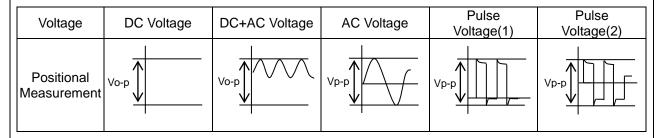


Type KX
Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Mar. 2021, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

Λ note

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type KX used for General Electric equipment.

Type KX is Safety Standard Certified capacitors of Class X1,Y1.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
CSA	CSA E60384-14	1343810	
VDE	IEC60384-14, EN60384-14	40002831	
BSI	EN62368-1, IEC60384-14, EN60384-14	KM 37901	
SEMKO		1905545	X1:440
DEMKO	JE00000444	Y1:300	
FIMKO	IEC60384-14, EN60384-14 —	FI 40129	
NEMKO	LIN00304-14	P19223458	
ESTI		21.0060	
IMQ	EN60384-14	34-14 V4069	
CQC IEC60384-14		CQC12001079941	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2 4	Operation	temperature	
Z-1.	Operating	temberature	rande

-40 ~ +125°C

2-2. Part number configuration

ex.) <u>DE1</u>	E3	KX	472	M	A4	B	P01F
Product	Temperature	Type	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

Product code

DE1 denotes X1,Y1 class .

• Temperature characteristic

Code	Temperature characteristic
B3	В
E3	Е

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type KX.

Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 472.

$$47 \times 10^2 = 4700 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code	Lead style							
A*	Vertical crimp long type							
B*	Vertical arims about turns	Lead Length: 5mm						
J*	Vertical crimp short type	Lead Length: 3.5mm						
N*	Vertical crimp taping type							

^{*} Please refer to [Part number list]

• Packing style code

Code	Packing type
В	Bulk type
Α	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

ond of partitions	
Code	Specification
P01F	 Rated voltage : AC300V(r.m.s.) Halogen free (Br ≤ 900ppm, Cl ≤ 900ppm) Br + Cl ≤ 1500ppm CP wire

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(KX) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

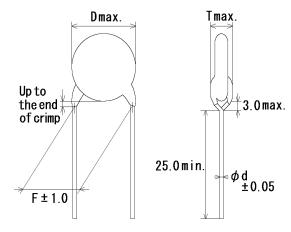
3. Marking

Nominal capacitance : 3 digit system

Capacitance tolerance : Code
Type name : KX
Rated voltage mark : 300~
Class code : X1Y1
Halogen free mark : HF

Manufacturing year : Letter code(The last digit of A.D. year.)

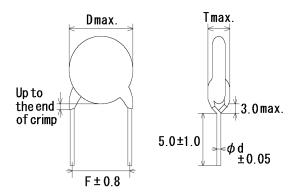
Manufacturing month : Code


Company name code : (Made in Thailand)

(Example)

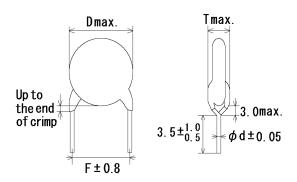
472M KX300~ X1Y1 H 5D (15

4. Part number list


·Vertical crimp long type (Lead code:A*)

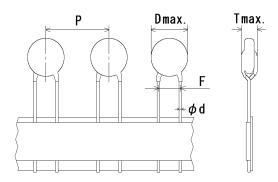
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

	Con	Con			Dir	nensi	on (m	m)	Lead	Pack
T.C.	Cap. (pF)	Cap. tol.	Customer Part Number	Murata Part Number	D	Т	F	d	code	qty. (pcs)
В	100	±10%		DE1B3KX101KA4BP01F	7.0	7.0	10.0	0.6	A4	250
В	150	±10%		DE1B3KX151KA4BP01F	7.0	7.0	10.0	0.6	A4	250
В	220	±10%		DE1B3KX221KA4BP01F	8.0	7.0	10.0	0.6	A4	250
В	330	±10%		DE1B3KX331KA4BP01F	7.0	7.0	10.0	0.6	A4	250
В	470	$\pm 10\%$		DE1B3KX471KA4BP01F	7.0	7.0	10.0	0.6	A4	250
В	680	$\pm 10\%$		DE1B3KX681KA4BP01F	8.0	7.0	10.0	0.6	A4	250
Е	1000	±20%		DE1E3KX102MA4BP01F	7.0	7.0	10.0	0.6	A4	250
Е	1500	$\pm 20\%$		DE1E3KX152MA4BP01F	8.0	7.0	10.0	0.6	A4	250
Е	2200	$\pm 20\%$		DE1E3KX222MA4BP01F	9.0	7.0	10.0	0.6	A4	250
Е	3300	±20%		DE1E3KX332MA4BP01F	10.0	7.0	10.0	0.6	A4	250
Е	4700	±20%		DE1E3KX472MA4BP01F	12.0	7.0	10.0	0.6	A4	200


