

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

THIS SPEC IS OBSOLETE

Spec No: 001-74847

Spec Title: CY7C1481BV25, 72-MBIT (2 M X 36) FLOW-THROUGH SRAM

Sunset Owner: Pritesh Mandaliya (PRIT)

Replaced by: None

CY7C1481BV25

72-Mbit (2 M × 36) Flow-Through SRAM

Features

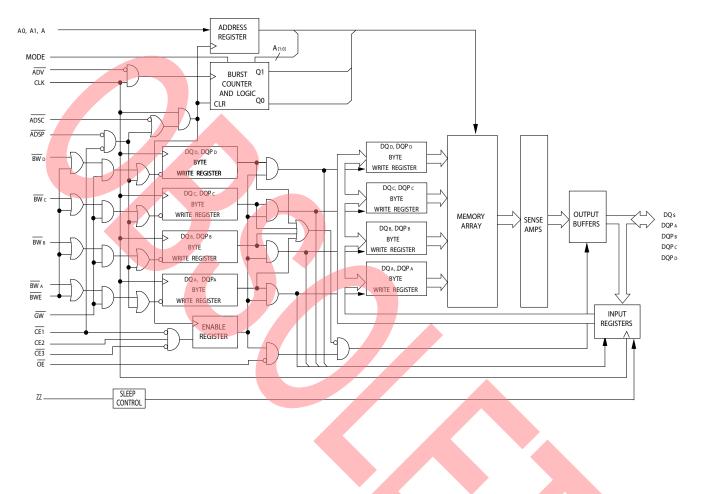
- Supports 133 MHz bus operations
- 2 M × 36 common I/O
- 2.5 V core power supply (V_{DD})
- 2.5 V I/O supply (V_{DDQ})
- Fast clock to output time □ 6.5 ns (133 MHz version)
- Provide high performance 2-1-1-1 access rate
- User selectable burst counter supporting Intel[®] Pentium[®] interleaved or linear burst sequences
- Separate processor and controller address strobes
- Synchronous self timed write
- Asynchronous output enable
- CY7C1481BV25 available in JEDEC standard Pb-free 100-pin TQFP package
- IEEE 1149.1 JTAG compatible boundary scan
- ZZ sleep mode option

Functional Description

The CY7C1481BV25 is a 2.5 V, 2 M × 36 synchronous flow through SRAM designed to interface with high speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 6.5 ns (133 MHz version). A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access. All synchronous inputs are gated by registers controlled by a positive edge triggered Clock Input (CLK). The synchronous inputs include <u>all</u> addresses, all data inputs, address pipelining Chip Enable (CE₁), depth expansion Chip Enables (CE₂ and CE₃), Burst Control inputs (ADSC, ADSP, and ADV), Write Enables (BW_x and BWE), and Global Write (GW). Asynchronous inputs include the Output Enable (OE) and the ZZ pin.

The CY7C1481BV25 enables either interleaved or linear burst sequences, selected by the MODE input pin. A HIGH selects an interleaved burst sequence, while a LOW selects a linear burst sequence. Burst_accesses are initiated with the Processor Address Strobe (ADSP) or the cache Controller Address Strobe (ADSC) inputs. Address_advancement is controlled by the Address Advancement (ADV) input.

Addresses and chip enables are registered at rising edge of clock when either Add<u>ress S</u>trobe Processor (ADSP) or Address Strobe Controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the Advance pin (ADV).


For a complete list of related documentation, click here.

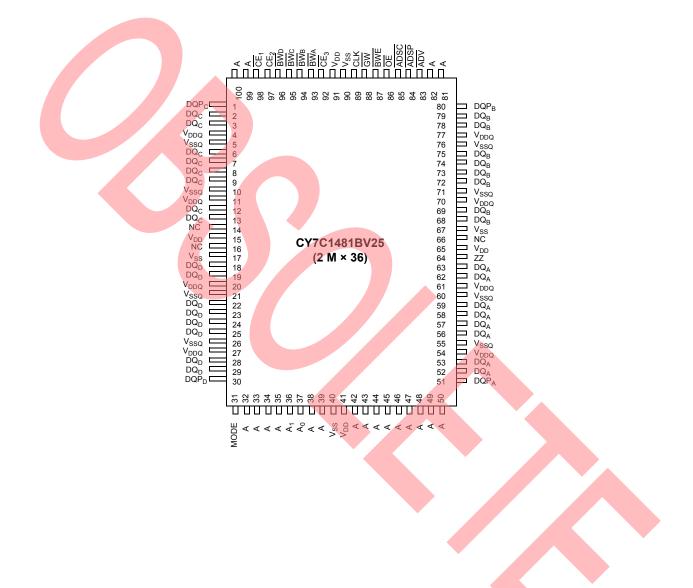
Selection Guide

		13	3 MHz	Unit
			6.5	ns
			305	mA
			120	mA
				133 MHz 6.5 305 120

Logic Block Diagram – CY7C1481BV25

CY7C1481BV25

Contents


Pin Configurations	4
Pin Definitions	5
Functional Overview	6
Single Read Accesses	6
Single Write Accesses Initiated by ADSP	6
Single Write Accesses Initiated by ADSC	6
Burst Sequences	
Sleep Mode	6
Interleaved Burst Address Table	
Linear Burst Address Table	
ZZ Mode Electrical Characteristics	7
Truth Table	8
Truth Table for Read/Write	
Maximum Ratings	10
Operating Range	10
Electrical Characteristics	

Capacitance	.11
Thermal Resistance	.11
AC Test Loads and Waveforms	. 11
Switching Characteristics	. 12
Timing Diagrams	. 13
Ordering Information	
Ordering Code Definitions	. 17
Package Diagrams	. 18
Acronyms	
Document Conventions	. 19
Units of Measure	. 19
Document History Page	. 20
Sales, Solutions, and Legal Information	.21
Worldwide Sales and Design Support	
Products	. 21
PSoC Solutions	.21
Ordering Code Definitions	. 17 . 18 . 19 . 19 . 19 . 20 . 21 . 21

