

Additional Information

Resources

Accessories

Agency Approvals

Agency	Agency File/Certificate Number	Ampere Range
c FL us	E10480	0.75A to 5A
\triangle	J50501694	0.75A to 5A
	JD60156347	0.75A to 5A
Œ	N/A	0.75A to 5A
UK	N/A	0.75A to 5A

Description

422 Series fuse is a 250 V rated Wire-in-Air Surface Mount Fuse, designed specifically to provide circuit protection to space constrained application. The wire-in-air design of the 422 Series results in a relatively high I²t in a 2410 size.

Features & Benefits

- Operating Temperature from -55 °C to 125 °C
- 100% Lead-free, Halogen-Free and RoHS compliant
- Fast Acting
- Recognized to UL/CSA/NMX 248-1 and UL/CSA/NMX 248-14
- Conforms to EN/IEC 60127-1 and EN/IEC 60127-7

Applications

- Industrial equipment
- Backlight inverter
- Power supply
- Telecom

- Conforms to J60127-1 and J60127-7
- Avoids nuisance opening due to high inrush and surge current inherent in the system
- Suitable for harsh environments
- Server
- Networking
- Gaming system
- White goods

Electrical Characteristics

% of Ampere Rating	Ampere Rating	Opening Time at 25°C
100%	0.75 A to 5 A	4 Hours, Minimum
200%	0.75 A to 5 A	5 Seconds, Maximum

Electrical Specifications

Ampere	Amp	Max Voltage Bating	Interrupting Bating	Nominal Resistance	Nominal Melting		Age	ncy Appro	ovals	
(A)	Code	(V)	(AC/DC) ^{1,4}	(Ohms) ²	I ² t (A ² sec) ³	Œ	UK CA	c SN ° us		\triangle
0.750	.750	250	300 A @ 32 VDC	0.137	0.282	х	х	х	х	х
1.00	001.	250	100 A @ 125 VDC 50 A @ 250 VAC 50 A @ 250 VDC	0.0994	0.611	х	х	х	х	х
1.25	1.25	250		0.0734	1.09	Х	х	х	х	х
1.50	01.5	250		0.0589	1.62	х	х	х	х	х
2.00	002.	250	10,000 A @ 86 VDC	0.0453	2.85	Х	х	х	х	х
2.50	02.5	125		0.0278	1.29	х	х	х	х	х
3.00	003.	125	300 A @ 32 VDC	0.0223	2.09	Х	х	х	х	х
3.15	3.15	125	100 A @ 125 VDC	0.0213	2.40	х	х	х	х	х
3.50	03.5	125		0.0192	2.82	Х	х	х		х
4.00	004.	125	50 A @ 125 VAC	0.0168	3.60	х	х	х	х	х
5.00	005.	125		0.0137	5.90	х	х	х	х	х

Notes

1. AC Interrupting Rating tested at rated voltage with unity power factor. DC Interrupting Rating tested with time constant <0.8 ms for 32 VDC, <2.2 ms for 86 VDC, <0.22 ms for 125 VDC, and <0.1 ms for 250 VDC.

Nominal Resistance measured with <10% rated current
Nominal Melting I²t measured at 1 msec. opening time.

remain metang i timeasureu at i miset, opening time.
Interrupting Rating may differ based on Agency Approval. See Agency Approval certificate for more details.

Fuse Datasheet

422 Series Thin Film Fuse, 2410 Fast Acting

Temperature Re-rating Curve

 ${\rm Notes:}$ Re-rating depicted in this curve is in addition to the standard re-rating of 25% for continuous operation.

Example:

For continuous operation at 85 °C, the fuse should be rerated as follows:

 $I = (0.75)(0.90)I_N = (0.675)I_N$

Pulse Cycle Withstand Capability

No. of Pulses to withstand	Ratio of Pulse I ² t to Nominal I ² t
100,000	Pulse $I^2t = 18\%$ of Nominal Melting I^2t
10,000	Pulse $l^2t = 29\%$ of Nominal Melting l^2t
1,000	Pulse $l^2t = 38\%$ of Nominal Melting l^2t
100	Pulse $l^2t = 48\%$ of Nominal Melting l^2t

* Being tested

Reflow Condition			Pb – Free assembly		
Pre Heat	- Temperature Min (T _{st}	150 °C			
	- Temperature Max (T _s	200 °C			
	- Time (Min to Max) (t	s)	60-180 secs		
Average ramp up rate (Liquidus Temp (T $_{\!\!\! L})$ to peak			5 °C/second max.		
$T_{S(max)}$ to T_{L} - Ramp-up Rate			5 °C/second max.		
Deflere	- Temperature (T _L) (Liquidus)		217 °C		
nenow	- Temperature (t _L)		60-150 secs		
Peak Temperature (T _p)			260+0/-5 °C		
Time within 5 °C of actual peak Temperature (t_p)			10–30 seconds		
Ramp-down Rate			6 °C/second max.		
Time 25 °C to peak Temperature (T _P)			8 minutes max.		
Do not exceed		260 °C			
			_		
Wave Soldering Parameters		260 °C Peak lemperature, 10 seconds max.			

Average Time Current Curves

Soldering Perameters

Fuse Datasheet

Product Characteristics

Materials	Body: Epoxy Resin Terminations: Cu/Ni/Sn (100% Pb-free)
Product Marking	Body: Ampere Marking Code. See Part Marking
Insulation Resistance	IEC 60127-4 (0.1 MΩ Min.)
High Temperature Storage	MIL-STD-202, Method 108
Thermal Shock Test	JESD22 Method A104C
Biased Humidity	MIL-STD-202, Method 103, 85 °C/85% RH with 10% operating power for 1000 hrs
Operational Life	MIL-STD-202, Method 108, Test Condition D
Resistance to Solvents	MIL-STD-202, Method 215
Mechanical Shock	MIL-STD-202, Method 213, Test Condition C
High Frequency Vibration	MIL-STD-202, Method 204
Resistance to Soldering Heat	MIL-STD-202, Method 210 (Test K modified)
Solderability	JESD22-B102E Method 1
Moisture Resistance	MIL-STD-202 Method 106
Moisture Sensitivity Level 1	IPC/JEDEC J-STD-020D Level 1
Terminal Strength	IEC60127-4

Dimensions

Bottom

Recommended Pad Layout

Part Numbering System

Packaging

Packaging	Packaging	Quantity	Quantity &
Option	Specification		Packaging Code
Tape and Reel	EIA-481	1000	MR

Part Marking System

Amp Code	Marking Code
.750	G
001.	н
1.25	J
01.5	К
002.	N
02.5	0
003.	Р
3.15	В
03.5	С
004.	S
005.	т

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