Vertical crimp short type (Lead code:B*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

T.C.	Сар.	Cap.	Customer Part Number	Murata Part Number	Dir	nensi	Lead	Pack		
1.0.	(pF)	tol.	Customer Part Number	Murata Part Number	D	Т	F	d	code	qty. (pcs)
В	100	±10%		DE1B3KX101KB4BP01F	7.0	7.0	10.0	0.6	B4	500
В	150	±10%		DE1B3KX151KB4BP01F	7.0	7.0	10.0	0.6	B4	500
В	220	±10%		DE1B3KX221KB4BP01F	8.0	7.0	10.0	0.6	B4	500
В	330	±10%		DE1B3KX331KB4BP01F	7.0	7.0	10.0	0.6	B4	500
В	470	$\pm 10\%$		DE1B3KX471KB4BP01F	7.0	7.0	10.0	0.6	B4	500
В	680	$\pm 10\%$		DE1B3KX681KB4BP01F	8.0	7.0	10.0	0.6	B4	500
Е	1000	$\pm 20\%$		DE1E3KX102MB4BP01F	7.0	7.0	10.0	0.6	B4	500
Е	1500	$\pm 20\%$		DE1E3KX152MB4BP01F	8.0	7.0	10.0	0.6	B4	500
Е	2200	$\pm 20\%$		DE1E3KX222MB4BP01F	9.0	7.0	10.0	0.6	B4	500
Е	3300	$\pm 20\%$		DE1E3KX332MB4BP01F	10.0	7.0	10.0	0.6	B4	500
Е	4700	±20%		DE1E3KX472MB4BP01F	12.0	7.0	10.0	0.6	B4	250


·Vertical crimp short type (Lead code: J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d). Please see the following list about details.

Unit: mm Pack Dimension (mm) Cap. Lead Cap. T.C. **Customer Part Number** Murata Part Number qty. (pF) tol. code F D Т d (pcs) 7.0 7.0 В DE1B3KX101KJ4BP01F 10.0 0.6 J4 500 100 $\pm 10\%$ В 150 $\pm 10\%$ DE1B3KX151KJ4BP01F 7.0 7.0 10.0 0.6 J4 500 В 220 $\pm 10\%$ DE1B3KX221KJ4BP01F 8.0 7.0 10.0 0.6 J4 500 7.0 7.0 В 330 $\pm 10\%$ DE1B3KX331KJ4BP01F 10.0 0.6 J4 500 В 470 $\pm 10\%$ DE1B3KX471KJ4BP01F 7.0 7.0 10.0 0.6 J4 500 В 680 $\pm 10\%$ DE1B3KX681KJ4BP01F 8.0 7.0 10.0 0.6 J4 500 1000 $\pm 20\%$ DE1E3KX102MJ4BP01F 7.0 7.0 10.0 0.6 J4 500 Ε Е 1500 $\pm 20\%$ DE1E3KX152MJ4BP01F 8.0 7.0 10.0 0.6 J4 500 Ε 2200 $\pm 20\%$ DE1E3KX222MJ4BP01F 9.0 10.0 0.6 J4 500 Ε 3300 $\pm 20\%$ DE1E3KX332MJ4BP01F 10.0 7.0 10.0 0.6 J4 500 Ε 4700 $\pm 20\%$ DE1E3KX472MJ4BP01F 12.0 7.0 10.0 0.6 J4 250

