CMOS Monolithic Voltage Converter

General Description

The MAX660 monolithic, charge-pump voltage inverter converts a +1.5 V to +5.5 V input to a corresponding -1.5 V to -5.5 V output. Using only two low-cost capacitors, the charge pump's 100 mA output replaces switching regulators, eliminating inductors and their associated cost, size, and EMI. Greater than 90\% efficiency over most of its load-current range combined with a typical operating current of only $120 \mu \mathrm{~A}$ provides ideal performance for both battery-powered and boardlevel voltage conversion applications. The MAX660 can also double the output voltage of an input power supply or battery, providing +9.35 V at 100 mA from $\mathrm{a}+5 \mathrm{~V}$ input.
A frequency control (FC) pin selects either 10kHz typ or 80 kHz typ (40 kHz min) operation to optimize capacitor size and quiescent current. The oscillator frequency can also be adjusted with an external capacitor or driven with an external clock. The MAX660 is a pincompatible, high-current upgrade of the ICL7660.
The MAX660 is available in both 8-pin DIP and smalloutline packages in commercial, extended, and military temperature ranges.
For 50mA applications, consider the MAX860/MAX861 pin-compatible devices (also available in ultra-small $\mu \mathrm{MAX}$ packages).

Applications
Laptop Computers
Medical Instruments
Interface Power Supplies
Hand-Held Instruments
Operational-Amplifier Power Supplies
Pin Configuration

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX660CPA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 Plastic DIP
MAX660CSA	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	8 SO
MAX660C/D	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	Dice*
MAX660EPA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 Plastic DIP
MAX660ESA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8 SO
MAX660MJA	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 CERDIP

*Contact factory for dice specifications.
Typical Operating Circuits

ELECTRICAL CHARACTERISTICS

($\mathrm{V}+=5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=150 \mu \mathrm{~F}$, test circuit of Figure 1, $\mathrm{FC}=$ open, $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $T_{\text {MAX }}$, unless otherwise noted.) (Note 2)

Note 2: In the test circuit, capacitors C1 and C2 are $150 \mu F, 0.2 \Omega$ maximum ESR, aluminum electrolytics.
Capacitors with higher ESR may reduce output voltage and efficiency. See Capacitor Selection section.
Note 3: Specified output resistance is a combination of internal switch resistance and capacitor ESR. See Capacitor Selection section.
Note 4: The ESR of $\mathrm{C} 1=\mathrm{C} 2 \leq 0.5 \Omega$. Guaranteed by correlation, not production tested.

Typical Operating Characteristics
All curves are generated using the test circuit of Figure 1 with $\mathrm{V}+=5 \mathrm{~V}, \mathrm{LV}=\mathrm{GND}, \mathrm{FC}=$ open, and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. The charge-pump frequency is one-half the oscillator frequency. Test results are also valid for doubler mode with GND $=+5 \mathrm{~V}, \mathrm{LV}=\mathrm{OUT}$, and OUT = OV, unless otherwise noted; however, the input voltage is restricted to +2.5 V to +5.5 V .

Figure 1. MAX660 Test Circuit

Typical Operating Characteristics (continued)

OUTPUT CURRENT vs. CAPACITANCE:

OUTPUT CURRENT vs. CAPACITANCE:

OUTPUT CURRENT vs. CAPACITANCE:

OUTPUT CURRENT vs. CAPACITANCE:
$V_{I N}=+3.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-2.4 \mathrm{~V}$

