

# Reference Specification

Leaded MLCC for General Purpose RDE Series

Product specifications in this catalog are as of Aug. 2022, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

#### **⚠** CAUTION

#### 1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

| Voltage                   | DC Voltage | DC+AC Voltage | AC Voltage | Pulse Voltage(1) | Pulse Voltage(2) |
|---------------------------|------------|---------------|------------|------------------|------------------|
| Positional<br>Measurement | Vo-p       | Vo-p          | Vp-p       | Vp-p             | Vp-p             |

#### 2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char.: X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char.: C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

#### 3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

#### 4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

#### 5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

#### 6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

#### 7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

#### 8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

#### 9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

Aircraft equipment

2. Aerospace equipment

3. Undersea equipment

4. Power plant control equipment

5. Medical equipment

- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

#### NOTICE

#### 1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

#### 2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

#### 3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit

Please contact us if you need a detail information.

#### **⚠** NOTE

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

#### 1. Application

This product specification is applied to Leaded MLCC RDE series used for General Electronic equipment.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

#### 2. Rating

## • Part Number Configuration

| ex.) | RDE    | 5C              | 2E      | 100         | J           | 2         | K1    | H03           | В       |
|------|--------|-----------------|---------|-------------|-------------|-----------|-------|---------------|---------|
|      | Series | Temperature     | Rated   | Capacitance | Capacitance | Dimension | Lead  | Individual    | Package |
|      |        | Characteristics | Voltage |             | Tolerance   | (LxW)     | Style | Specification |         |

#### • Temperature Characteristics

| Code | Temp. Char. | Temp. Range | Temp.coef.     | Standard<br>Temp. | Operating<br>Temp. Range |  |
|------|-------------|-------------|----------------|-------------------|--------------------------|--|
| 5C   | C0G         | -55∼25°C    | 0+30/-72ppm/°C | 25°C              | -55 <b>∼</b> 125°C       |  |
| 5C   | (EIA code)  | 25∼125°C    | 0+/-30ppm/°C   | 25 C              | -5579 125 C              |  |

#### Rated Voltage

| Code | Rated voltage |
|------|---------------|
| 2E   | DC250V        |
| 2J   | DC630V        |

## Capacitance

The first two digits denote significant figures ; the last digit denotes the multiplier of 10 in pF. ex.) In case of 100

$$10 \times 10^0 = 10 pF$$

#### • Capacitance Tolerance

| Code | Capacitance Tolerance |
|------|-----------------------|
| J    | +/-5%                 |

#### • Dimension (LxW)

Please refer to [ Part number list ].

#### • Lead Style

\*Lead wire is "solder coated CP wire".

| Code | Lead Style               | Lead spacing (mm) |
|------|--------------------------|-------------------|
| K1   | Inside crimp type        | 5.0+/-0.8         |
| M1   | Inside crimp taping type | 5.0+0.6/-0.2      |

#### • Individual Specification

Murata's control code.

Please refer to [ Part number list ].

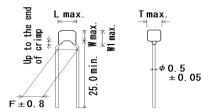
#### Package

| Code | Package             |
|------|---------------------|
| Α    | Taping type of Ammo |
| В    | Bulk type           |

## 3. Marking

Temp. char. : Letter code : A (C0G Char.) Capacitance : Actual numbers (Less than 100pF)

3 digit numbers (100pF and over)

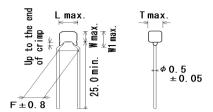

Capacitance tolerance : Code
Rated voltage : Letter : Letter code : 4 (DC250V) Letter code : 7 (DC630V)

Company name code : Abbreviation : 🗀

| (Ex.)                         |          |                  |
|-------------------------------|----------|------------------|
| Rated voltage  Dimension code | DC250V   | DC630V           |
| 2                             | (M 102 ) | <b>€</b> 102 J7A |

#### 4. Part number list

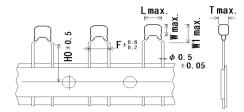
- Inside Crimp (Lead Style:K\*)




Unit : mm

| Customer    | Murata Part Number | T.C. | DC<br>Rated  | Сар.    | Cap. |     | Dime |     | Dimension<br>(LxW) | Pack<br>qty. |            |       |
|-------------|--------------------|------|--------------|---------|------|-----|------|-----|--------------------|--------------|------------|-------|
| Part Number |                    |      | Volt.<br>(V) |         | Tol. | L   | W    | W1  | F                  | Т            | Lead Style | (pcs) |
|             | RDE5C2E100J2K1H03B | C0G  | 250          | 10pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E120J2K1H03B | C0G  | 250          | 12pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E150J2K1H03B | C0G  | 250          | 15pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E180J2K1H03B | C0G  | 250          | 18pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E220J2K1H03B | C0G  | 250          | 22pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E270J2K1H03B | C0G  | 250          | 27pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E330J2K1H03B | C0G  | 250          | 33pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E390J2K1H03B | C0G  | 250          | 39pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E470J2K1H03B | C0G  | 250          | 47pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E560J2K1H03B | C0G  | 250          | 56pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E680J2K1H03B | C0G  | 250          | 68pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E820J2K1H03B | C0G  | 250          | 82pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E101J2K1H03B | C0G  | 250          | 100pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E121J2K1H03B | C0G  | 250          | 120pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E151J2K1H03B | C0G  | 250          | 150pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E181J2K1H03B | C0G  | 250          | 180pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E221J2K1H03B | C0G  | 250          | 220pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E271J2K1H03B | C0G  | 250          | 270pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E331J2K1H03B | C0G  | 250          | 330pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E391J2K1H03B | C0G  | 250          | 390pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E471J2K1H03B | C0G  | 250          | 470pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E561J2K1H03B | C0G  | 250          | 560pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E681J2K1H03B | C0G  | 250          | 680pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E821J2K1H03B | C0G  | 250          | 820pF   | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E102J2K1H03B | C0G  | 250          | 1000pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E122J2K1H03B | C0G  | 250          | 1200pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E152J2K1H03B | C0G  | 250          | 1500pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E182J2K1H03B | C0G  | 250          | 1800pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E222J2K1H03B | C0G  | 250          | 2200pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E272J2K1H03B | C0G  | 250          | 2700pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E332J2K1H03B | C0G  | 250          | 3300pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E392J2K1H03B | C0G  | 250          | 3900pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E472J2K1H03B | C0G  | 250          | 4700pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E562J2K1H03B | C0G  | 250          | 5600pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E682J2K1H03B | C0G  | 250          | 6800pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         | 2K1        | 500   |
|             | RDE5C2E822J2K1H03B | C0G  | 250          | 8200pF  | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         |            | 500   |
|             | RDE5C2E103J2K1H03B | C0G  | 250          | 10000pF | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         |            | 500   |
|             | RDE5C2J100J2K1H03B | C0G  | 630          | 10pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         |            | 500   |
|             | RDE5C2J120J2K1H03B | C0G  | 630          | 12pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         |            | 500   |
|             | RDE5C2J150J2K1H03B | COG  | 630          | 15pF    | ±5%  | 5.5 | 4.0  | 6.0 | 5.0                | 3.15         |            | 500   |

PNLIST

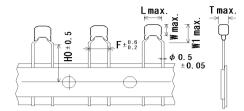

·Inside Crimp (Lead Style:K\*)