·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

									O 1 111 C .	
Сар.	Сар.	Customor Part Number	Murata Dart Number	D	imer	Lead	Pack			
(pF)	tol.	Customer Fart Number	IVIUIAIA FAIT INUITIDEI	D	Т	F	d	Р	code	qty. (pcs)
100	±10%		DE1B3KX101KN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
150	±10%		DE1B3KX151KN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
220	±10%		DE1B3KX221KN4AP01F	8.0	7.0	10.0	0.6	25.4	N4	500
330	±10%		DE1B3KX331KN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
470	±10%		DE1B3KX471KN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
680	±10%		DE1B3KX681KN4AP01F	8.0	7.0	10.0	0.6	25.4	N4	500
1000	±20%		DE1E3KX102MN4AP01F	7.0	7.0	10.0	0.6	25.4	N4	500
1500	±20%		DE1E3KX152MN4AP01F	8.0	7.0	10.0	0.6	25.4	N4	500
2200	±20%		DE1E3KX222MN4AP01F	9.0	7.0	10.0	0.6	25.4	N4	500
3300	±20%		DE1E3KX332MN4AP01F	10.0	7.0	10.0	0.6	25.4	N4	500
4700	±20%		DE1E3KX472MN4AP01F	12.0	7.0	10.0	0.6	25.4	N4	500
	100 150 220 330 470 680 1000 1500 2200 3300	$\begin{array}{c c} (pF) & tol. \\ \hline 100 & \pm 10\% \\ \hline 150 & \pm 10\% \\ \hline 220 & \pm 10\% \\ \hline 330 & \pm 10\% \\ \hline 470 & \pm 10\% \\ \hline 680 & \pm 10\% \\ \hline 1000 & \pm 20\% \\ \hline 1500 & \pm 20\% \\ \hline 2200 & \pm 20\% \\ \hline 3300 & \pm 20\% \\ \hline \end{array}$	(pF) tol. Customer Far Number 100 ±10% 150 ±10% 220 ±10% 330 ±10% 470 ±10% 680 ±10% 1000 ±20% 1500 ±20% 2200 ±20% 3300 ±20%	(pF) tol. Customer at Number Mutata Fat Number 100 ±10% DE1B3KX101KN4AP01F 150 ±10% DE1B3KX221KN4AP01F 220 ±10% DE1B3KX331KN4AP01F 330 ±10% DE1B3KX471KN4AP01F 470 ±10% DE1B3KX471KN4AP01F 680 ±10% DE1B3KX681KN4AP01F 1000 ±20% DE1E3KX102MN4AP01F 1500 ±20% DE1E3KX222MN4AP01F 3300 ±20% DE1E3KX332MN4AP01F 3300 ±20% DE1E3KX332MN4AP01F	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D 100 ±10% DE1B3KX101KN4AP01F 7.0 150 ±10% DE1B3KX151KN4AP01F 7.0 220 ±10% DE1B3KX221KN4AP01F 8.0 330 ±10% DE1B3KX331KN4AP01F 7.0 470 ±10% DE1B3KX471KN4AP01F 7.0 680 ±10% DE1B3KX681KN4AP01F 8.0 1000 ±20% DE1E3KX102MN4AP01F 7.0 1500 ±20% DE1E3KX222MN4AP01F 9.0 3300 ±20% DE1E3KX332MN4AP01F 10.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 220 ±10% DE1B3KX221KN4AP01F 7.0 7.0 470 ±10% DE1B3KX471KN4AP01F 7.0 7.0 680 ±10% DE1B3KX681KN4AP01F 8.0 7.0 1000 ±20% DE1E3KX102MN4AP01F 7.0 7.0 1500 ±20% DE1E3KX222MN4AP01F 9.0 7.0 3300 ±20% DE1E3KX332MN4AP01F 10.0 7.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 10.0 220 ±10% DE1B3KX221KN4AP01F 7.0 7.0 10.0 470 ±10% DE1B3KX471KN4AP01F 7.0 7.0 10.0 680 ±10% DE1B3KX681KN4AP01F 8.0 7.0 10.0 1000 ±20% DE1E3KX102MN4AP01F 7.0 7.0 10.0 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 3300 ±20% DE1E3KX332MN4AP01F 10.0 7.0 10.0	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number D T F d 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 0.6 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 10.0 0.6 220 ±10% DE1B3KX221KN4AP01F 7.0 7.0 10.0 0.6 330 ±10% DE1B3KX331KN4AP01F 7.0 7.0 10.0 0.6 470 ±10% DE1B3KX681KN4AP01F 8.0 7.0 10.0 0.6 680 ±10% DE1B3KX102MN4AP01F 8.0 7.0 10.0 0.6 1000 ±20% DE1E3KX152MN4AP01F 8.0 7.0 10.0 0.6 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 0.6 3300 ±20% DE1E3KX332MN4AP01F 10.0 7.0 10.0 0.6	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number Dimension (mm) 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 0.6 25.4 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 10.0 0.6 25.4 220 ±10% DE1B3KX221KN4AP01F 8.0 7.0 10.0 0.6 25.4 330 ±10% DE1B3KX331KN4AP01F 7.0 7.0 10.0 0.6 25.4 470 ±10% DE1B3KX471KN4AP01F 7.0 7.0 10.0 0.6 25.4 680 ±10% DE1B3KX681KN4AP01F 8.0 7.0 10.0 0.6 25.4 1000 ±20% DE1E3KX102MN4AP01F 7.0 7.0 10.0 0.6 25.4 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 0.6 25.4 3300 ±20% DE1E3KX332MN4AP01F 10.0 7.0 10.0 0.6 25.4	Cap. (pF) Cap. tol. Customer Part Number Murata Part Number Dimension (mm) Lead code 100 ±10% DE1B3KX101KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 150 ±10% DE1B3KX151KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 220 ±10% DE1B3KX221KN4AP01F 8.0 7.0 10.0 0.6 25.4 N4 330 ±10% DE1B3KX331KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 470 ±10% DE1B3KX471KN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 680 ±10% DE1B3KX681KN4AP01F 8.0 7.0 10.0 0.6 25.4 N4 1000 ±20% DE1E3KX102MN4AP01F 7.0 7.0 10.0 0.6 25.4 N4 1500 ±20% DE1E3KX152MN4AP01F 8.0 7.0 10.0 0.6 25.4 N4 2200 ±20% DE1E3KX222MN4AP01F 9.0 7.0 10.0 0.6 25.4 N4 DE1E3KX332MN4AP01F 9.0 7.0 10.0 0.6 25.4 N4 DE1E3KX332MN4AP01F 10.0 7.0 10.0 0.6 25.4 N4