Pin Configurations

Figure 1. 100-pin TQFP (14 × 20 × 1.4 mm) pinout

Pin Definitions

Synchronous If ADSP or ADSC is active LOW, and CE ₁ , CE ₂ , and CE ₃ are sampled active. A ₁₁₀ feed the 2-bit counte BWA, BWA, WC, BWA Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to the SRAN BWC, BWA GW Input- Byte Mrite Enable Input, Active LOW. When asserted LOW on the rising edge of CLK, a global writ synchronous is conducted (ALL bytes are writen, regardless of the values on BW ₂ and BWE). CLK Input- Clock Chip Enable Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous is a conducted (ALL bytes are writen, regardless of the values on BW ₂ and BWE). CE1 Input- Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous and CE ₃ to select or deselect the device. CE ₃ is sampled only when a new external address is loaded CE2 Input- Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous and CE ₃ to select or deselect the device. CE ₃ is sampled only when a new external address is loaded OE Input- Chip Enable 3 Input. Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous the I/O pins behave as outputs. When deaserted HIGH, I/O pins are tristated, and act as input dat post. CE is masked during the first colock of a red cycle when emerging from a deselected state. ADV Input- Synchronous Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automatical post. CE is masked duruing the finstrock or and active set meapring from a deselected st	Pin Name	I/O	Description
BWC Synchronous Sampled on the rising edge of CLK. GW Input. Global Write Enable Input, Active LOW. When asserted LOW on the rising edge of CLK, and BWE). CLK / Input. Clock Input. Captures all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW during a burst operation. CE1 Input. Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous and CE ₁ to select or deselect the device. ADSP is ignored if CE ₁ is HIGH. CE ₁ is sampled only when a new external address is loaded. CE2 Input. Chip Enable 3 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous and CE ₂ to select or deselect the device. CE ₂ is sampled only when a new external address is loaded CE3 Input. Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous and CE ₂ to select or deselect In device. CE ₂ is sampled only when a new external address is loaded DE Apput. Advance Input Signal, Sampled on the Rising Edge of CLK. Used in conjunction with CE synchronous increments the address in a burst cycle. ADV Input. Advance Input Signal, Sampled on the Rising Edge of CLK. Used in a conjunction with CE synchronous increments the address in a burst cycle. ADV Input. Advance Input Wignal, Sampled on the Rising Edge of CLK, Active LOW. When asserted pinch when asserted Wign. Adv	A ₀ , A ₁ , A	Input- Synchronous	Address Inputs Used to Select One of the Address Locations. Sampled at the rising edge of the CLK if ADSP or ADSC is active LOW, and CE_1 , CE_2 , and CE_3 are sampled active. $A_{[1:0]}$ feed the 2-bit counter.
Synchronous is conducted (ALL bytes are written, regardless of the values on BW _x and BWE). CLK Input- Clock Clock Input Captures all synchronous inputs to the device. Also used to increment the burst counter Wen ADV is asserted LOW during a burst operation. CE1 Input- Synchronous Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous CE2 Input- Synchronous Chip Enable 2 input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous CE3 Input- Synchronous Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous OE Input- Synchronous Chip Enable 3 Input, Active LOW. Sampled only when a new external address is loaded OE Input- Synchronous Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous OE Input- Synchronous Chip Enable 3 Input, Active LOW. Controls the direction of the I/O pins. When LOW Asynchronous ADV Input- Synchronous Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted Increments the address in a burst cycle. ADV Input- Synchronous Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted Increments the address presented ton the device are captured in the address registers. Afric, are	<u>BW</u> _A , <u>BW</u> _B , BW _C , BW _D		Byte Write Select Inputs, Active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK.
Clock when ADV is asserted LOW during a burst operation. CE1 Input- Synchronous Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE synchronous CE2 Input- Synchronous Chip Enable 2 Input, Active HGH. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous CE3 Synchronous Chip Enable 2 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous CE4 Input- Synchronous Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous OE Input- Synchronous Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE and CE2 to select or deselect of easeled the device. CE3 is sampled only when a new external address is loaded of the I/O pins behave as outputs. When deasested HIGH, I/O pins are tri-stated, and act as input data protocous ADV Ninput- Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automaticall synchronous ADV Input- Synchronous Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted Synchronous ADV Input- Synchronous Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserted Synchronous ADV Input- Synchronous Address Strobe from Controller, Sampled on the Rising Edge of CLK. Active LOW. When ass	GW		Global Write Enable Input, Active LOW . When asserted LOW o <u>n th</u> e risin <u>g edg</u> e of CLK, a global write is conducted (ALL bytes are written, regardless of the values on BW _X and BWE).
Synchronous and CE ₂ to select or deselect the device. ADSP is ignored if CE ₁ is HIGH. CE ₁ is sampled only when new external address is loaded. CE ₂ Input- Synchronous Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous and CE ₂ to select or deselect the device. CE ₂ is sampled only when a new external address is loaded OE Input- Synchronous Output Enable, Asynchronous Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous and CE ₂ to select or deselect the device. CE ₃ is sampled only when a new external address is loaded OE Input- Asynchronous Output Enable, Asynchronous Input, Active LOW. Controls the dericection of the I/O pins. When LOW Asynchronous ADV Input- Synchronous Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automaticall pins. OE is masked Juning the first clock of a read cycle when emerging from a deselected state. ADV Input- Synchronous Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A _{11:01} are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP i ignored when CE ₁ is deasserted HIGH. US and asserted only ADSP is recognized. ZZ Input- Synchronous Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. Active LOW or left floating. Z ignored when CE ₁ is deasserted LOW, area so topots. ZZ<	CLK		Clock Input. Captures all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW during a burst operation.
Synchronous and CE ₃ to select or deselect the device. CE ₂ is sampled only when a new external address is loaded CE ₃ Input- Synchronous Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE Synchronous and CE ₂ to select or deselect the device. CE ₃ is sampled only when a new external address is loaded OE Input- Asynchronous input, Active LOW. Controls the direction of the I/O pins. When LOW Asynchronous ins. OE is masked during the first clock of a read cycle when emerging from a deselected state. ADV Input- Synchronous Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automaticall increments the address in a burst cycle. ADSP Input- Synchronous Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP i ignored when CE ₁ is deasserted HIGH. ADSC Input- Synchronous Addresses Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserte LOW, addresses presented to the device are captured in the address registers. A _{11:01} are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP i ignored when CE ₁ is deasserted HIGH. ZZ Input- Synchronous Byte Write Enable Input, Active HIGH. When asserted HIGH, places the device in a non time-critical "sleep bynchronous condition with data integrity preserved. For normal operation, this pin must be LOW or left floating. Z pin has an internal pull down. <t< td=""><td>CE1</td><td></td><td>Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_2 and CE_3 to select or deselect the device. ADSP is ignored if CE_1 is HIGH. CE_1 is sampled only when a new external address is loaded.</td></t<>	CE1		Chip Enable 1 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_2 and CE_3 to select or deselect the device. ADSP is ignored if CE_1 is HIGH. CE_1 is sampled only when a new external address is loaded.
Synchronous and CE ₂ to select or deselect the device. CE ₃ is sampled only when a new external address is loaded OE Input- Asynchronous Output Enable, Asynchronous Input, Active LOW. Controls the direction of the I/O pins. When LOW Asynchronous ADV Input- Synchronous Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automaticall synchronous increments the address in a burst cycle. ADSP Input- Synchronous Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP i ignored when CE ₁ is deasserted HIGH. ADSC Input- Synchronous Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserted synchronous ADSC Input- Synchronous Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserted into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. BWE Input- Synchronous Address Strobe from Controller, Sampled on the rising edge of CLK. This signal must be asserted synchronous Z2 Input- Synchronous Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserted synchronous Z3 Input- Synchronous Bidirectional Data VO Lines. As inputs, they feed into an on-chip data register that is triggered by th addresses presented LOW, he pins behave as outputs. When HIG	CE ₂		Chip Enable 2 Input, Active HIGH. Sampled on the rising edge of CLK. Used in conjunction with \overline{CE}_1 and \overline{CE}_3 to select or deselect the device. CE_2 is sampled only when a new external address is loaded.