Unit : mm

| Customer    | Murata Part Number | T.C. | DC<br>Rated  | Con    | Cap. |     | Dime | ension ( | mm) |      | Dimension<br>(LxW) |               |
|-------------|--------------------|------|--------------|--------|------|-----|------|----------|-----|------|--------------------|---------------|
| Part Number | Murata Part Number | 1.0. | Volt.<br>(V) | Сар.   | Tol. | L   | W    | W1       | F   | Т    | Lead Style         | qty.<br>(pcs) |
|             | RDE5C2J180J2K1H03B | C0G  | 630          | 18pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J220J2K1H03B | C0G  | 630          | 22pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J270J2K1H03B | C0G  | 630          | 27pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J330J2K1H03B | C0G  | 630          | 33pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J390J2K1H03B | C0G  | 630          | 39pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J470J2K1H03B | C0G  | 630          | 47pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J560J2K1H03B | C0G  | 630          | 56pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J680J2K1H03B | C0G  | 630          | 68pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J820J2K1H03B | C0G  | 630          | 82pF   | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J101J2K1H03B | C0G  | 630          | 100pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J121J2K1H03B | C0G  | 630          | 120pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J151J2K1H03B | C0G  | 630          | 150pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J181J2K1H03B | C0G  | 630          | 180pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J221J2K1H03B | C0G  | 630          | 220pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J271J2K1H03B | C0G  | 630          | 270pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J331J2K1H03B | C0G  | 630          | 330pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J391J2K1H03B | C0G  | 630          | 390pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J471J2K1H03B | C0G  | 630          | 470pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J561J2K1H03B | C0G  | 630          | 560pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J681J2K1H03B | C0G  | 630          | 680pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J821J2K1H03B | C0G  | 630          | 820pF  | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J102J2K1H03B | C0G  | 630          | 1000pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J122J2K1H03B | C0G  | 630          | 1200pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J152J2K1H03B | C0G  | 630          | 1500pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J182J2K1H03B | C0G  | 630          | 1800pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |
|             | RDE5C2J222J2K1H03B | C0G  | 630          | 2200pF | ±5%  | 5.5 | 4.0  | 6.0      | 5.0 | 3.15 | 2K1                | 500           |

## Inside Crimp Taping (Lead Style: M\*)




Unit : mm

| Customer<br>Part Number | Murata Part Number | T.C. | Rated<br>Volt.<br>(V) | Сар.         | Cap.<br>Tol. | L   | W   | imensi<br>W1 | F   | т    | H/H0 | Dimension<br>(LxW)<br>Lead Style | qty  |
|-------------------------|--------------------|------|-----------------------|--------------|--------------|-----|-----|--------------|-----|------|------|----------------------------------|------|
|                         |                    | - 10 | . ,                   | 10.5         | 70/          |     |     |              |     |      |      |                                  | 3.04 |
|                         | RDE5C2E100J2M1H03A | C0G  | 250                   | 10pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 200  |
|                         | RDE5C2E120J2M1H03A | C0G  | 250                   | 12pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E150J2M1H03A | C0G  | 250                   | 15pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E180J2M1H03A | C0G  | 250                   | 18pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E220J2M1H03A | C0G  | 250                   | 22pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E270J2M1H03A | C0G  | 250                   | 27pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E330J2M1H03A | C0G  | 250                   | 33pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E390J2M1H03A | C0G  | 250                   | 39pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E470J2M1H03A | C0G  | 250                   | 47pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E560J2M1H03A | C0G  | 250                   | 56pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E680J2M1H03A | C0G  | 250                   | 68pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 20   |
|                         | RDE5C2E820J2M1H03A | C0G  | 250                   | 82pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E101J2M1H03A | C0G  | 250                   | 100pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E121J2M1H03A | C0G  | 250                   | 120pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E151J2M1H03A | C0G  | 250                   | 150pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E181J2M1H03A | C0G  | 250                   | 180pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E221J2M1H03A | C0G  | 250                   | 220pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E271J2M1H03A | C0G  | 250                   | 270pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E331J2M1H03A | C0G  | 250                   | 330pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E391J2M1H03A | C0G  | 250                   | 390pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E471J2M1H03A | C0G  | 250                   | 470pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E561J2M1H03A | C0G  | 250                   | 560pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E681J2M1H03A | C0G  | 250                   | 680pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E821J2M1H03A | C0G  | 250                   | 820pF        | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E102J2M1H03A | C0G  | 250                   | 1000pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E122J2M1H03A | C0G  | 250                   | 1200pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E152J2M1H03A | C0G  | 250                   | 1500pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E182J2M1H03A | C0G  | 250                   | 1800pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E222J2M1H03A | C0G  | 250                   | 2200pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E272J2M1H03A | C0G  | 250                   | 2700pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E332J2M1H03A | COG  | 250                   | 3300pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E392J2M1H03A | COG  | 250                   | 3900pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E472J2M1H03A | COG  | 250                   | 4700pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 | 2M1                              | 2    |
|                         | RDE5C2E562J2M1H03A | COG  | 250                   | 5600pF       | ±5%          | 5.5 | 4.0 |              |     |      | 16.0 |                                  | 2    |
|                         | RDE5C2E682J2M1H03A | COG  | 250                   | 6800pF       | ±5%          | 5.5 | 4.0 |              | 5.0 |      |      |                                  | 2    |
|                         | RDE5C2E822J2M1H03A | COG  | 250                   | 8200pF       | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 |      |      |                                  | 2    |
|                         | RDE5C2E103J2M1H03A | COG  | 250                   | 10000pF      | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 |      |      |                                  | 2    |
|                         | RDE5C2J100J2M1H03A | COG  | 630                   | 10pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 |      |      |                                  | 2    |
|                         | RDE5C2J120J2M1H03A | COG  | 630                   | 10pi<br>12pF | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 | 3.15 | 16.0 |                                  | 2    |
|                         | RDE5C2J150J2M1H03A | COG  | 630                   | 15pF         | ±5%          | 5.5 | 4.0 | 6.0          | 5.0 |      |      |                                  | 2    |

PNLIST

Inside Crimp Taping (Lead Style: M\*)



Unit: mm

| Onli        |                    |      |              |        |      |     |     | Unit : mm |                    |              |      |            |      |
|-------------|--------------------|------|--------------|--------|------|-----|-----|-----------|--------------------|--------------|------|------------|------|
| Customer    | Murata Part Number | T.C. | DC<br>Rated  | Cap.   | Сар. |     | D   |           | Dimension<br>(LxW) | Pack<br>qty. |      |            |      |
| Part Number |                    |      | Volt.<br>(V) | oup.   | Tol. | L   | W   | W1        | F                  | Т            | H/H0 | Lead Style |      |
|             | RDE5C2J180J2M1H03A | C0G  | 630          | 18pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J220J2M1H03A | C0G  | 630          | 22pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J270J2M1H03A | C0G  | 630          | 27pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J330J2M1H03A | C0G  | 630          | 33pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J390J2M1H03A | C0G  | 630          | 39pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J470J2M1H03A | C0G  | 630          | 47pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J560J2M1H03A | C0G  | 630          | 56pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J680J2M1H03A | C0G  | 630          | 68pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J820J2M1H03A | C0G  | 630          | 82pF   | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J101J2M1H03A | C0G  | 630          | 100pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J121J2M1H03A | C0G  | 630          | 120pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J151J2M1H03A | C0G  | 630          | 150pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J181J2M1H03A | C0G  | 630          | 180pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J221J2M1H03A | C0G  | 630          | 220pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J271J2M1H03A | C0G  | 630          | 270pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J331J2M1H03A | C0G  | 630          | 330pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J391J2M1H03A | C0G  | 630          | 390pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J471J2M1H03A | C0G  | 630          | 470pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J561J2M1H03A | C0G  | 630          | 560pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J681J2M1H03A | C0G  | 630          | 680pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J821J2M1H03A | C0G  | 630          | 820pF  | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J102J2M1H03A | C0G  | 630          | 1000pF | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J122J2M1H03A | C0G  | 630          | 1200pF | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J152J2M1H03A | C0G  | 630          | 1500pF | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J182J2M1H03A | C0G  | 630          | 1800pF | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |
|             | RDE5C2J222J2M1H03A | C0G  | 630          | 2200pF | ±5%  | 5.5 | 4.0 | 6.0       | 5.0                | 3.15         | 16.0 | 2M1        | 2000 |