				eterence on	٠,					
	pecification and			101	-			- .		
No.	Ite:		Specification No marked defect on appearance			Test method The capacitor should be inspected by naked eyes				
1	Appearance and o	umensions	form and dime		ce	I he capacitor should be inspected by naked eye for visible evidence of defect.				y naked eyes
			Please refer to [Part number list].		t1	Dimensions should be measured with slide calipers.				
2	Marking			To be easily legible.			The capacitor should be inspected by naked eyes.			
3	Dielectric	Between lead	No failure.	9			capacitor s			
	strength	wires								ed between the
							wires for 6			
		Body	No failure.				the termin		capacitor s	should be
		insulation					ected toge		20	V
							ely wrapped		50	**
							ody of the		Metal ,	About
							e distance (foil	3 to 6 mm
							t 3 to 6mm			O Metal O balls
							each termi , the capad		d ha incart	ed into a
							ainer filled v			
						diam				
										is applied for
								e capacito	or lead wire	es and metal
4	Inculation Posisto	noo (LP.)	40,000MO min			balls		onintanaa	should be	measured with
4	Insulation Resista	110 0 (1.17. <i>)</i>	10 000MΩ min				00±50V wit			
										e capacitor
							igh a resist			
5	Capacitance		Within specifie	d tolerance.						ed at 20°C with
							1kHz and A			
6	Dissipation Factor	(D.F.)	2.5% max.				•			asured at 20°C
						with	1±0.1kHz a	and AC5V(r.m.s.) ma	X
7	Temperature chara	acteristic	Char. B: Within ±10 %			The capacitance measurement should be made at				
			Char. E: Within +20/-55%		each step specified in Table.					
			(Temp. range : -25 to +85°C)							
				Step	1		2	3	4	5
				Temp.(°C)					20±2	
8	Active flammability	У		oth should not be	;					y wrapped in at
			on fire.							te layers of be subjected
										en successive
						disch	narges sho	uld be 5 s.	The UAc	should be
						main	tained for 2	2min after	the last dis	scharge.
						S1 [<u> L1 L:</u>	<u>2</u>	
								_ — =	⁼ '	
						2			1 1 1	竹木
							Tr Sz	<u> </u>	- 	
									- 벽	
										Osciloscope
						C1,2	: 1uF+1	10% C3:	0.033μF±	5% 10kV
						,	L4 : 1.5ml		•	
						R			3μF±5% 10	
						UAc	: UR ±		Rated vol	ltage
						Cx		citor under		
						F Ut		Rated 10		
						Οl	. vonag	ge applied	io Ci	
							Ux			
								 不口		
								5kV	_	
								'		
										time