Asynchronous the I/Q pins behave as outputs: When deasserted HIGH, I/Q pins are tri-stated, and act as input dat pins. OE is masked during the first clock of a read cycle when emerging from a deselected state. ADV Input- Synchronous Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automaticall increments the address in a burst cycle. ADSP Input- Synchronous Advance Input Signal, Sampled on the Rising Edge of CLK, Active LOW, When asserted LOW, address presented to the device are captured in the address registers. Afr:0] are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP i genored when CE, is deasserted HIGH. ADSC Input- Synchronous Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserted into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. BWE Synchronous LOW, addresses presented to the device are captured in the address registers. Afr:0] are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ZZ Input- Synchronous Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserte to out at a byte write. ZZ Input- Synchronous Byte Write Enable Input, Active LOW. Sampled on an on-chip data register that is triggered by th address presented to low. DQs I/O- Synchronous Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by th addresse presented during the	CE ₃		Chip Enable 3 Input, Active LOW. Sampled on the rising edge of CLK. Used in conjunction with \overline{CE}_1 and \overline{CE}_2 to select or deselect the device. \overline{CE}_3 is sampled only when a new external address is loaded.
Synchronous Increments the address in a burst cycle. ADSP Input- Synchronous Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserte LOW, addresses presented to the device are captured in the address registers. A _{11:0} are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP i ignored when CE ₁ is deasserted HIGH. ADSC Input- Synchronous Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserte LOW, addresses presented to the device are captured in the address registers. A _{11:0} are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. BWE Input- Synchronous Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserte LOW addresses presented to the device are captured in the address registers. A _{11:0} are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. BWE Input- Synchronous Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserte LOW addresses presented down. ZZ Input- Synchronous Z2 "Sleep" Input, Active HIGH. When asserted HIGH, places the device in a non time-critical "sleep or in has an internal pull down. DQs I/O- Synchronous Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by th rising edge of CLK. As outputs are automatically tri-stated during the data portion of a write sequence the firist clock when emerging fr	OE		
Synchronous LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP i ignored when CE ₁ is deasserted HIGH. ADSC Input- Synchronous Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserte LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. BWE Input- Synchronous Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserte LOW to conduct a byte write. ZZ Input- Synchronous ZZ "Sleep" Input, Active HIGH. When asserted HIGH, places the device in a non time-critical "sleep" in has an internal pull down. DQ _s I/O- Synchronous Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by th rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by th rising edge of CLK. As outputs are automatically tri-stated during the data portion of a write sequence in a tri-state condition. The outputs are automatically tri-stated during the data portion of a write sequence the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of OE. DQP _x I/O- Synchronous Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to V _{Dp} or left floating sequences, DQP _x is controlled by BW _x correspondingly. MODE	ADV		Advance Input Signal, Sampled on the Rising Edge of CLK. When asserted, it automatically increments the address in a burst cycle.
Synchronous LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loade into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. BWE Input- Synchronous Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserted. DW to conduct a byte write. ZZ Input- Asynchronous ZZ "Sleep" Input, Active HIGH. When asserted HIGH, places the device in a non time-critical "sleep in has an internal pull down. DQs I/O- Synchronous Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by th rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by th addresses presented during the previous clock rise of the read cycle. The direction of a write sequence in a tri-state condition. The outputs are automatically tri-stated during the data poly are place in a tri-state condition. The outputs are automatically tri-stated during the data poly are place in a tri-state condition. The outputs are automatically tri-stated during the data poly. Page Place in a tri-state condition. The outputs are automatically tri-stated during the data poly. Page Place in a tri-state condition. The outputs are automatically tri-stated during the data poly. Page Place in a tri-state condition. The outputs are automatically tri-stated during the data poly. Page Place in a tri-state condition. The outputs are automatically tri-stated during the data poly. Page Place in a tri-state condition. The outputs are automatically tri-stated during the data poly. Dug, Synchronous Bidirectional Data Parity I/O Lines. Synchronous Supply or left floating selects interleaved burst sequence. This is a st	ADSP	Input- Synchronous	Address Strobe from Processor, Sampled on the Rising Edge of CLK, Active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE ₁ is deasserted HIGH.
Synchronous LÓW to conduct a byte write. ZZ Input- Asynchronous ZZ "Sleep" Input, Active HIGH. When asserted HIGH, places the device in a non time-critical "sleep condition with data integrity preserved. For normal operation, this pin must be LOW or left floating. Z pin has an internal pull down. DQs I/O- Synchronous Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by th rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by th addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP _x are place in a tri-state condition. The outputs are automatically tri-stated during the data portion of a write sequence the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of OE. DQP _X I/O- Synchronous Bidirectional Data Parity I/O Lines. Sequences, DQP _x is controlled by BW _x correspondingly. MODE Input-Static Selects Burst Order. When tied to GND, selects linear burst sequence. When tied to V _{DD} or left floating selects interleaved burst sequence. This is a strap pin and must remain static during device operation Mode Pin has an internal pull up. V _{DD} Power Supply Power Supply for the I/O Circuitry.	ADSC		Address Strobe from Controller, Sampled on the Rising Edge of CLK, Active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. A _[1:0] are also loaded into the burst counter. When ADSP and ADSC are both asserted, only ADSP is recognized.
Asynchronous condition with data integrity preserved. For normal operation, this pin must be LOW or left floating. Żi pin has an internal pull down. DQs I/O- Synchronous Bidirectional Data I/O Lines. As inputs, they feed into an on-chip data register that is triggered by th rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by th addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlle by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP _x are place in a tri-state condition. The outputs are automatically tri-stated during the data portion of a write sequence the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of OE. DQP _x I/O- Synchronous Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQs. During write sequences, DQP _x is controlled by BW _x correspondingly. MODE Input-Static Selects Burst Order. When tied to GND, selects linear burst sequence. When tied to V _{DD} or left floating device operation Mode Pin has an internal pull up. V _{DD} Power Supply Inputs to the Core of the Device. Power Supply for the I/O Circuitry.	BWE		Byte Write Enable Input, Active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write.
Synchronousrising edge of CLK. As outputs, they deliver the data contained in the memory location specified by th addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlle by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPx are place in a tri-state condition. The outputs are automatically tri-stated during the data portion of a write sequence the first clock when emerging from a deselected state, and when the device is deselected, regardless of the state of OE.DQPxI/O- SynchronousBidirectional Data Parity I/O Lines. Sequences, DQPx is controlled by BWx correspondingly.MODEInput-StaticSelects Burst Order. When tied to GND, selects linear burst sequence. When tied to VDD or left floating selects interleaved burst sequence. This is a strap pin and must remain static during device operation Mode Pin has an internal pull up.V_DDPower SupplyPower Supply for the I/O Circuitry.	ZZ		
Synchronous sequences, DQPx is controlled by BWx correspondingly. MODE Input-Static Selects Burst Order. When tied to GND, selects linear burst sequence. When tied to VDD or left floating selects interleaved burst sequence. This is a strap pin and must remain static during device operation VDD Power Supply Power Supply Inputs to the Core of the Device. VDD I/O Power Supply for the I/O Circuitry.	DQ _s	Synchronous	add <u>resses</u> pre <u>sen</u> ted during the previous clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQ _s and DQP _X are placed in a tri-state condition. The outputs are automatically tri-stated during the data portion of a write sequence, the first cloc <u>k w</u> hen emerging from a deselected state, and when the device is deselected, regardless of
Selects interleaved burst sequence. This is a strap pin and must remain static during device operation Mode Pin has an internal pull up. VDD Power Supply Power Supply Power Supply Inputs to the Core of the Device. VDD I/O Power Supply Power Supply for the I/O Circuitry.	DQP _X		Bidirectional Data Parity I/O Lines. Functionally, these signals are identical to DQ_s . During write sequences, DQP_x is controlled by BW_x correspondingly.
V _{DDQ} I/O Power Supply for the I/O Circuitry. Supply	MODE	-	Selects Burst Order . When tied to GND, selects linear burst sequence. When tied to V _{DD} or left floating, selects interleaved burst sequence. This is a strap pin and must remain static during device operation. Mode Pin has an internal pull up.
Supply	V _{DD}	Power Supply	Power Supply Inputs to the Core of the Device.
V _{SS} Ground Ground for the Core of the Device.	V _{DDQ}		Power Supply for the I/O Circuitry.
	V _{SS}	Ground	Ground for the Core of the Device.