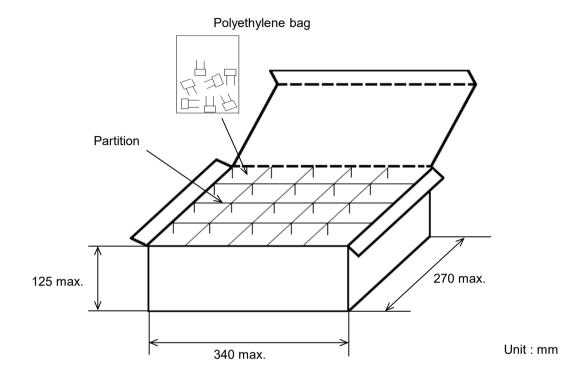
PNLIST

| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.SPECIFICATIONS AND TEST METHODS |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|-----------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|--------------------------|--|
| Vibration   Vib   | No                                | lo Item Specification Test Method |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Marking   Marking   Server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                 | Appearance                        |           | No defects or abnormalities.              | Visual inspe                                                                                                                                              | ection.                               |                     |                          |  |
| Strength   Serveran   No defects or abnormalities.   The capacitors should not be damaged when voltage of in Table is appeted between the terminations for 15 to 5 seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                 |                                   | I         | '                                         | Visual inspection, Using Caliper.                                                                                                                         |                                       |                     |                          |  |
| Rated votings   Test votings   DC250V   200% of the rated votings   DC30V   200% of the rated votings   DC30V   200% of the rated votings   DC30V   130% of the rated votings   DC30V     | 3                                 |                                   |           |                                           | The capacitor should not be damaged when voltage of in Table is                                                                                           |                                       |                     |                          |  |
| Rated voltage   Test voltage   DC250V   200% of the instead voltage   DC250V   200% of the instead voltage   DC250V     |                                   | Strength                          | Terminals |                                           |                                                                                                                                                           |                                       |                     | conds.                   |  |
| Body Insulation   Between   10.000MΩ or 500MΩ µF min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Body Insulation   Between   10.000MΩ or 500MΩ µF min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                   |           |                                           |                                                                                                                                                           | Rated voltage                         | Test volta          | ige                      |  |
| Body   No defects or abnormalities.   The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately 2mm from the balls, and voltage in Table is impressed for 1 to 5 seconds between capacitor terminals and metal balls. (Charge/Bibarange current ≤ 50mA.)   Reade vallage   Test voltage   Test vo   |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Body Insulation   No defects or abnormalities.   The capacitor is placed in a container with metal balls of 1mm diameter so that each terminal, short-circuit, is kept approximately 2mm from the balls, and votage in Table is impressed for 1 to 5 seconds between capacitor terminals and metal balls.   Charge/Discharge current ≤ 50mA.   The capacitor terminals and metal balls.   Charge/Discharge current ≤ 50mA.   Dc1300V      |                                   |                                   |           |                                           |                                                                                                                                                           | DC630V                                | 150% of the rate    | ed voltage               |  |
| Insulation   In   |                                   |                                   |           |                                           |                                                                                                                                                           | DC1kV                                 | 130% of the rate    | ed voltage               |  |
| Insulation   In   |                                   |                                   | Body      | No defects or abnormalities               | The canacit                                                                                                                                               | or is placed in a                     | container with met  | al halls of 1mm diameter |  |
| the balls, and voltage in Table is impressed for 1 to 5 seconds between capacitor terminals and metal balls.  (Charge/Discharge current ≤ 50mA.)    Ratied voltage   Test voltage   DC250V   DC330V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                   | 1 1       | no delects of apriormanties.              | •                                                                                                                                                         | •                                     |                     |                          |  |
| Rated voltage   Toest voltage   DC250V   DC300V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                   | oaiaaioii |                                           | the balls, and voltage in Table is impressed for 1 to 5 seconds between capacitor terminals and metal balls.                                              |                                       |                     |                          |  |
| Rated voltage   Test voltage   DC250V   DC500V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Between   Terminals (Whichever is smaller)   The insulation resistance should be measured with possible programment of the     |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Between   Terminals (Whichever is smaller)   The insulation resistance should be measured with possible programment of the     |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Insulation   Resistance   Re   |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Resistance (IR.)   Terminals (Whichever is smaller)   DC500±50V (DC250±25V in case of rated voltage : DC250V) at normal temperature and humidity and within 2 minutes of charging. (Charge@Discharge current ≤ 50m.A.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                   |           |                                           |                                                                                                                                                           | DC630V-                               | DC1kV DC13          | 00V                      |  |
| Resistance (IR.)   Terminals (Whichever is smaller)   DC500±50V (DC250±25V in case of rated voltage : DC250V) at normal temperature and humidity and within 2 minutes of charging. (Charge@Discharge current ≤ 50m.A.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                 | leardati                          | Dahwas :  | 10 000MO av 500MO ::5 ::-:-               | The in-out of                                                                                                                                             |                                       |                     |                          |  |
| (IR.)    Capacitance   Within the specified tolerance.   The capacitance, Q about be measured at 25°C at the frequency and voltage shown in the table.    Superior   | 4                                 |                                   |           | · ·                                       |                                                                                                                                                           |                                       |                     |                          |  |
| Charge/Discharge current ≤ 50mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                   | reminais  | (vviiichiever is silialier)               |                                                                                                                                                           | •                                     |                     | -                        |  |
| Strength   Strength   Strength   Termination not to be broken or loosened.   Strength   |                                   | (I.K.)                            |           |                                           | 1                                                                                                                                                         | •                                     | •                   | ging.                    |  |
| at the frequency and voltage shown in the table.  8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                 | Capacitance                       | <u> </u>  | Within the specified tolerance.           | <u> </u>                                                                                                                                                  |                                       |                     | °C                       |  |
| 30pF > C : Q ≥ 400+20C   C : 1400 pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                   |           | ·                                         | at the freque                                                                                                                                             | ency and voltage                      | shown in the table  | e.                       |  |
| SopF > C: Q ≥ 400+20C   C: Nominal Capacitance (pF)   C ≤ 1000pF   1±0.2M+1z   AC0.5 to 5V(r.m.s.)   C > 1000pF   1±0.2M+1z   AC0.5 to 5V(r.m.s.)   AC1±0.2V(r.m.s.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                 | Q                                 |           | 30pF ≦ C : Q ≧ 1,000                      | l r                                                                                                                                                       | Nominal Cap                           | Frequency           | Voltage                  |  |
| C: Nominal Capacitance (pF)    Capacitance   Within the specified Tolerance.   25°C to 125°C: 0±30pm/°C   7.5°C to 25°C: 0±30/-72pm/°C   7.5°C to 125°C to 125 |                                   |                                   |           | 30pF > C : Q ≥ 400+20C                    |                                                                                                                                                           |                                       |                     |                          |  |
| Temperature Characteristics    Visitation   Province   Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                   |           |                                           |                                                                                                                                                           | C > 1000pF                            | 1±0.2kHz            |                          |  |
| Temperature Characteristics    25°C to 125°C : 0±30/-72ppm/°C   The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient.    Step   Temperature(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7                                 | 0                                 |           |                                           | Th                                                                                                                                                        |                                       |                     | - <del> </del>           |  |
| The temperature coefficient is determined using the capacitance measured in step 3 as a reference. When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient.    Step   Temperature(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                                 | -                                 |           | · ·                                       | 1                                                                                                                                                         | _                                     |                     | aller 5                  |  |
| capacitance measured in step 3 as a reference.  When cycling the temperature sequentially from step 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient.    Step   Temperature(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                   |           | '''                                       |                                                                                                                                                           |                                       |                     |                          |  |
| 1 through 5 (-55°C to 125°C) the capacitance should be within the specified tolerance for the temperature coefficient.    Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                   |           | -50 0 ю 20 0 : 0 : 00/-12ррии 0           |                                                                                                                                                           |                                       |                     |                          |  |
| be within the specified tolerance for the temperature coefficient.    Step   Temperature(°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                   |           |                                           | When cycling the temperature sequentially from step                                                                                                       |                                       |                     |                          |  |