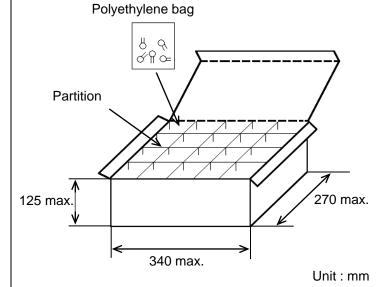
			Reference only	
No.	Item		Specification	Test method
9	Robustness of	Tensile	Lead wire should not cut off.	Fix the body of capacitor, a tensile weight
	terminations		Capacitor should not be broken.	gradually to each lead wire in the radial direction of
				capacitor up to 10N and keep it for 10±1 s.
		Bending	1	With the termination in its normal position, the
		3		capacitor is held by its body in such a manner that
				the axis of the termination is vertical; a mass
				applying a force of 5N is then suspended from the
				end of the termination.
				The body of the capacitor is then inclined,
				within a period of 2 to 3 s, through an angle of
				approximately 90° in the vertical plane and then
				returned to its initial position over the same period
				of time; this operation constitutes one bend.
				One bend immediately followed by a second bend
		_		in the opposite direction.
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the
	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to
		D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in
				total amplitude, and about 1min in the rate of
				vibration change from 10Hz to 55Hz and back to
				10Hz is applied for a total of 6 h; 2 h each in
1				3 mutually perpendicular directions.
11	Solderability of lead	ls	Lead wire should be soldered	The lead wire of a capacitor should be dipped into a
			With uniformly coated on the	ethanol solution of 25wt% rosin and then into
1			axial direction over 3/4 of the	
1			circumferential direction.	molten solder for 2±0.5 s. In both cases the depth of
			circumiciential direction.	dipping is up to about 1.5 to 2.0mm from the root of
				lead wires.
				Temp. of solder:
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)
				235±5°C H63 Eutectic Solder
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change		(In case of 260±5°C : 10±1 s)
		I.R.	1 000MΩ min.	The depth of immersion is up to about
		Dielectric	Per item 3	1.5 to 2.0mm from the root of lead wires.
		strength	1 cr tterm o	1.0 to 2.0mm from the root of load whoe.
		ouongui		Thermal
				insulating () ²
				_ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
				- = - 木 to 2.0mm
				← Molten
				solder
				Decision of a constant of
				Pre-treatment : Capacitor should be stored at
1				85±2°C for 1 h, then placed at
1				*1room condition for 24±2 h
				before initial measurements.
				Post-treatment: Capacitor should be stored for 1 to
1				2 h at *1room condition.
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C
	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s.
	, ,	change		Then, as in figure, the lead wires should be
1		I.R.	1 000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
1		Dielectric	Per item 3	from the root of terminal for 7.5+0/-1 s.
1			rei ileili 3	
1		strength		Thermal
1				insulating ()
				1.5
1				□-=
1				
1				solder
1				Dro trootment . Consoiter should be stored at
1				Pre-treatment : Capacitor should be stored at
1				85±2°C for 1 h, then placed at
				*1room condition for 24±2 h
1				before initial measurements.
1				Post-treatment: Capacitor should be stored for 1 to
L				2 h at *1room condition.
*1 "roo	om condition" Temper	rature: 15 to 35°0	C, Relative humidity: 45 to 75%, Atmo	

			Reference only				
No.	Item		Specification	Test method			
14	Flame test		The capacitor flame discontinue as follows.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.			
			Cycle Time 1 to 4 30 s max. 5 60 s max.	Capacitor Flame Gas Burner			
15	Passive flammability		The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. Capacitor About 8mm About 10mm thick board			
16	Humidity (Under steady state)	Appearance	No marked defect.	Set the capacitor for 500±12 h at 40±2°C in 90 to			
		Capacitance change	Char. B: Within ±10% Char. E: Within ±15%	95% relative humidity.			
		D.F.	5.0% max.	Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.			
		I.R.	3000M $Ω$ min.				
		Dielectric strength	Per item 3				
17	Humidity loading	Appearance	No marked defect.	Apply the rated voltage for 500±12 h at 40±2°C in			
		Capacitance	Char. B: Within ±10%	90 to 95% relative humidity.			
		change	Char. E: Within ±15%				
		D.F.	5.0% max.	Post-treatment : Capacitor should be stored for 1 to 2 h at *1room condition.			
		I.R.	3000M $Ω$ min.				
		Dielectric	Per item 3]			
		strength					
.4."			Polativa humidity: 45 to 75% Atm	1			