Pin Definitions (continued)

Pin Name	I/O	Description
V _{SSQ}	I/O Ground	Ground for the I/O Circuitry.
NC		No Connects . Not internally connected to the die. 144M, 288M, 576M, and 1G are address expansion pins are not internally connected to the die.

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. Maximum access delay from the clock rise (t_{CDV}) is 6.5 ns (133 MHz device).

The CY7C1481BV25 supports secondary cache in systems using either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and i486[™] processors. The linear burst sequence is suited for processors that use a linear burst sequence. The burst order is user selectable and is determined by sampling the MODE input. Accesses are initiated with either the Processor Address Strobe (ADSP) or the Controller Address Strobe (ADSC). Address <u>advancement</u> through the burst sequence is controlled by the ADV input. A 2-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access.

Byte write operations are qualified with the Byte Write Enable (BWE) and Byte Write Select (BW_X) inputs. A Global Write Enable (GW) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self timed write circuitry.

Three synchronous Chip Selects (\overline{CE}_1 , CE_2 , \overline{CE}_3) and an asynchronous Output Enable (\overline{OE}) provide easy bank selection and output tri-state control. ADSP is ignored if \overline{CE}_1 is HIGH.

Single Read Accesses

A single read access is initiated when the <u>following</u> conditions are satisfied at <u>clock</u> rise: (1) <u>CE</u>₁, CE₂, and CE₃ are all asserted active, and (2) <u>ADSP</u> or ADSC is asserted LOW (if the access is initiated by <u>ADSC</u>, the write inputs must be deasserted during this first cycle). The address presented to the address inputs is latched into the address register and the burst counter/control logic. It is then presented to the memory core. If the <u>OE</u> input is asserted LOW, the requested data is ava<u>ilable</u> at the data <u>outputs</u> a maximum of t_{CDV} after clock rise. ADSP is ignored if <u>CE₁ is HIGH</u>.

Single Write Accesses Initiated by ADSP

This access is initiated when the following conditions are satisfied at clock rise: (1) \overline{CE}_1 , \overline{CE}_2 , \overline{CE}_3 are all asserted active, and (2) ADSP is asserted LOW. The addresses presented are loaded into the address register and the burst inputs (GW, BWE, and \overline{BW}_X) are ignored during this first clock cycle. If the write inputs are asserted active on the next clock rise, the appropriate

data is latched and written into the device. The device allows byte writes. All I/Os are tri-stated during a byte write. Because this is a common I/O device, the asynchronous \overline{OE} input signal must be deasserted and the I/Os must be tri-stated prior to the presentation of data to DQs. As a safety precaution, the data lines are tri-stated after a write cycle is detected, regardless of the state of \overline{OE} .

Single Write Accesses Initiated by ADSC

This write access is initiated when the following conditions are satisfied at <u>clock</u> rise: (1) \overline{CE}_1 , \overline{CE}_2 , and $\overline{\underline{CE}_3}$ are all asserted active, (2) ADSC is asserted LOW, (3) <u>ADSP</u> is deasserted HIGH, and (4) the write input signals (GW, BWE, and BW_X) indicate a write access. ADSC is ignored if ADSP is active LOW.

The addresses presented are loaded into the address register and the burst counter/control logic and delivered to the memory core. The information presented to DQ_S is written into the specified address location. The device allows byte writes. All I/Os are tri-stated when a write is detected, even a byte write. Because this is a common I/O device, the asynchronous OE input signal must be deasserted and the I/Os must be tri-stated before data is presented to DQs. As a safety precaution, the data lines are tri-stated after a write cycle is detected, regardless of the state of OE.

Burst Sequences

The CY7C1481BV25 provides an on-chip 2-bit wraparound burst counter inside the SRAM. The burst counter is fed by $A_{[1:0]}$, and can follow either a linear or interleaved burst order. The burst order is determined by the state of the MODE input. A LOW on MODE selects a linear burst sequence. A HIGH on MODE selects an interleaved burst order. Leaving MODE unconnected causes the device to default to an interleaved burst sequence.