| Step   Temperature(°C)   1   25±2   2   -55±3   3   25±2   4   125±3   5   25±2   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                   |           |                                           | 1 through 5 (-55°C to 125°C) the capacitance should                                                                                                       |                                       |                     | hould                    |  |
| 1 25±2 2 -55±3 3 25±2 4 125±3 5 25±2  4 125±3 5 25±2  4 125±3 5 25±2  As in the figure, fix the capacitor body, apply the force gradually to each lead in the radial direction of the capacitor until reaching 10N and then keep applied the force for 10±1 seconds.  Bending Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Polyibration Resistance  Appearance  Appearance  No defects or abnormalities.  Capacitance  Within the specified tolerance.  Q  30pF ≤ C : Q ≥ 1,000 30pF > C : Q ≥ 400+20C 40proximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                   |           |                                           | be within the                                                                                                                                             | e specified tolera                    | nce for the temper  | ature coefficient.       |  |
| 2   -55±3   3   25±2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   5   25±2   2   4   125±3   2   2   2   2   2   2   2   2   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                   |           |                                           |                                                                                                                                                           | Step                                  | Temperatur          | re(°C)                   |  |
| 8 Terminal Strength Strength  Tensile Strength Strength  Termination not to be broken or loosened.  Strength Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Photographical Proposition  Appearance  No defects or abnormalities.  Capacitance  Within the specified tolerance.  Q  30pF ≤ C: Q ≥ 1,000 30pF > C: Q ≥ 400+20C approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                   |           |                                           |                                                                                                                                                           | 1                                     | 25±2                |                          |  |
| 8 Terminal Strength  Tensile Strength  Termination not to be broken or loosened. Strength  Termination not to be broken or loosened. Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Polybration Resistance  Appearance  Appearance  No defects or abnormalities.  Capacitance  Within the specified tolerance.  Q  30pF ≤ C: Q ≥ 1,000  apply the force gradually to each lead in the radial direction of the capacitor should be subjected to a force of 2.5N and then be bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| 8 Terminal Strength  Tensile Strength  Termination not to be broken or loosened. Strength  Termination not to be broken or loosened.  Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Polyibration Resistance  Appearance No defects or abnormalities.  Capacitance Within the specified tolerance.  Q 30pF ≤ C: Q ≥ 1,000 30pF > C: Q ≥ 400+20C 400 approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                                   |           |                                           |                                                                                                                                                           |                                       | +                   |                          |  |
| 8 Terminal Strength  Termination not to be broken or loosened.  Strength  Termination not to be broken or loosened.  Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Bending Strength  Termination not to be broken or loosened.  Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Physical Papearance  Appearance  Appearance  Appearance  Appearance  Within the specified tolerance.  Q  30pF ≤ C: Q ≥ 1,000 30pF > C: Q ≥ 400+20C approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                   |           |                                           |                                                                                                                                                           |                                       | -                   |                          |  |
| Strength  Step 1000  Strength  Step 1000  Step 2 to 3 seconds.  The capacitor should be subjected to a simple  harmonic motion having a total amplitude of 1.5mm,  the frequency being varied uniformly between the  approximate limits of 10Hz and 55Hz. The frequency  range, from 10Hz to 55Hz and return to 10Hz, shall be  C: Nominal Capacitance (pF)  Strength  Step 1000  Step 2 to 3 seconds.  The capacitor should be subjected to a simple  harmonic motion having a total amplitude of 1.5mm,  the frequency being varied uniformly between the  approximate limits of 10Hz and 55Hz. The frequency  range, from 10Hz to 55Hz and return to 10Hz, shall be  traversed in approximately 1 minute. This motion  shall be applied  |                                   |                                   |           |                                           |                                                                                                                                                           |                                       | 2012                |                          |  |
| lead in the radial direction of the capacitor until reaching 10N and then keep applied the force for 10±1 seconds.  Bending Strength  Termination not to be broken or loosened.  Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Position Resistance  Appearance No defects or abnormalities. Capacitance Within the specified tolerance.  Q 30pF ≤ C: Q ≥ 1,000 approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                 |                                   | Tensile   | Termination not to be broken or loosened. | _                                                                                                                                                         | •                                     |                     | 11411                    |  |
| apacitor until reaching 10N and then keep applied the force for 10±1 seconds.  Bending Strength  Termination not to be broken or loosened.  Strength  Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Physical Procedure 10 one bend per 2 to 3 seconds.  Appearance No defects or abnormalities.  Capacitance Within the specified tolerance.  Q 30pF ≤ C: Q ≥ 1,000 30pF > C: Q ≥ 400+20C 40proximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   | Strength                          | Strength  |                                           |                                                                                                                                                           | · · · · · · · · · · · · · · · · · · · |                     |                          |  |
| Resistance   Resistance   Resistance   Resistance   Q   30pF ≤ C : Q ≥ 1,000   30pF > C : Q ≥ 400+20C   C : Nominal Capacitance (pF)   C : Nominal Capacitance (pF)   C : Nominal Capacitance (pF)   Each lead wire should be subjected to a force of 2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.   The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     | <u>‡</u>                 |  |
| Bending Strength  Termination not to be broken or loosened.  Strength  Each lead wire should be subjected to a force of  2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Provided Pr |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Strength  2.5N and then be bent 90° at the point of egress in one direction. Each wire is then returned to the original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Polymer and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Provided a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                   | Bendina   | Termination not to be broken or loosened  | 1                                                                                                                                                         |                                       |                     | of                       |  |
| one direction. Each wire is then returned to the original position and bent $90^{\circ}$ in the opposite direction at the rate of one bend per 2 to 3 seconds.  Position Resistance Resistance Within the specified tolerance.  Q 30pF $\leq$ C : Q $\geq$ 1,000 the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                   |           | remination not to be proven or loosened.  | •                                                                                                                                                         |                                       |                     |                          |  |
| original position and bent 90° in the opposite direction at the rate of one bend per 2 to 3 seconds.  Position Resistance  Appearance Resistance  No defects or abnormalities.  Capacitance  Within the specified tolerance.  Q  30pF ≤ C : Q ≥ 1,000 30pF > C : Q ≥ 400+20C  approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                   |                                   |           |                                           | · · · · ·                                                                                                                                                 |                                       |                     |                          |  |
| 9 Vibration Resistance  Appearance Capacitance  Within the specified tolerance.  Q 30pF ≤ C: Q ≥ 1,000 30pF > C: Q ≥ 400+20C  C: Nominal Capacitance (pF)  Appearance  Appearance District of a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
| Resistance $Capacitance Within the specified tolerance.$ Resistance $Capacitance Within the specified tolerance.  Remonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                   |           |                                           | direction at                                                                                                                                              | the rate of one be                    | end per 2 to 3 seco | onds.                    |  |
| Q $30pF \le C: Q \ge 1,000$ the frequency being varied uniformly between the $30pF > C: Q \ge 400+20C$ approximate limits of $10Hz$ and $55Hz$ . The frequency range, from $10Hz$ to $55Hz$ and return to $10Hz$ , shall be traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                 | Resistance                        |           |                                           | • • • • • • • • • • • • • • • • • • • •                                                                                                                   |                                       |                     |                          |  |
| 30pF > C : Q ≧ 400+20C approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be C : Nominal Capacitance (pF) traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                   |           | ·                                         |                                                                                                                                                           | =                                     | · ·                 |                          |  |
| range, from 10Hz to 55Hz and return to 10Hz, shall be C: Nominal Capacitance (pF) traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                   | Q.        | ·                                         | approximate limits of 10Hz and 55Hz. The frequency range, from 10Hz to 55Hz and return to 10Hz, shall be traversed in approximately 1 minute. This motion |                                       |                     |                          |  |
| C : Nominal Capacitance (pF) traversed in approximately 1 minute. This motion shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                   |           | Supr > C : Q ≤ 400+20C                    |                                                                                                                                                           |                                       |                     |                          |  |
| shall be applied for a period of 2 hours in each 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                   |           | C : Nominal Capacitance (nF)              |                                                                                                                                                           |                                       |                     |                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                   |           | 3 . Norminal σαρασιτατίσε (με )           |                                                                                                                                                           |                                       |                     |                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   | <u> </u>                          | 1         |                                           | ., ., , , ,                                                                                                                                               |                                       | ,                   | •                        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                   |           |                                           |                                                                                                                                                           |                                       |                     |                          |  |