^{*1 &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

No.	Item		Specification				Test m	ethod		
18	Life	Appearance	No marked defect.	Ir	Impulse voltage					
		Capacitance	Within ±20%	Each individual capacitor should be subjected to a						
		change					for three time	es. Then	the capacite	ors
		I.R.	3000M $Ω$ min.	а	re app	lied to	life test.			
		Dielectric	Per item 3			(%)	_			_
		strength			10 9	6 (%)) = 1.7 μ s=1.67° alue (T2) = 50 μ s	
					5	o <i>-</i> ∕∰	<u> </u>	ime to nan-va	alue $(12) = 50 \mu$	5
					3 0 -	∘ √ ∥				
					0 -	T ₁		t		
							Т2			
				_	.				latina ataun	
					The capacitors are placed in a circulating air oven for a period of 1000 h. The air in the oven is maintained at a temperature of 125+2/-0 °C, and relative humidity of 50% max Throughout the test, the capacitors are subjected to a AC510V(r.m.s.)<50/60Hz> alternating voltage					
				to						
					of mains frequency, except that once each hour					
				th	ne volt	age is i	increased to	AC1 000\	V(r.m.s.) for	r 0.1 s.
					oot tro	otmon	t : Capacito	r abould k	oo atarad fa	r 1 to
					051-116	aunen	2 h at *1rd			טו ונט
19	Temperature and	Appearance	No marked defect.	Т	he car	oacitor	should be su			ature
-	immersion cycle	Capacitance	Char. B: Within ±10%	cycles, then consecutively to 2 immersion cycles.						
	•	change	Char. E: Within ±20%							
		D.F.	5.00/	<	Tempe	erature	cycle>			
		D.F.	5.0% max.			Step	Temperatu	ıre(°C)	Time	
						1	-40+0/		30 min	
		I.R.	3000MΩ min.		Ļ	2	Room te	emp.	3 min	
		Dielectric	Per item 3		-	3	+125+3		30 min	
		strength			L	4	Room te		3 min	
								Cy	cle time : 5	5 cycle
				<	Immer	rsion cy	/cle>			
							,		Immers	ion
					Step	Temp	perature(°C)	Time	wate	_
							05 5/0	45 .	Clear	
					1	+	65+5/-0	15 min	wate	
					2		0±3	15 min	Salt	:
							0 ± 0	10 111111	wate	r
								Cy	cle time : 2	2 cycle
				Pre-treatment: Capacitor should be stored at						
					85±2°C for 1 h, then placed at					
				*1room condition for 24±2 h.						
				Post-treatment: Capacitor should be stored for 4 to						
				24 h at *1room condition.						
		454 050	C, Relative humidity: 45 to 75%,							

6.Packing specification

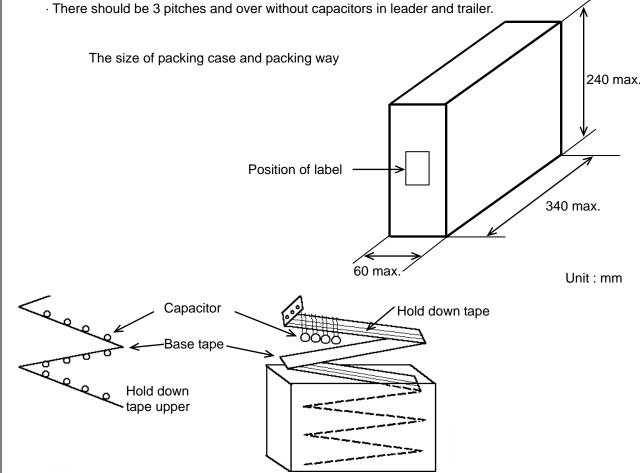

•Bulk type (Packing style code : B)

*1 *2
The number of packing = Packing quantity \times n

The size of packing case and packing way

*1 : Please refer to [Part number list].