Pin Description

PIN	NAME	FUNCTION	
		INVERTER	DOUBLER
1	FC	Frequency Control for internal oscillator, FC = open, $\mathrm{f}_{\mathrm{OSC}}=10 \mathrm{kHz}$ typ; $\mathrm{FC}=\mathrm{V}+$, fosc $=80 \mathrm{kHz}$ typ $(40 \mathrm{kHz} \mathrm{min})$, FC has no effect when OSC pin is driven externally.	Same as Inverter
2	CAP+	Charge-Pump Capacitor, Positive Terminal	Same as Inverter
3	GND	Power-Supply Ground Input	Power-Supply Positive Voltage Input
4	CAP-	Charge-Pump Capacitor, Negative Terminal	Same as Inverter
5	OUT	Output, Negative Voltage	Power-Supply Ground Input
6	LV	Low-Voltage Operation Input. Tie LV to GND when input voltage is less than 3V. Above 3V, LV may be connected to GND or left open; when overdriving OSC, LV must be connected to GND.	LV must be tied to OUT for all input voltages.
7	OSC	Oscillator Control Input. OSC is connected to an internal 15pF capacitor. An external capacitor can be added to slow the oscillator. Take care to minimize stray capacitance. An external oscillator may also be connected to overdrive OSC.	Same as Inverter; however, do not overdrive OSC in voltage-doubling mode.
8	V+	Power-Supply Positive Voltage Input	Positive Voltage Output

Detailed Description

The MAX660 capacitive charge-pump circuit either inverts or doubles the input voltage (see Typical Operating Circuits). For highest performance, low effective series resistance (ESR) capacitors should be used. See Capacitor Selection section for more details.
When using the inverting mode with a supply voltage less than 3V, LV must be connected to GND. This bypasses the internal regulator circuitry and provides best performance in low-voltage applications. When using the inverter mode with a supply voltage above 3V, LV may be connected to GND or left open. The part is typically operated with LV grounded, but since LV may be left open, the substitution of the MAX660 for the ICL7660 is simplified. LV must be grounded when overdriving OSC (see Changing Oscillator Frequency section). Connect LV to OUT (for any supply voltage) when using the doubling mode.

Applications Information

Negative Voltage Converter

The most common application of the MAX660 is as a charge-pump voltage inverter. The operating circuit uses only two external capacitors, C1 and C2 (see Typical Operating Circuits).
Even though its output is not actively regulated, the MAX660 is very insensitive to load current changes. A typical output source resistance of 6.5Ω means that with an input of +5 V the output voltage is -5 V under light load, and decreases only to -4.35 V with a load of 100mA. Output source resistance vs. temperature and supply voltage are shown in the Typical Operating Characteristics graphs.
Output ripple voltage is calculated by noting the output current supplied is solely from capacitor C2 during
one-half of the charge-pump cycle. This introduces a peak-to-peak ripple of:

For a nominal fpump of 5 kHz (one-half the nominal 10 kHz oscillator frequency) and $\mathrm{C} 2=150 \mu \mathrm{~F}$ with an ESR of 0.2Ω, ripple is approximately 90 mV with a 100 mA load current. If C 2 is raised to $390 \mu \mathrm{~F}$, the ripple drops to 45 mV .

Positive Voltage Doubler

The MAX660 operates in the voltage-doubling mode as shown in the Typical Operating Circuit. The no-load output is $2 \times \mathrm{V}_{\mathbf{I N}}$.

Other Switched-Capacitor Converters

Please refer to Table 1, which shows Maxim's chargepump offerings.

Changing Oscillator Frequency
Four modes control the MAX660's clock frequency, as listed below:

FC	OSC	Oscillator Frequency
Open	Open	10 kHz
$\mathrm{FC}=\mathrm{V}_{+}$	Open	80 kHz
Open or	External	See Typical Operating
$\mathrm{FC}=\mathrm{V}_{+}$	Capacitor	Characteristics
Open	External Clock	External Clock Frequency

When FC and OSC are unconnected (open), the oscillator runs at 10 kHz typically. When FC is connected to $\mathrm{V}+$, the charge and discharge current at OSC changes from $1.0 \mu \mathrm{~A}$ to $8.0 \mu \mathrm{~A}$, thus increasing the oscillator