ESRDE115C

| NI-  | 1 ,,             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nce on                                                                                                                                                      | y                                                      |                                                             | T4 M-41-            | 1                                          |               |    |
|------|------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|---------------------|--------------------------------------------|---------------|----|
| No.  |                  | em                                                                           | Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Th - 4-                                                                                                                                                     |                                                        |                                                             | Test Meth           |                                            |               |    |
| 10   | Solderability of | rLead                                                                        | Solder is deposited on unintermittently                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                             | The terminal of capacitor is dipped into a solution of |                                                             |                     |                                            |               |    |
|      |                  |                                                                              | immersed portion in axial direction                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             | ethanol (JIS K 8101) and rosin (JIS K 5902) (25%       |                                                             |                     |                                            |               |    |
|      |                  |                                                                              | covering 3/4 or more in circumferential                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                             | rosin in weight propotion). Immerse in solder solution |                                                             |                     |                                            |               |    |
|      |                  |                                                                              | direction of lead wires.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | for 2±0.5 seconds. In both cases the depth of dipping                                                                                                       |                                                        |                                                             |                     |                                            |               |    |
|      |                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | is up to about 1.5 to 2mm from the terminal body.                                                                                                           |                                                        |                                                             |                     |                                            |               |    |
|      |                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Temp. of solder : 245±5°C Lead Free Solder (Sn-3.0Ag-0.5Cu)                                                                                                 |                                                        |                                                             |                     |                                            |               |    |
|      |                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                        |                                                             |                     |                                            |               |    |
|      |                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 235:                                                                                                                                                        | 5°C H60A                                               | or H63A Eute                                                | ectic Solder        |                                            |               |    |
| 11-1 | Resistance       | Appearance                                                                   | No defects or abnormalities.                                                                                                                                                                                                                                                                                                                                                                                                                                               | The le                                                                                                                                                      | .5 to 2.0mm                                            |                                                             |                     |                                            |               |    |
|      | to               | Capacitance                                                                  | Within ±2.5% or ±0.25pF                                                                                                                                                                                                                                                                                                                                                                                                                                                    | from t                                                                                                                                                      | ne root of t                                           | terminal at 260                                             | 0±5°C for 10±       | 1 seconds.                                 |               |    |
|      | Soldering        | Change                                                                       | (Whichever is larger)                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                        |                                                             |                     |                                            |               |    |
|      | Heat             | Dielectric                                                                   | No defects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Post-treatment                                                                                                                                              |                                                        |                                                             |                     |                                            |               |    |
|      | (Non-            | Strength                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Capacitor should be stored for 24±                                                                                                                          |                                                        |                                                             |                     | at *room cond                              | ition.        |    |
|      | Preheat)         | (Between                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                        |                                                             |                     |                                            |               |    |
|      |                  | terminals)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                        |                                                             |                     |                                            |               |    |
| 11-2 | Resistance       | Appearance                                                                   | No defects or abnormalities.                                                                                                                                                                                                                                                                                                                                                                                                                                               | First th                                                                                                                                                    | ne capacito                                            | or should be s                                              | tored at 120+       | 0/-5°C for 60+                             | 0/-5 seconds. |    |
|      | to               | Capacitance                                                                  | Within ±2.5% or ±0.25pF                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Then,                                                                                                                                                       | the lead w                                             | rires should be                                             | immersed ir         | the melted so                              | older         |    |
|      | Soldering        | Change                                                                       | (Whichever is larger)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.5 to                                                                                                                                                      | 2.0mm fro                                              | m the root of t                                             | erminal at 26       | 60±5°C for 7.5+                            | -0/-1 seconds | S. |
|      | Heat             | Dielectric                                                                   | No defects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                        |                                                             |                     |                                            |               |    |
|      | (On-             | Strength                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • Post                                                                                                                                                      | treatment                                              |                                                             |                     |                                            |               |    |
|      | Preheat)         | (Between                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Capac                                                                                                                                                       | itor should                                            | d be stored for                                             | 24±2 hours          | at *room cond                              | ition.        |    |
|      | ,                | terminals)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                        |                                                             |                     |                                            |               |    |
| 11-3 | Resistance       | Appearance                                                                   | No defects or abnormalities.                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test c                                                                                                                                                      | ondition                                               |                                                             |                     |                                            |               |    |
|      | to               | Capacitance                                                                  | Within ±2.5% or ±0.25pF                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tem                                                                                                                                                         | perature of                                            | f iron-tip : 350:                                           | ±10°C               |                                            |               |    |
|      | Soldering        | Change                                                                       | (Whichever is larger)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temperature of iron-tip: 350±10°C Soldering time: 3.5±0.5 seconds                                                                                           |                                                        |                                                             |                     |                                            |               |    |
|      | Heat             | Dielectric                                                                   | No defects.                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Soldering time: 3.310.3 seconds  Soldering position  Straight Lead: 1.5 to 2.0mm from the root of terminal.  Crimp Lead: 1.5 to 2.0mm from the end of bend. |                                                        |                                                             |                     |                                            |               |    |
|      | (soldering       | Strength                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                        |                                                             |                     |                                            |               |    |
|      | iron method)     | (Between                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                        |                                                             |                     |                                            |               |    |
|      | terminals)       |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                           |                                                        | .0 10 2.0                                                   |                     | . 20.14.                                   |               |    |
|      |                  | torrimaio)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • Post                                                                                                                                                      | treatment                                              |                                                             |                     |                                            |               |    |
|      |                  |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                             |                                                        |                                                             | 24+2 hours          | at *room cond                              | ition         |    |
| 12   | Temperature      | Appearance                                                                   | No defects or abnormalities.                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                             |                                                        |                                                             |                     | atments listed                             |               |    |
