Specification Sheet for Approved

Customer Name:	
Customer Part No.:	
Ceaiya Part No:	LQH32CN Series
Spec No:	L137

[For Customer Approval Only **]**

If you Approval	, Please	Stamp
-----------------	----------	-------

[RoHS Compliant Parts **]**

Approved By	Checked By	Prepared By
李庆辉	刘志坚	劳水花

深圳市柯爱亚电子有限公司

Shenzhen Ceaiya Electronics Co., Ltd.

深圳地址 1: 深圳市龙华区观湖街道鹭湖社区观盛二路 5 号捷顺科技中心 B706

东莞地址 2: 东莞清溪镇青滨东路 105 号力合紫荆智能制造中心 10 栋

Http://www.szceaiya.com Tel: 0769-89135516 Fax: 0769-89135519

[Version of Changed Record]

Rev.	Effective Date	Changed Contents	Change Reasons	Approved By
A0	2024-01-26	New release	1	Li qing hui

1. Scope

This specification applies to the LQH32CN Series of wire wound SMD power inductor.

2. Product Description and Identification (Part Number)

1) Description:

LQH32CN series of Wire wound SMD power inductor.

2) Product Identification (Part Number)

<u>LQ</u>	H	32	C	<u>N</u>	<u>R15</u>	<u> </u>	3	L	CAY
Product ID	Structure	Dimension	Applications	Category	Inductance	Tolerance	Electrode	Packaging	Ceaiya
		(L*W)						L:Taping	

3. Electrical Characteristics

Please refer to Item 5.

- 1) Operating temperature range (individual chip without packing): -40 $^{\circ}$ C ~ +125 $^{\circ}$ C (Including Self-heating)
- 2) Storage temperature range (packaging conditions): -10 $^{\circ}$ C ~ +40 $^{\circ}$ C and RH 70% (Max.).

4. Shape and Dimensions (Unit:mm)

Dimensions and recommended PCB pattern for reflow soldering, please see Fig4-1 and Table4-1

Fig4-1.

Table 4-1.

Α	В	С	D	Е	F	G	Н	
3.2±0.3	2.5±0.2	2.0±0.2	2.5±0.3	1.1±0.3	1.0±0.3	2.5Ref	1.3Ref	1.0Ref

Specification Sheet for SMD Power Inductor

5. Electrical Characteristics

Part Number	Inductance	DC Resistance	Rated Current	Self-resonant Frequency
	1MHz/0.25V	±30%	Max.	Min.
Units	uН	$m\Omega$	Α	MHz
Symbol	L	DCR	Isat	S.R.F
LQH32CNR27M3LCAY	$0.27\!\pm\!20\%$	34	1.25	250
LQH32CNR47M3LCAY	$0.47 \pm 20\%$	42	1.10	150
LQH32CN1R0M3LCAY	1.0±20%	60	1.00	100
LQH32CN2R2M3LCAY	$2.2 \pm 20\%$	97	0.79	64
LQH32CN4R7M3LCAY	4.7±20%	150	0.65	43
LQH32CN100K3LCAY	10±10%	300	0.45	26

Note: This indicates the value of current when the inductance is 10% lower than its initial value at D.C superposition and D.C current when temperature rise $\Delta T = 40^{\circ} \text{C}$. (Ta=25 $^{\circ} \text{C}$)

6.Structure

The structure of LQH32CN product.

No.	Part name	Material
① Drum Core		Ni-Zn Ferrite Core
2	Wire	Polyurethane enameled copper wire
③ Electrode		Top surface solder coating Sn99%、Ag0.3%、Cu0.7%

Specification Sheet for SMD Power Inductor

7.Reliability Test

Items	Requirements	Test Methods and Remarks
7.1 Terminal Strength	No removal or split of the termination or other defects shall occur. Fig.7.1-1	1) Solder the inductor to the testing jig (glass epoxy board shown in Fing.7.1-1) using eutectic solder. Then apply a force in the direction of the arrow. 2) 10N force. 3) Keep time: 5±2s
7.2 High Temperature	No visible mechanical damage. Inductance change: Within ±10%	1) Storage Temperature :125±5°C 2) Duration : 96 ±4 Hours 3) Recovery : then measured at room ambient temperature after placing 24 hours.
7.3 Low Temperature	 No visible mechanical damage Inductance change: Within ±10% 	 Temperature and time: -40±5°C Duration: 96[±]4 hours Recovery: then measured at room ambient temperature after placing 24 hours.
7.4 Vibration test	 No visible mechanical damage. Inductance change: Within ±10% 	 Frequency range:10Hz~55Hz~10Hz Amplitude:1.5mm p-p Direction:X,Y,Z Time:1 minute/cycle,2hours per axis
7.5 High Temperature Storage Tested	No visible mechanical damage. Inductance change: Within ±10%	1)Storage Temperature :60±2℃ 2) Relative Humidity :90-95% RH 3) Duration : 96 ±4 Hours 4)Recovery : then measured at room ambient temperature after placing 24 hours.
7.6 Resistance to Soldering Heat	1. No visible mechanical damage. 2. Inductance change: Within ±10% (Max time at max temp: 10 sec.) Peak 260°C max. Max Ramp Up Rate=3°C/sec. Max Ramp Down Rate=5°C/sec. 150°C Time 25°C to Peak =8 min max Fig. 7.6-1	1) Re-flowing Profile: Please refer to Fig.7.6-1 2) Test board thickness: 1.0mm 3) Test board material: glass epoxy resin 4) The chip shall be stabilized at normal condition for 1~2 hours before measuring
7.7 Thermal Shock	1. No visible mechanical damage. 2. Inductance change: Within ±10% 105°C 30 min. Ambient Temperature 40°C Max 3 minute Fig.7.7-1	 Temperature and time: -40±3°C for 30±3 min→105°C for 30±3min, please refer to Fig.7.7-1. Transforming interval: Max,3 minute Tested cycle: 100 cycles The chip shall be stabilized at normal condition for 1~2 hours before measuring

8. Packaging and Marking:

8-1. Carrier Tape Dimensions:

ITEM	W	A0	В0	K0	Р	F	E	D0	P0	P2	T
DIM	8.00	2.90	3.60	2.25	4.00	3.5	1.75	1.50	4.00	2.00	0.25
TOLE	±0.3	±0.1	±0.1	±0.1	±0.1	±0.1	±0.1	+0.1	±0.1	±0.1	±0.05

8-2. Taping Dimensions:

8-3.Reel Dimensions:

Carrier Tape Reel

Туре	Α	В	С	G	N	Т
8mm	178	20.7±0.8	13±0.4	9	60	10.8

8-4. Packaging Quantity:

2KPCS/Reel