Table 1. Single-Output Charge Pumps

	MAX828	MAX829	MAX860	MAX861	MAX660	MAX1044	ICL7662	ICL7660
Package	SOT 23-5	SOT $23-5$	SO-8, $\mu \mathrm{MAX}$	SO-8, $\mu \mathrm{MAX}$	SO-8	SO-8, $\mu \mathrm{MAX}$	SO-8	SO-8, $\mu \mathrm{MAX}$
Op. Current (typ, mA)	0.06	0.15	0.2 at 6 kHz, 0.6 at 50 kHz, 1.4 at 130 kHz	0.3 at 13 kHz, 1.1 at 100 kHz, 2.5 at 250 kHz	0.12 at 5 kHz, 1 at 40 kHz	0.03	0.25	0.08
Output Ω (typ)	20	20	12	12	6.5	6.5	125	55
Pump Rate (kHz)	12	35	$6,50,130$	$13,100,150$	5,40	5	10	10
Input (V)	1.25 to 5.5	1.25 to 5.5	1.5 to 5.5	1.5 to 5.5	1.5 to 5.5	1.5 to 10	1.5 to 10	1.5 to 10

frequency eight times. In the third mode, the oscillator frequency is lowered by connecting a capacitor between OSC and GND. FC can still multiply the frequency by eight times in this mode, but for a lower range of frequencies (see Typical Operating Characteristics).
In the inverter mode, OSC may also be overdriven by an external clock source that swings within 100 mV of V_{+} and GND. Any standard CMOS logic output is suitable for driving OSC. When OSC is overdriven, FC has no effect. Also, LV must be grounded when overdriving OSC. Do not overdrive OSC in voltage-doubling mode.
Note: In all modes, the frequency of the signal appearing at CAP+ and CAP- is one-half that of the oscillator. Also, an undesirable effect of lowering the oscillator frequency is that the effective output resistance of the charge pump increases. This can be compensated by increasing the value of the charge-pump capacitors (see Capacitor Selection section and Typical Operating Characteristics).
In some applications, the 5 kHz output ripple frequency may be low enough to interfere with other circuitry. If desired, the oscillator frequency can then be increased through use of the FC pin or an external oscillator as described above. The output ripple frequency is onehalf the selected oscillator frequency. Increasing the clock frequency increases the MAX660's quiescent current, but also allows smaller capacitance values to be used for C1 and C2.

Capacitor Selection

Three factors (in addition to load current) affect the MAX660 output voltage drop from its ideal value:

1) MAX660 output resistance
2) Pump (C1) and reservoir (C2) capacitor ESRs
3) C1 and C2 capacitance

The voltage drop caused by MAX660 output resistance is the load current times the output resistance. Similarly, the loss in C2 is the load current times C2's ESR. The loss in C1, however, is larger because it handles currents that are greater than the load current during charge-pump operation. The voltage drop due to C1 is therefore about four times C1's ESR multiplied by the load current. Consequently, a low (or high) ESR capacitor has a much greater impact on performance for C1 than for C2.
Generally, as the pump frequency of the MAX660 increases, the capacitance values required to maintain comparable ripple and output resistance diminish proportionately. The curves of Figure 2 show the total circuit