|      | Cycle            |                                                                              | Within ±5% or ±0.5pF                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _ `                                                                                                                                                         | -                                                      | specified tem                                               |                     |                                            |               |    |
|      | O y o l o        | Canacitance                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | minate                                                                                                                                                      | o at oaon                                              | -                                                           | porataro otag       | 0.                                         |               |    |
|      | Ī                | Capacitance<br>Change                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | The te                                                                                                                                                      | mnerature                                              | coefficient is                                              | determined i        | ising the                                  |               |    |
| i i  |                  | Change                                                                       | (Whichever is larger)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The te                                                                                                                                                      | mperature                                              | coefficient is                                              | determined ι        | ising the                                  |               |    |
|      |                  |                                                                              | (Whichever is larger) 30pF ≤ C : Q ≥ 350                                                                                                                                                                                                                                                                                                                                                                                                                                   | The te                                                                                                                                                      | mperature<br>Step                                      | coefficient is                                              | determined ι        | ising the                                  | 4             |    |
|      |                  | Change                                                                       | (Whichever is larger)  30pF ≤ C : Q ≥ 350  10pF ≤ C < 30pF : Q ≥ 275+5C/2                                                                                                                                                                                                                                                                                                                                                                                                  | The te                                                                                                                                                      | Step                                                   |                                                             | 2                   |                                            |               |    |
|      |                  | Change                                                                       | (Whichever is larger) 30pF ≤ C : Q ≥ 350                                                                                                                                                                                                                                                                                                                                                                                                                                   | The te                                                                                                                                                      | Step Temp.                                             | 1<br>Min.<br>Operating                                      | 2<br>Room           | 3<br>Max.<br>Operating                     | Room          |    |
|      |                  | Change                                                                       | (Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$                                                                                                                                                                                                                                                                                                                                                             | The te                                                                                                                                                      | Step                                                   | 1<br>Min.                                                   | 2                   | 3<br>Max.                                  |               |    |
|      |                  | Change<br>Q                                                                  | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$                                                                                                                                                                                                                                                                                                                              | The te                                                                                                                                                      | Step Temp.                                             | 1<br>Min.<br>Operating<br>Temp. ±3                          | 2<br>Room<br>Temp.  | 3<br>Max.<br>Operating<br>Temp. ±3         | Room<br>Temp. |    |
|      |                  | Change                                                                       | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$                                                                                                                                                                                                                                                                                        | The te                                                                                                                                                      | Step Temp. (°C)                                        | 1<br>Min.<br>Operating                                      | 2<br>Room           | 3<br>Max.<br>Operating                     | Room          |    |
|      |                  | Change<br>Q<br>I.R.                                                          | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller)                                                                                                                                                                                                                                                              | The te                                                                                                                                                      | Step Temp. (°C)                                        | 1<br>Min.<br>Operating<br>Temp. ±3                          | 2<br>Room<br>Temp.  | 3<br>Max.<br>Operating<br>Temp. ±3         | Room<br>Temp. |    |
|      |                  | Change<br>Q<br>I.R.                                                          | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$                                                                                                                                                                                                                                                                                        | The te                                                                                                                                                      | Step Temp. (°C)                                        | 1<br>Min.<br>Operating<br>Temp. ±3                          | 2<br>Room<br>Temp.  | 3<br>Max.<br>Operating<br>Temp. ±3         | Room<br>Temp. |    |
|      |                  | Change Q I.R. Dielectric Strength                                            | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller)                                                                                                                                                                                                                                                              | The te                                                                                                                                                      | Step Temp. (°C)                                        | 1<br>Min.<br>Operating<br>Temp. ±3                          | 2<br>Room<br>Temp.  | 3<br>Max.<br>Operating<br>Temp. ±3         | Room<br>Temp. |    |
|      |                  | Change Q I.R. Dielectric Strength (Between                                   | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller)                                                                                                                                                                                                                                                              | The te                                                                                                                                                      | Step Temp. (°C)                                        | 1<br>Min.<br>Operating<br>Temp. ±3                          | 2<br>Room<br>Temp.  | 3<br>Max.<br>Operating<br>Temp. ±3         | Room<br>Temp. |    |
| 10   | Aloneid?         | Change Q I.R. Dielectric Strength (Between Terminals)                        | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000M\Omega \ or \ 50M\Omega \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$                                                                                                                                                                                                               |                                                                                                                                                             | Step Temp. (°C) Time (min.)                            | 1<br>Min.<br>Operating<br>Temp. ±3<br>30±3                  | Room<br>Temp.       | 3<br>Max.<br>Operating<br>Temp. ±3<br>30±3 | Room<br>Temp. |    |
| 13   | Humidity         | I.R. Dielectric Strength (Between Terminals) Appearance                      | (Whichever is larger) $30pF \leq C: Q \geq 350$ $10pF \leq C < 30pF: Q \geq 275+5C/2$ $10pF > C: Q \geq 200+10C$ $C: Nominal\ Capacitance\ (pF)$ $1,000M\Omega\ or\ 50M\Omega\cdot \mu F\ min.$ (Whichever is smaller) $No\ defects\ or\ abnormalities.$ $No\ defects\ or\ abnormalities.$                                                                                                                                                                                 | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3                              | Room<br>Temp.       | 3<br>Max.<br>Operating<br>Temp. ±3<br>30±3 | Room<br>Temp. |    |
| 13   | (Steady          | I.R. Dielectric Strength (Between Terminals) Appearance Capacitance          | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000M\Omega \ or \ 50M\Omega \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$                                                                                                                                      | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3  r at 40±2°C ar 24/-0 hours. | 2 Room Temp. 3 max. | 3 Max. Operating Temp. ±3 30±3             | Room<br>Temp. |    |
| 13   | -                | I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change   | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000M\Omega \ or \ 50M\Omega \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger)                                                                                                                | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3  r at 40±2°C ar 24/-0 hours. | 2 Room Temp. 3 max. | 3<br>Max.<br>Operating<br>Temp. ±3<br>30±3 | Room<br>Temp. |    |
| 13   | (Steady          | I.R. Dielectric Strength (Between Terminals) Appearance Capacitance          | (Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$ $C : Nominal \ Capacitance (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C : Q \ge 350$                                                                                               | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3  r at 40±2°C ar 24/-0 hours. | 2 Room Temp. 3 max. | 3 Max. Operating Temp. ±3 30±3             | Room<br>Temp. |    |
| 13   | (Steady          | I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change   | (Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$ $C : Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$                                                           | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3  r at 40±2°C ar 24/-0 hours. | 2 Room Temp. 3 max. | 3 Max. Operating Temp. ±3 30±3             | Room<br>Temp. |    |
| 13   | (Steady          | I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change   | (Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$ $C : Nominal \ Capacitance (pF)$ $1,000MΩ \ or \ 50MΩ \cdot \mu F \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C : Q \ge 350$                                                                                               | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3  r at 40±2°C ar 24/-0 hours. | 2 Room Temp. 3 max. | 3 Max. Operating Temp. ±3 30±3             | Room<br>Temp. |    |
| 13   | (Steady          | I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change   | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$                                       | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3  r at 40±2°C ar 24/-0 hours. | 2 Room Temp. 3 max. | 3 Max. Operating Temp. ±3 30±3             | Room<br>Temp. |    |
| 13   | (Steady          | I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change Q | (Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$ $C : Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \pm 5\% \ or \pm 0.5pF$ (Whichever is larger) $30pF \le C : Q \ge 350$ $10pF \le C < 30pF : Q \ge 275+5C/2$ $10pF > C : Q \ge 200+10C$ $C : Nominal \ Capacitance \ (pF)$ | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3  r at 40±2°C ar 24/-0 hours. | 2 Room Temp. 3 max. | 3 Max. Operating Temp. ±3 30±3             | Room<br>Temp. |    |
| 13   | (Steady          | I.R. Dielectric Strength (Between Terminals) Appearance Capacitance Change   | (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$ $C: Nominal \ Capacitance \ (pF)$ $1,000MΩ \ or \ 50MΩ \cdot μF \ min.$ (Whichever is smaller) $No \ defects \ or \ abnormalities.$ $No \ defects \ or \ abnormalities.$ $Within \ \pm 5\% \ or \ \pm 0.5pF$ (Whichever is larger) $30pF \le C: Q \ge 350$ $10pF \le C < 30pF: Q \ge 275+5C/2$ $10pF > C: Q \ge 200+10C$                                       | Set th                                                                                                                                                      | Step Temp. (°C) Time (min.)                            | 1 Min. Operating Temp. ±3 30±3  r at 40±2°C ar 24/-0 hours. | 2 Room Temp. 3 max. | 3 Max. Operating Temp. ±3 30±3             | Room<br>Temp. |    |