Sleep Mode

The ZZ input pin is asynchronous. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The <u>device must be deselected before</u> entering the "sleep" mode. CE₁, CE₂, CE₃, ADSP, and ADSC must remain inactive for the duration of t_{ZZREC} after the ZZ input returns LOW.

Interleaved Burst Address Table

(MODE = Floating or V_{DD})

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

Linear Burst Address Table

(MODE = GND)

First Address A1:A0	Second Address A1:A0	Third Address A1:A0	Fourth Address A1:A0
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
I _{DDZZ}	Sleep mode standby current	$ZZ \ge V_{DD} - 0.2 V$	-	120	mA
t _{ZZS}	Device operation to ZZ	$ZZ \ge V_{DD} - 0.2 V$	-	2t _{CYC}	ns
t _{ZZREC}	ZZ recovery time	ZZ <u>< 0.2</u> V	2t _{CYC}	-	ns
t _{ZZI}	ZZ active to sleep current	This parameter is sampled	-	2t _{CYC}	ns
t _{RZZI}	ZZ inactive to exit sleep current	This parameter is sampled	0	-	ns

Truth Table

The truth table for CY7C1481BV25 follows. ^[1, 2, 3, 4, 5]

Cycle Description	Address Used	CE ₁	CE ₂	CE ₃	ZZ	ADSP	ADSC	ADV	WRITE	OE	CLK	DQ
Deselected Cycle, Power Down	None	Н	Х	Х	L	Х	L	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power Down	None	L	L	Х	L	L	Х	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power Down	None	L	Х	Н	L	L	Х	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power Down	None	L	L	Х	L	Н	L	Х	Х	Х	L–H	Tri-State
Deselected Cycle, Power Down	None	Х	Х	Х	L	Н	L	Х	Х	Х	L–H	Tri-State
Sleep Mode, Power Down	None	Х	Х	Х	Н	Х	Х	Х	Х	Х	Х	Tri-State
Read Cy <mark>cle, Begin Burst</mark>	External	L	Н	L	L	L	Х	Х	Х	L	L–H	Q
Read Cycle, Begin Burst	External	L	Н	L	L	L	Х	Х	Х	Н	L–H	Tri-State
Write Cycle, Begin Burst	External	L	Н	L	L	Н	L	Х	L	Х	L–H	D
Read Cycle, Begin Burst	External	L	Н	L	L	Н	L	Х	Н	L	L–H	Q
Read Cycle, Begin Burst	External	Ļ	Н	L	L	Н	L	Х	Н	Н	L–H	Tri-State
Read Cycle, Continue Burst	Next	X	Х	Х	L	Н	Н	L	Н	L	L–H	Q
Read Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	Н	Н	L–H	Tri-State
Read Cycle, Continue Burst	Next	Н	Х	X	L	Х	Н	L	Н	L	L–H	Q
Read Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	Н	Н	L–H	Tri-State
Write Cycle, Continue Burst	Next	Х	Х	Х	L	Н	Н	L	L	Х	L–H	D
Write Cycle, Continue Burst	Next	Н	Х	Х	L	Х	Н	L	L	Х	L–H	D
Read Cycle, Suspend Burst	Current	Х	Х	X	L	Н	Н	Н	Н	L	L–H	Q
Read Cycle, Suspend Burst	Current	X	Х	Х	L	Н	Н	Н	Н	Н	L–H	Tri-State
Read Cycle, Suspend Burst	Current	Н	Х	X	L	Х	Н	H	Н	L	L–H	Q
Read Cycle, Suspend Burst	Current	Н	Х	Х	L	Х	Н	Н	Н	Н	L–H	Tri-State
Write Cycle, Suspend Burst	Current	X	X	Х	L	Н	Н	Н	L	Х	L–H	D
Write Cycle, Suspend Burst	Current	Н	Х	X	Ļ	X	Н	Н	L	Х	L–H	D

Notes

- <u>X = Do</u> Not Care, H = Logic HIGH, L = Logic LOW.
 <u>WRITE</u> = L when any one or more byte write enable signals and <u>BWE</u> = L or <u>GW</u> = L. <u>WRITE</u> = H when all byte write enable signals, <u>BWE</u>, <u>GW</u> = H.
 The DQ pins are controlled by the current cycle and the OE signal. <u>OE</u> is asynchronous and is <u>not</u> sampled with the clock.
 <u>The SRAM</u> always initiates a <u>read cycle</u> when <u>ADSP</u> is asserted, regardless of the state of <u>GW</u>, <u>BWE</u>, or <u>BW_X</u>. Writes may occur only on subsequent clocks after the <u>ADSP</u> or with the assertion of <u>ADSC</u>. As a result, <u>OE</u> must be driven HIGH prior to the start of the write cycle to enable the outputs to tri-state. <u>OE</u> is a do not care for the remainder of the write cycle.
 <u>OE</u> is asynchronous and is not sampled with the clock rise. It is masked inter<u>nally</u> during write cycles. During a read cycle all data bits are tri-state when <u>OE</u> is inactive or when the device is deselected, and all data bits behave as outputs when <u>OE</u> is active (LOW).

Truth Table for Read/Write

The read-write truth table for CY7C1481BV25 follows. [6, 7]

Function (CY7C1481BV25)	GW	BWE	BWD	BW _C	BWB	BWA
Read	Н	Н	Х	Х	Х	Х
Read	Н	L	Н	Н	Н	Н
Write Byte A (DQ _A , DQP _A)	Н	L	Н	Н	Н	L
Write Byte B(DQ _B , DQP _B)	Н	L	Н	Н	L	Н
Write Bytes A, B (DQ _A , DQ _B , DQP _A , DQP _B)	Н	L	Н	Н	L	L
Write Byt <mark>e C</mark> (DQ _C , DQP _C)	Н	L	Н	L	Н	Н
Write Bytes C, A (DQ _C , DQ _A , DQP _C , DQP _A)	Н	L	Н	L	Н	L
Write Bytes C, B (DQ _C , DQ _B , DQP _C , DQP _B)	Н	L	Н	L	L	Н
Write Bytes C, B, A (DQ_C , DQ_B , DQ_A , DQP_C , DQP_B , DQP_A)	Н	L	Н	L	L	L
Write Byte D (DQ _D , DQP _D)	Н	L	L	Н	Н	Н
Write Bytes D, A (DQ _D , DQ _A , DQP _D , DQP _A)	Н	L	L	Н	Н	L
Write Bytes D, B (DQ _D , DQ _{A,} DQP _D , DQP _A)	Н	L	L	Н	L	Н
Write Bytes D, B, A (DQ _D , DQ _B , DQ _A , DQP _D , DQP _B , DQP _A)	Н	L	L	Н	L	L
Write Bytes D, B (DQ _D , DQ _B , DQP _D , DQP _B)	Н	L	L	L	Н	Н
Write Bytes D, B, A (DQ _D , DQ _C , DQ _A , DQP _D , DQP _C , DQP _A)	Н	L	L	L	Н	L
Write Bytes D, C, A (DQ _D , DQ _B , DQ _{A,} DQP _D , DQP _B , DQP _A)	Н	L	L	L	L	Н
Write All Bytes	Н	L	L	L	L	L
Write All Bytes	L	Х	X	X	Х	Х