Figure 2. Total Output Source Resistance vs. C1 and C2 Capacitance (C1 = C2)
output resistance for various capacitor values (the pump and reservoir capacitors' values are equal) and oscillator frequencies. These curves assume 0.25Ω capacitor ESR and a 5.25Ω MAX660 output resistance, which is why the flat portion of the curve shows a $6.5 \Omega\left(R_{0}\right.$ MAX660 + $\left.4\left(E^{2} R_{C 1}\right)+E S R_{C 2}\right)$ effective output resistance. Note: $R_{O}=5.25 \Omega$ is used, rather than the typical 6.5Ω, because the typical specification includes the effect of the ESRs of the capacitors in the test circuit.
In addition to the curves in Figure 2, four bar graphs in the Typical Operating Characteristics show output current for capacitances ranging from $0.33 \mu \mathrm{~F}$ to $220 \mu \mathrm{~F}$. Output current is plotted for inputs of $4.5 \mathrm{~V}(5 \mathrm{~V}-10 \%)$ and 3.0V (3.3V-10\%), and allow for 10% and 20% output droop with each input voltage. As can be seen from the graphs, the MAX660 6.5Ω series resistance limits increases in output current vs. capacitance for values much above $47 \mu \mathrm{~F}$. Larger values may still be useful, however, to reduce ripple.
To reduce the output ripple caused by the charge pump, increase the reservoir capacitor C2 and/or reduce its ESR. Also, the reservoir capacitor must have low ESR if filtering high-frequency noise at the output is important.
Not all manufacturers guarantee capacitor ESR in the range required by the MAX660. In general, capacitor ESR is inversely proportional to physical size, so larger capacitance values and higher voltage ratings tend to reduce ESR.

Cascading Devices

To produce larger negative multiplication of the initial supply voltage, the MAX660 may be cascaded as shown in Figure 3. The resulting output resistance is approximately equal to the sum of the individual MAX660 Rout values. The output voltage, where n is an integer representing the number of devices cascaded, is defined by $\mathrm{V}_{\text {OUT }}=-n\left(\mathrm{~V}_{\text {IN }}\right)$.

Figure 3. Cascading MAX660s to Increase Output Voltage

Paralleling Devices

Paralleling multiple MAX660s reduces the output resistance. As illustrated in Figure 4, each device requires its own pump capacitor C , but the reservoir capacitor C2 serves all devices. The value of C2 should be increased by a factor of n , where n is the number of devices. Figure 4 shows the equation for calculating output resistance.

Figure 4. Paralleling MAX660s to Reduce Output Resistance

Combined Positive Supply Multiplication and Negative Voltage Conversion

This dual function is illustrated in Figure 5. In this circuit, capacitors C1 and C3 perform the pump and reservoir functions respectively for generation of the negative voltage. Capacitors C2 and C4 are respectively pump and reservoir for the multiplied positive voltage. This circuit configuration, however, leads to higher source impedances of the generated supplies. This is due to the finite impedance of the common charge-pump driver.

Figure 5. Combined Positive Multiplier and Negative Converter

NOTE: ALL $150 \mu \mathrm{~F}$ CAPACITORS ARE MAXC001, AVAILABLE FROM MAXIM.
Figure 6. MAX660 generates a +5 V regulated output from a 3 V lithium battery and operates for 16 hours with a 40 mA load.

Chip Topography

TRANSISTOR COUNT = 89
SUBSTRATE CONNECTED TO V+.

Narrow SO
 SMALL-OUTLINE PACKAGE
 (0.150 in.)

DIM	PINS	INCHES		MILLIMETERS	
		MIN	MAX	MIN	MAX
D	8	0.189	0.197	4.80	5.00
D	14	0.337	0.344	8.55	8.75
D	16	0.386	0.394	9.80	10.00

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	-	0.200	-	5.08
B	0.014	0.023	0.36	0.58
B1	0.038	0.065	0.97	1.65
C	0.008	0.015	0.20	0.38
E	0.220	0.310	5.59	7.87
E1	0.290	0.320	7.37	8.13
e	0.100		2.54	
L	0.125	0.200	3.18	5.08
L1	0.150	-	3.81	-
Q	0.015	0.070	0.38	1.78
S	-	0.098	-	2.49
S1	0.005	-	0.13	-

DIM	PINS	INCHES		MILLIMETERS	
		MIN	MAX	MIN	MAX
D	8	-	0.405	-	10.29
D	14	-	0.785	-	19.94
D	16	-	0.840	-	21.34
D	18	-	0.960	-	24.38
D	20	-	1.060	-	26.92
D	24	-	1.280	-	32.51