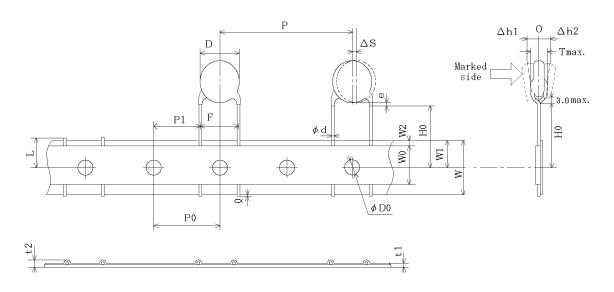
*2 : Standard n = 20 (bag)



Note)

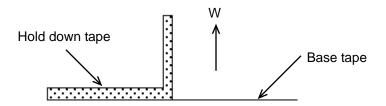
The outer package and the number of outer packing be changed by the order getting amount.

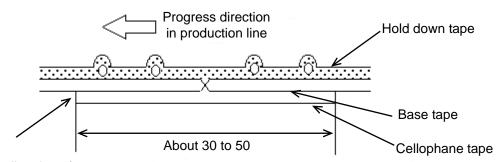
•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- \cdot When body of the capacitor is piled on other body under it.

7. Taping specification

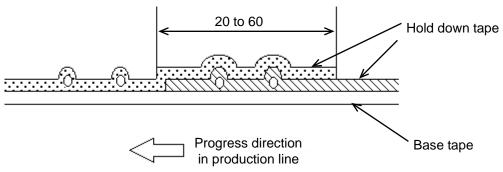
7-1. Dimension of capacitors on tape


Vertical crimp taping type < Lead code : N4 >
Pitch of component 25.4mm / Lead spacing 10.0mm


Item	Code	Dimensions	Remarks		
Pitch of component	Р	25.4±2.0			
Pitch of sprocket hole	P0	12.7±0.3			
Lead spacing	F	10.0±1.0			
Length from hole center to lead	P1	7.7±1.5			
Body diameter	D	Please refer to [Part number list].			
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .		
Carrier tape width	W	18.0±0.5			
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction		
Lead distance between reference and	H0	18.0± ₀ ^{2.0}			
bottom planes					
Protrusion length	Q	+0.5~-1.0			
Diameter of sprocket hole	φD0	4.0±0.1			
Lead diameter	φd	0.60±0.05			
Total tape thickness	t1	0.6±0.3			
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.		
Deviation across tape, front	∆h1	2.0 max.			
Deviation across tape, rear	∆h2	2.0 max.			
Portion to cut in case of defect	L	11.0± _{1.0}			
Hold down tape width	W0	11.5 min.			
Hold down tape position	W2	1.5±1.5			
Coating extension on lead	е	Up to the end of crimp			
Body thickness	Т	Please refer to [Part number list].			

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

```
        DE1B3KX331KB4BP01F
        DE1E3KX222MN4AP01F
        DE1B3KX101KA4BP01F
        DE1B3KX151KN4AP01F

        DE1E3KX152MA4BP01F
        DE1B3KX681KA4BP01F
        DE1E3KX222MA4BP01F
        DE1E3KX102MB4BP01F

        DE1E3KX152MB4BP01F
        DE1B3KX681KB4BP01F
        DE1B3KX331KN4AP01F
        DE1B3KX331KA4BP01F

        DE1E3KX472MA4BP01F
        DE1E3KX102MN4AP01F
        DE1E3KX152MN4AP01F
        DE1E3KX332MB4BP01F

        DE1B3KX332MN4AP01F
        DE1B3KX471KB4BP01F
        DE1B3KX332MA4BP01F
        DE1B3KX221KA4BP01F

        DE1B3KX101KB4BP01F
        DE1B3KX471KN4AP01F
        DE1B3KX221KB4BP01F
        DE1E3KX472MB4BP01F

        DE1B3KX221KN4AP01F
        DE1B3KX151KA4BP01F
        DE1B3KX151KB4BP01F
        DE1E3KX472MN4AP01F

        DE1B3KX102MA4BP01F
        DE1B3KX102MJ4BP01F
        DE1B3KX471MJ4BP01F
        DE1B3KX221KJ4BP01F
        DE1E3KX332MJ4BP01F
        DE1E3KX472MJ4BP01F

        DE1B3KX331KJ4BP01F
        DE1B3KX221KJ4BP01F
        DE1E3KX332MJ4BP01F
        DE1E3KX222MJ4BP01F
        DE1E3KX471KJ4BP01F
```