6. X = Do Not Care, H = Logic HIGH, L = Logic LOW.
7. Table only includes a partial listing of the byte write combinations. Any combination of BW_X is valid. An appropriate write is performed based on which byte write is

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature –65 °C to +150 °C	
Ambient Temperature with Power Applied	
Supply Voltage on V _{DD} Relative to GND0.3 V to +3.6 V	
Supply Voltage on V _{DDQ} Relative to GND –0.3 V to +V _{DD}	
DC Voltage Applied to Outputs in Tri-State0.5 V to V _{DDQ} + 0.5 V	

DC Input Voltage	–0.5 V to V _{DD} + 0.5 V
Current into Outputs (LOW)	
Static Discharge Voltage (MIL-STD-883, Method 3015)	>2001 V
Latch Up Current	>200 mA

Operating Range

Range	Ambient Temperature	V _{DD}	V _{DDQ}	
Commercial	0 °C to +70 °C		2.5 V – 5% to	
Industrial	–40 °C to +85 °C	+ 5%	V _{DD}	

Electrical Characteristics

Over the Operating Range

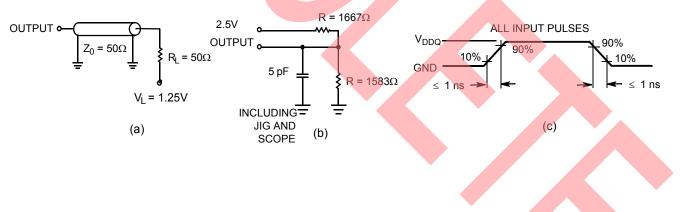
Parameter ^[8, 9]	Description		Test Conditions		Min	Max	Unit
V _{DD}	Power Supply Voltage				2.375	2.625	V
V _{DDQ}	I/O Supply Voltage	For 2.5 V	I/O		2.375	V _{DD}	V
V _{OH}	Output HIGH Voltage	For 2.5 V	1/O, I _{OH} = -1.0 mA		2.0	_	V
V _{OL}	Output LOW Voltage	For 2.5 V	1/O, I _{OL} = 1.0 mA		-	0.4	V
V _{IH}	Input HIGH Voltage ^[8]	For 2.5 V	1/O		1.7	V _{DD} + 0.3 V	V
V _{IL}	Input LOW Voltage [8]	For 2.5 V	Т/О		-0.3	0.7	V
I _X	Input Leakage Current except ZZ and MODE	$GND \leq V_{I}$	I ≤ V _{DDQ}		-5	5	μΑ
	Input Current of MODE	Input = V	SS		-30	-	μΑ
		Input = V	DD		-	5	μΑ
	Input Current of ZZ	Input = V	SS		-5	_	μA
		Input = V	DD		-	30	μA
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{DDQ}$, Output Disabled		-5	5	μΑ	
I _{DD} ^[10]	V _{DD} Operating Supply Current	V _{DD} = Ma f = f _{MAX} =	ax, I _{OUT} = 0 mA, = 1/t _{CYC}	7.5 ns cycle, 133 MHz	-	305	mA
I _{SB1}	Automatic CE Power Down Current – TTL Inputs	$\begin{array}{l} \text{Max. } V_{\text{DD}} \\ V_{\text{IN}} \geq V_{\text{IH}} \\ \text{inputs swit} \end{array}$), Device Deselected, or $V_{IN} \leq V_{IL}$, f = f _{MAX} , tching	7.5 ns cycle, 133 MHz	-	170	mA
I _{SB2}	Automatic CE Power Down Current – CMOS Inputs), Device Deselected, -0.3 V or $V_{IN} \leq 0.3$ V, uts static	7.5 ns cycle, 133 MHz		120	mA
I _{SB3}	Automatic CE Power Down Current – CMOS Inputs	V _{IN} ≥V _{DD}	, Device Deselected, $_{\rm Q}$ – 0.3 V or V $_{\rm IN}$ \leq 0.3 V, inputs switching	7.5 ns cycle, 133 MHz	-	170	mA
I _{SB4}	Automatic CE Power Down Current – TTL Inputs), Device Deselected, -0.3 V or $V_{IN} \leq 0.3$ V, uts static	7.5 ns cycle, 133 MHz		135	mA

Notes

8. Overshoot: $V_{IL(AC)} < V_{DD} + 1.5 V$ (pulse width less than $t_{CYC}/2$). Undershoot: $V_{IL(AC)} > -2 V$ (pulse width less than $t_{CYC}/2$). 9. $T_{Power-up}$: assumes a linear ramp from 0 V to $V_{DD(minimum)}$ within 200 ms. During this time $V_{IH} < V_{DD}$ and $V_{DDQ} \le V_{DD}$. 10. The operation current is calculated with 50% read cycle and 50% write cycle.

Capacitance

Parameter [11]	Description	Test Conditions	100-pin TQFP Package	Unit
C _{ADDRESS}	Address Input Capacitance	T _A = 25 °C, f = 1 MHz, V _{DD} = 2.5 V, V _{DDQ} = 2.5 V	6	pF
C _{DATA}	Data Input Capacitance		5	pF
C _{CTRL}	Control Input Capacitance		8	pF
C _{CLK}	Clock Input Capacitance		6	pF
C _{IO}	Input/Output Capacitance		5	pF


Thermal Resistance

Parameter [11]	Description	Test Conditions	100-pin TQFP Package	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per		°C/W
Θ^{JC}	Thermal resistance (junction to case)	EIA/JESD51.	2.28	°C/W