<sup>\* &</sup>quot;room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa


| No. | o. Item Specification Test |             |                                | Test Method                                                                            |  |  |  |
|-----|----------------------------|-------------|--------------------------------|----------------------------------------------------------------------------------------|--|--|--|
| 14  | Humidity Appearance        |             | No defects or abnormalities.   | Apply the rated voltage at 40±2°C and relative                                         |  |  |  |
|     | Load                       | Capacitance | Within ±7.5% or ±0.75pF        | humidity of 90 to 95% for 500+24/-0 hours.                                             |  |  |  |
|     |                            | Change      | (Whichever is larger)          | Remove and set for 24±2 hours at *room condition, then measure.                        |  |  |  |
|     |                            | Q           | 30pF ≦ C : Q ≧ 200             | (Charge/Discharge current ≦ 50mA.)                                                     |  |  |  |
|     |                            |             | 30pF > C : Q ≥ 100+10/3        |                                                                                        |  |  |  |
|     |                            |             | C : Nominal Capacitance (pF)   |                                                                                        |  |  |  |
|     |                            | I.R.        | 500MΩ or 25MΩ•μF min.          |                                                                                        |  |  |  |
|     |                            |             | (Whichever is smaller)         |                                                                                        |  |  |  |
| 15  | High                       | Appearance  | No defects or abnormalities.   | Apply voltage in Table at the maximum operating temperature ±3°C for 1000+48/-0 hours. |  |  |  |
|     | Temperature                | Capacitance | Within ±3% or ±0.3pF           |                                                                                        |  |  |  |
|     | Load                       | Change      | (Whichever is larger)          | Remove and set for 24±2 hours at *room condition, then measure.                        |  |  |  |
|     |                            | Q           | 30pF ≤ C : Q ≥ 350             | (Charge/Discharge current ≦ 50mA.)                                                     |  |  |  |
|     |                            |             | 10pF ≤ C < 30pF : Q ≥ 275+5C/2 |                                                                                        |  |  |  |
|     |                            |             | 10pF > C : Q ≧ 200+10C         | Rated voltage Test voltage                                                             |  |  |  |
|     |                            |             |                                | DC250V 150% of the rated voltage                                                       |  |  |  |
|     |                            |             | C : Nominal Capacitance (pF)   | DC630V, DC1kV 120% of the rated voltage                                                |  |  |  |
|     |                            | I.R.        | 1,000MΩ or 50MΩ•μF min.        |                                                                                        |  |  |  |
|     |                            |             | (Whichever is smaller)         |                                                                                        |  |  |  |
| 16  | Solvent                    | Appearance  | No defects or abnormalities.   | The capacitor should be fully immersed, unagitated,                                    |  |  |  |
|     | Resistance                 | Marking     | Legible                        | in reagent at 20 to 25°C for 30±5 seconds and then                                     |  |  |  |
|     |                            |             |                                | remove gently. Marking on the surface of the                                           |  |  |  |
|     |                            |             |                                | capacitor shall immediately be visually examined.                                      |  |  |  |
|     |                            |             |                                |                                                                                        |  |  |  |
|     |                            |             |                                | Regent : Isopropyl alcohol                                                             |  |  |  |

<sup>&</sup>quot;room condition" Temperature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphere pressure : 86 to 106kPa

## 6. Packing specification

•Bulk type (Packing style code : B)

The size of packing case and packing way

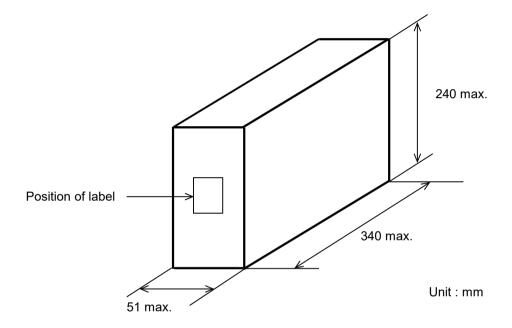


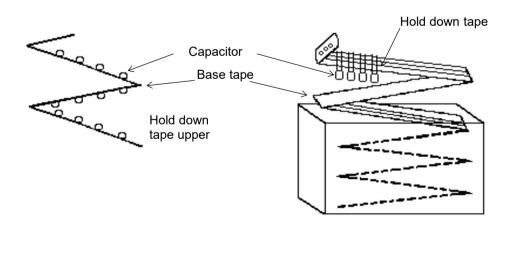
The number of packing =  $^{*1}$  Packing quantity ×  $^{*2}$  n

\*1 : Please refer to [Part number list].

\*2 : Standard n = 20 (bag)

#### Note)


The outer package and the number of outer packing be changed by the order getting amount.

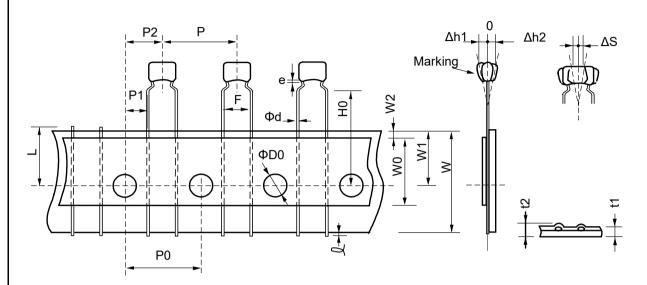

JKBCRPE02

·Ammo pack taping type (Packing style code : A)

A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.

