888,627	4,890,143	4,901,127	4,904,609	4,933,740	4,963,951
4 969 027							

Electrical Specifications T_C = +25°C, Unless Otherwise Specified

					LIMITS		
PARAMETERS	SYMBOL TEST CONDITIONS		MIN	TYP	MAX	UNITS	
Collector-Emitter Breakdown Voltage	BV _{CES}	$I_C = 280 \mu A$, $V_{GE} = 0 V$		600		-	٧
Collector-Emitter Leakage Voltage	I _{CES}	V _{CE} = BV _{CES}	T _C = +25°C	-	-	280	μА
		V _{CE} = 0.8 BV _{CES}	$T_C = +125^{\circ}C$	-	-	5.0	mA
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C = I _{C90} , V _{GE} = 15V	$T_{C} = +25^{\circ}C$	•	1.9	2.5	٧
			$T_C = +125^{\circ}C$	-	2.1	2.7	٧
Gate-Emitter Threshold Voltage	V _{GE(TH)}	I _C = 250μA, V _{CE} = V _{GE} , T _C = +25°C		3.0	4.5	6.0	٧
Gate-Emitter Leakage Current	GES	V _{GE} = ±20V				±500	nA
Gate-Emitter Plateau Voltage	V _{GEP}	I _C = I _{C90} , V _{CE} = 0.5 BV _{CES}		-	7.2		٧
On-State Gate Charge	Q _{G(ON)}	I _C = I _{C90} , V _{CE} = 0.5 BV _{CES}	V _{GE} = 15V		45	60	nC
			V _{GE} = 20V	-	70	90	nC
Current Turn-On Delay Time	t _{D(ON)I}	L = 500μ H, $I_C = I_{C90}$, $R_G = 25V$, $V_{GE} = 15V$, $T_J = +150^{\circ}$ C, $V_{CE} = 0.8 \text{ BV}_{CES}$		-	100	-	ns
Current Rise Time	t _{RI}			-	150		ns
Current Tum-Off	t _{D(OFF)}	1 02 020	TOE STORES		430	600	ns
Current Fall Time	t _{Fl}	1			430	600	ns
Turn-Off Energy (Note 1)	W _{OFF}	1		-	1.8		mJ
Thermal Resistance IGBT	R _{eJC}				-	1.67	°C/W
Thermal Resistance Diode	R _{eJC}		-	-		1.5	°C/W
Diode Forward Voltage	V _{EC}	I _{EC} = 12A			-	1.50	V
Diode Reverse Recovery Time	t _{RR}	I _{EC} = 12A, dI _{EC} /dt = 100A/μs		-	-	60	ns

NOTE:

Typical Performance Curves

FIGURE 1. TRANSFER CHARACTERISTICS (TYPICAL)

FIGURE 2. SATURATION CHARACTERISTICS (TYPICAL)

Turn-off Energy Loss (W_{OFF}) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero (I_{CE} = 0A). The HGTG12N60D1D was tested per JEDEC standard No. 24-1 Method for Measurement of Power Device Turn-off Switching Loss. This test method produces the true total Turn-off Energy Loss.

Typical Performance Curves (Continued)

FIGURE 9. TURN-OFF DELAY vs COLLECTOR-EMITTER CURRENT

FIGURE 11. TYPICAL DIODE EMITTER-TO-COLLECTOR VOLTAGE

P_D = ALLOWABLE DISSIPATION P_C = CONDUCTION DISSIPATION
FIGURE 10. OPERATING FREQUENCY vs COLLECTOREMITTER CURRENT AND VOLTAGE

FIGURE 12. TYPICAL t_{RR}, t_A, t_B vs FORWARD CURRENT

Operating Frequency Information

Operating frequency information for a typical device (Figure 10) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 7, 8 and 9. The operating frequency plot (Figure 10) of a typical device shows I_{MAX1} or I_{MAX2} whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.

 f_{MAX1} is defined by $f_{MAX1}=0.05/t_{D(OFF)I}$. $t_{D(OFF)I}$ deadtime (the denominator) has been arbitrarily held to 10% of the onstate time for a 50% duty factor. Other definitions are possible. $t_{D(OFF)I}$ is defined as the time between the 90% point of the trailing edge of the input pulse and the point where the collector current falls to 90% of its maximum value. Device turn-off delay can establish an additional

frequency limiting condition for an application other than $T_{JMAX}\cdot t_{D(OFF)I}$ is important when controlling output ripple under a lightly loaded condition.

 f_{MAX2} is defined by $f_{MAX2}=(P_D-P_C)/W_{OFF}.$ The allowable dissipation (P_D) is defined by $P_D=(T_{JMAX}-T_C)/R_{6JC}.$ The sum of device switching and conduction losses must not exceed $P_D.$ A 50% duty factor was used (Figure 10) so that the conduction losses (P_C) can be approximated by $P_C=(V_{CE}\times I_{CE})/2.$ W_{OFF} is defined as the sum of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero $(I_{CE}$ -0A).

The switching power loss (Figure 10) is defined as f_{MAX1} x W_{OFF} . Turn on switching losses are not included because they can be greatly influenced by external circuit conditions and components.