AC Test Loads and Waveforms

2.5 V IO Test Load

Switching Characteristics

Over the Operating Range

Parameter [12, 13]	Description	133	133 MHz	
Parameter	Description	Min	Max	Unit
t _{POWER}	V _{DD} (typical) to the First Access ^[14]	1	-	ms
Clock				
t _{CYC}	Clock Cycle Time	7.5	-	ns
t _{CH}	Clock HIGH	2.5	-	ns
t _{CL}	Clock LOW	2.5	-	ns
Output Times				
t _{CDV}	Data Output Valid After CLK Rise	-	6.5	ns
t _{DOH}	Data Output Hold After CLK Rise	2.5	-	ns
t _{CLZ}	Clock to Low Z ^[15, 16, 17]	3.0	-	ns
t _{CHZ}	Clock to High Z [15, 16, 17]	-	3.8	ns
t _{OEV}	OE LOW to Output Valid	_	3.0	ns
t _{OELZ}	OE LOW to Output Low Z ^[15, 16, 17]	0	-	ns
t _{OEHZ}	OE HIGH to Output High Z ^[15, 16, 17]	-	3.0	ns
Setup Times				
t _{AS}	Address Setup Before CLK Rise	1.5	-	ns
t _{ADS}	ADSP, ADSC Setup Before CLK Rise	1.5	-	ns
t _{ADVS}	ADV Setup Before CLK Rise	1.5	-	ns
t _{WES}	GW, BWE, BW _X Setup Before CLK Rise	1.5	-	ns
t _{DS}	Data Input Setup Before CLK Rise	1.5	-	ns
t _{CES}	Chip Enable Setup	1.5	-	ns
Hold Times				
t _{AH}	Address Hold After CLK Rise	0.5	-	ns
t _{ADH}	ADSP, ADSC Hold After CLK Rise	0.5	-	ns
t _{WEH}	GW, BWE, BW _X Hold After CLK Rise	0.5	-	ns
t _{ADVH}	ADV Hold After CLK Rise	0.5		ns
t _{DH}	Data Input Hold After CLK Rise	0.5	-	ns
t _{CEH}	Chip Enable Hold After CLK Rise	0.5	-	ns

Notes

- Notes
 12. Timing reference level is 1.25 V when V_{DDQ} = 2.5 V.
 13. Test conditions shown in (a) of Figure 2 on page 11 unless otherwise noted.
 14. This part has an internal voltage regulator; t_{POWER} is the time that the power is supplied above V_{DD(minimum)} initially, before a read or write operation can be initiated.
 15. t_{CHZ}, t_{CLZ}, t_{CLZ}, and t_{OEHZ} are specified with AC test conditions shown in part (b) of Figure 2 on page 11. Transition is measured ±200 mV from steady-state voltage.
 16. At any supplied voltage and temperature, t_{OEHZ} is less than t_{OELZ} and t_{CHZ} is less than t_{CLZ} to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention, but reflect parameters guaranteed over worst case user conditions. The device is designed to achieve High Z before Low Z under the same system conditions.
 17. This parameter is sampled and not 100% tested.

Timing Diagrams

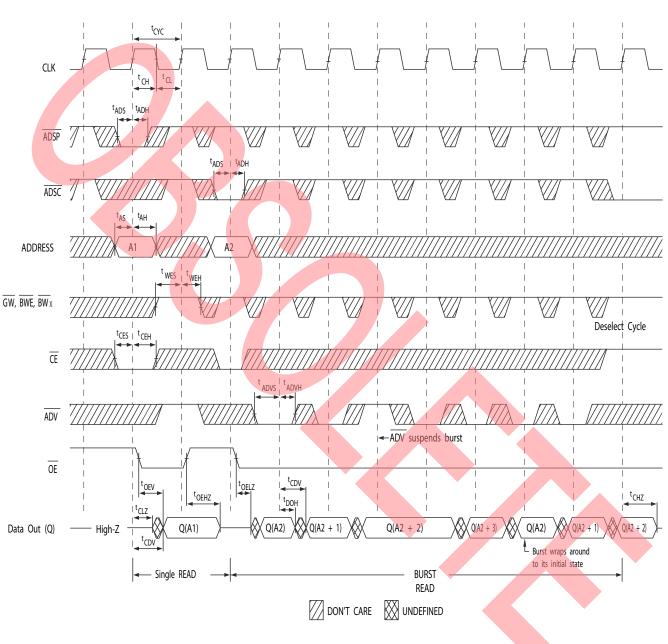


Figure 3. Read Cycle Timing ^[18]

Note

18. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH, CE_2 is LOW, or \overline{CE}_3 is HIGH.

Timing Diagrams (continued)

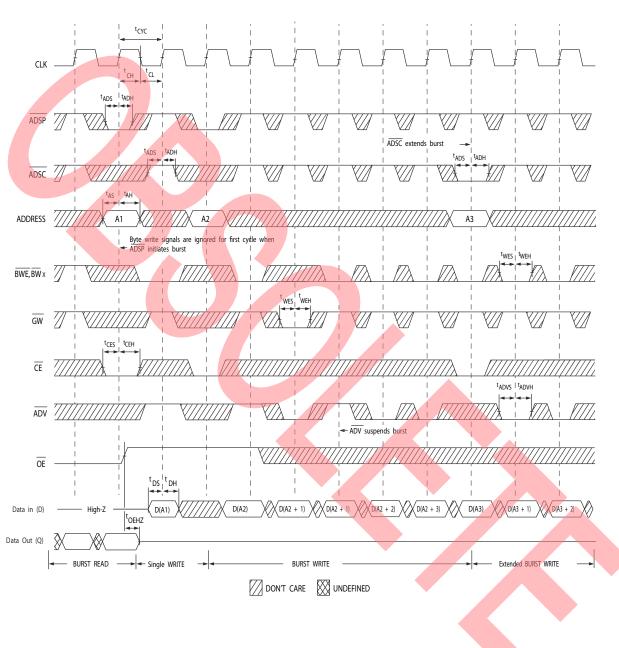


Figure 4. Write Cycle Timing ^[19, 20]

Notes 19. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH, CE_2 is LOW, or \overline{CE}_3 is HIGH. 20. Full width write can be initiated by either GW LOW, or by GW HIGH, BWE LOW and \overline{BW}_X LOW.