The size of packing case and packing way



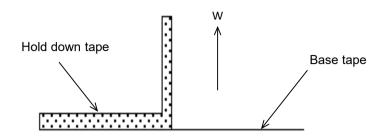



## 7. Taping specification

## 7-1. Dimension of capacitors on tape

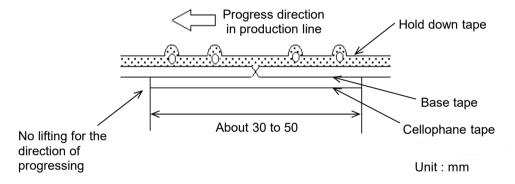
Inside crimp taping type < Lead Style : M1 >

Pitch of component 12.7mm / Lead spacing 5.0mm



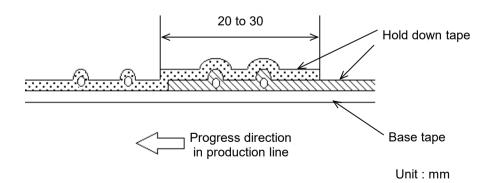

Unit: mm

| Item                                             |     | Dimensions                 | Remarks                             |  |
|--------------------------------------------------|-----|----------------------------|-------------------------------------|--|
| Pitch of component                               |     | 12.7+/-1.0                 |                                     |  |
| Pitch of sprocket hole                           |     | 12.7+/-0.2                 |                                     |  |
| Lead spacing                                     | F   | 5.0+0.6/-0.2               |                                     |  |
| Length from hole center to component center      |     | 6.35+/-1.3                 | Deviation of progress direction     |  |
| Length from hole center to lead                  | P1  | 3.85+/-0.7                 |                                     |  |
| Deviation along tape, left or right defect       | ΔS  | 0+/-2.0                    | They include deviation by lead bend |  |
| Carrier tape width                               | W   | 18.0+/-0.5                 |                                     |  |
| Position of sprocket hole                        | W1  | 9.0+0/-0.5                 | Deviation of tape width direction   |  |
| Lead distance between reference and bottom plane | H0  | 16.0+/-0.5                 |                                     |  |
| Protrusion length                                | L   | 0.5 max.                   |                                     |  |
| Diameter of sprocket hole                        | ФD0 | 4.0+/-0.1                  |                                     |  |
| Lead diameter                                    | Фd  | 0.5+/-0.05                 |                                     |  |
| Total tape thickness                             | t1  | 0.6+/-0.3                  | They include hold down tape         |  |
| Total thickness of tape and lead wire            | t2  | 1.5 max.                   | thickness                           |  |
| Deviation across tape                            | Δh1 | 2.0 max. (Di               | (Dimension code : W)                |  |
| Deviation across tape                            | Δh2 | 1.0 max. (except as above) |                                     |  |
| Portion to cut in case of defect                 | L   | 11.0+0/-1.0                |                                     |  |
| Hold down tape width                             | W0  | 9.5 min.                   |                                     |  |
| Hold down tape position                          | W2  | 1.5+/-1.5                  |                                     |  |
| Coating extension on lead                        | е   | Up to the end of           | crimp                               |  |


#### 7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.




#### 2) Splicing of tape

- a) When base tape is spliced
  - •Base tape shall be spliced by cellophane tape. (Total tape thickness shall be less than 1.05mm.)



b) When hold down tape is spliced

•Hold down tape shall be spliced with overlapping. (Total tape thickness shall be less than 1.05mm.)



- c) When both tape are spliced
  - •Base tape and hold down tape shall be spliced with splicing tape.

ETP2R01

## **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

## Murata:

| RDE5C2E221J2M1H03/ | A RDE5C2J122J2M1H03 | A RDE5C2J121J2M1H03 | A RDE5C2J122J2K1H03B |
|--------------------|---------------------|---------------------|----------------------|
| RDE5C2E332J2K1H03B | RDE5C2E272J2K1H03B  | RDE5C2E102J2K1H03B  | RDE5C2J471J2M1H03A   |
| RDE5C2J102J2K1H03B | RDE5C2E680J2K1H03B  | RDE5C2J182J2K1H03B  | RDE5C2E122J2M1H03A   |
| RDE5C2J222J2M1H03A | RDE5C2E151J2M1H03A  | RDE5C2J271J2M1H03A  | RDE5C2J470J2M1H03A   |
| RDE5C2E822J2K1H03B | RDE5C2J221J2K1H03B  | RDE5C2J390J2K1H03B  | RDE5C2E682J2K1H03B   |
| RDE5C2E220J2K1H03B | RDE5C2J152J2M1H03A  | RDE5C2J561J2M1H03A  | RDE5C2E181J2K1H03B   |
| RDE5C2J100J2M1H03A | RDE5C2E122J2K1H03B  | RDE5C2E180J2K1H03B  | RDE5C2J820J2K1H03B   |
| RDE5C2E100J2M1H03A | RDE5C2J271J2K1H03B  | RDE5C2J101J2M1H03A  | RDE5C2E222J2M1H03A   |
| RDE5C2E270J2M1H03A | RDE5C2J181J2M1H03A  | RDE5C2J150J2M1H03A  | RDE5C2E822J2M1H03A   |
| RDE5C2J680J2M1H03A | RDE5C2E820J2M1H03A  | RDE5C2E561J2K1H03B  | RDE5C2E820J2K1H03B   |
| RDE5C2E392J2M1H03A | RDE5C2E180J2M1H03A  | RDE5C2J330J2M1H03A  | RDE5C2E472J2K1H03B   |
| RDE5C2E681J2M1H03A | RDE5C2E182J2M1H03A  | RDE5C2E150J2K1H03B  | RDE5C2E562J2K1H03B   |
| RDE5C2J391J2M1H03A | RDE5C2E100J2K1H03B  | RDE5C2E272J2M1H03A  | RDE5C2J180J2M1H03A   |
| RDE5C2J270J2K1H03B | RDE5C2E682J2M1H03A  | RDE5C2J681J2K1H03B  | RDE5C2E182J2K1H03B   |
| RDE5C2E103J2K1H03B | RDE5C2E471J2K1H03B  | RDE5C2E560J2K1H03B  | RDE5C2J330J2K1H03B   |
| RDE5C2E681J2K1H03B | RDE5C2J681J2M1H03A  | RDE5C2E120J2M1H03A  | RDE5C2J152J2K1H03B   |
| RDE5C2E562J2M1H03A | RDE5C2E271J2K1H03B  | RDE5C2J222J2K1H03B  | RDE5C2E152J2K1H03B   |
| RDE5C2E270J2K1H03B | RDE5C2J220J2K1H03B  | RDE5C2J150J2K1H03B  | RDE5C2E680J2M1H03A   |
| RDE5C2E821J2K1H03B | RDE5C2J331J2K1H03B  | RDE5C2J680J2K1H03B  | RDE5C2J270J2M1H03A   |
| RDE5C2J220J2M1H03A | RDE5C2J181J2K1H03B  | RDE5C2E151J2K1H03B  | RDE5C2E220J2M1H03A   |
| RDE5C2E561J2M1H03A | RDE5C2E102J2M1H03A  | RDE5C2E390J2K1H03B  | RDE5C2E470J2K1H03B   |
| RDE5C2E390J2M1H03A | RDE5C2E331J2K1H03B  | RDE5C2J120J2K1H03B  | RDE5C2J560J2M1H03A   |
| RDE5C2E152J2M1H03A | RDE5C2J121J2K1H03B  | RDE5C2J391J2K1H03B  | RDE5C2E120J2K1H03B   |
| RDE5C2E221J2K1H03B | RDE5C2E332J2M1H03A  | RDE5C2J221J2M1H03A  | RDE5C2J820J2M1H03A   |
| RDE5C2E391J2M1H03A | RDE5C2E103J2M1H03A  | RDE5C2J151J2M1H03A  | RDE5C2E821J2M1H03A   |