Timing Diagrams (continued)

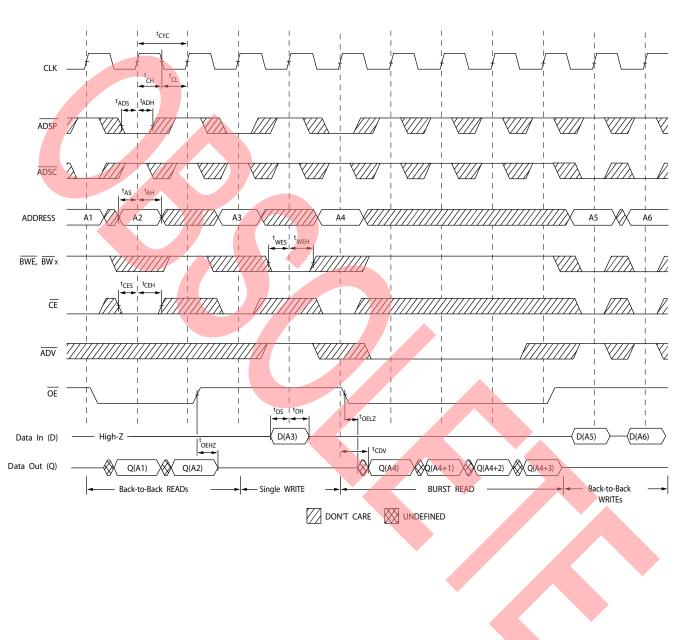
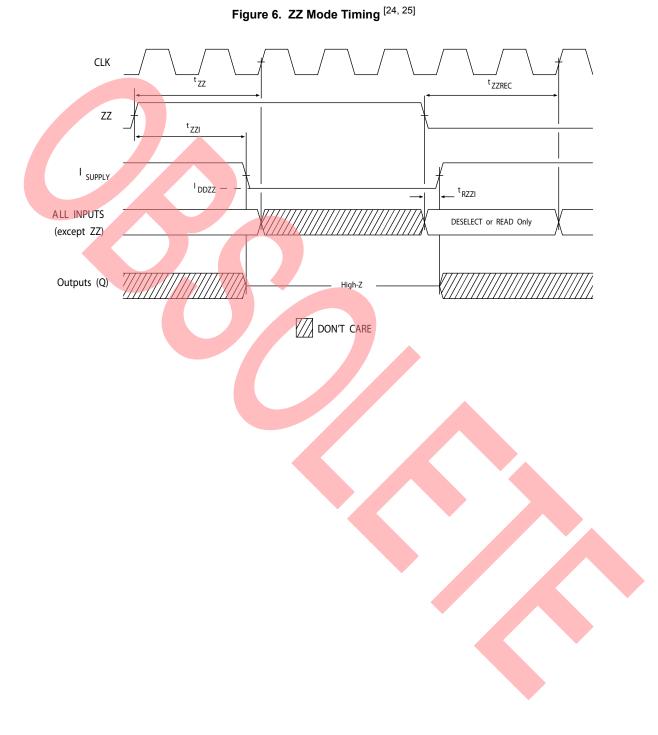



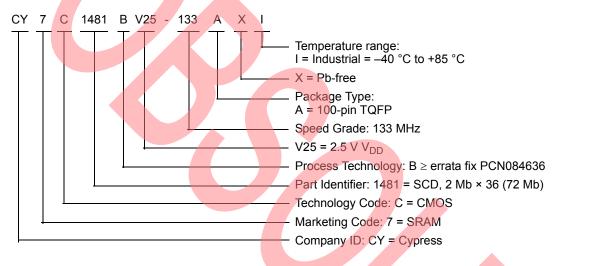
Figure 5. Read/Write Cycle Timing ^[21, 22, 23]

Notes 21. On this diagram, when \overline{CE} is LOW: \overline{CE}_1 is LOW, CE_2 is HIGH and \overline{CE}_3 is LOW. When \overline{CE} is HIGH: \overline{CE}_1 is HIGH, CE_2 is LOW, or \overline{CE}_3 is HIGH. 22. <u>The</u> data bus (Q) remains in High Z following a write cycle, unless a new read access is initiated by ADSP or ADSC. 23. GW is HIGH.

Timing Diagrams (continued)

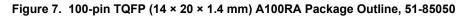
Notes

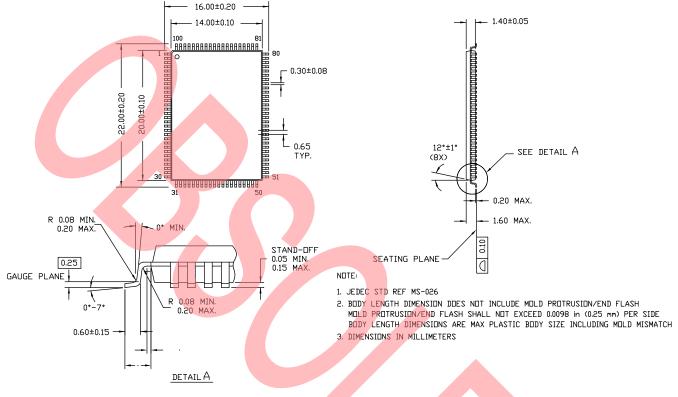
24. Device must be deselected when entering ZZ mode. See Truth Table on page 8 for all possible signal conditions to deselect the device. 25. DQs are in High Z when exiting ZZ sleep mode.



Ordering Information

Not all of the speed, package, and temperature ranges are available. Please contact your local sales representative or visit www.cypress.com for actual products offered.


Speed (MHz)	Ordering Code	Package Diagram	Part and Package Type	Operating Range
133	CY7C1481BV25-133AXI	51-85050	100-pin TQFP (14 × 20 × 1.4 mm) Pb-free	Industrial


Ordering Code Definitions

Package Diagrams

51-85050 *E

Acronyms

Acronym	Description	
CE	Chip Enable	
CMOS	Complementary Metal-Oxide-Semiconductor	
EIA	Electronic Industries Alliance	
I/O	Input/Output	
JEDEC	Joint Electron Devices Engineering Council	
OE	Output Enable	
SRAM	Static Random Access Memory	
TQFP	Thin Quad Flat Pack	
TTL Transistor-Transistor Logic		

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
mA	milliampere
mm	millimeter
ms	millisecond
mV	millivolt
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

	Document Title: CY7C1481BV25, 72-Mbit (2 M × 36) Flow-Through SRAM Document Number: 001-74847			
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	3617660	05/15/2012	PRIT / GOPA	New data sheet.
*A	4010294	05/2 <mark>4/20</mark> 13	PRIT	No technical updates. Completing Sunset Review.
*В	4571750	11/18/2014	PRIT	Added documentation related hyperlink in page 1 Updated package diagram from 51-85050*D to 51-85050*E
*C	4810850	06/25/2015	PRIT	Obsolete document. Completing Sunset Review.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	,
----------	---

Automotiv	ve	cypress.com/go/automotive		
Clocks &	Buffers	cypress.com/go/clocks		
Interface		cypress.com/go/interface		
Lighting 8	& Power Control	cypress.com/go/powerpsoc		
		cypress.com/go/plc		
Memory		cypress.com/go/memory		
Optical &	Image Sensing	cypress.com/go/image		
PSoC		cypress.com/go/psoc		
Touch Se	nsing	cypress.com/go/touch		
USB Con	trollers	cypress.com/go/USB		
Wireless/	RF	cypress.com/go/wireless		

PSoC Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 5

© Cypress Semiconductor Corporation, 2012-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-74847 Rev. *C

Revised June 25, 2015

Page 21 of 21

i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders