

DATA SHEET

SURFACE-MOUNT CERAMIC MULTILAYER CAPACITORS

General purpose & High capacitance

Class 2, Y5V

6.3 V TO 50 V

10~nF to 47 μF RoHS compliant & Halogen Free

YAGEO

Surface-Mount Ceramic Multilayer Capacitors

Y5V 6.3 V to 50 V

SCOPE

This specification describes Y5V series chip capacitors with leadfree terminations.

<u>APPLICATIONS</u>

Consumer electronics, for example:

- Tuners
- Television receivers
- Video recorders
- All types of cameras
- Mobile telephones

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen Free compliant

ORDERING INFORMATION-GLOBAL PART NUMBER, PHYCOMP CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC xxxx x x Y5V x BB xxx (1) (2) (3)

(I) SIZE - INCH BASED (METRIC)

0201 (0603)

0402 (1005)

0603 (1608)

0805 (2012)

1206 (3216)

1210 (3225)

(2) TOLERANCE

 $M = \pm 20\%$

Z = -20% to +80%

(3) PACKING STYLE

R = Paper/PE taping reel; Reel 7 inch

K = Blister taping reel; Reel 7 inch

P = Paper/PE taping reel; Reel 13 inch

F = Blister taping reel; Reel 13 inch

(4) RATED VOLTAGE

5 = 6.3 V

6 = 10 V

7 = 16 V

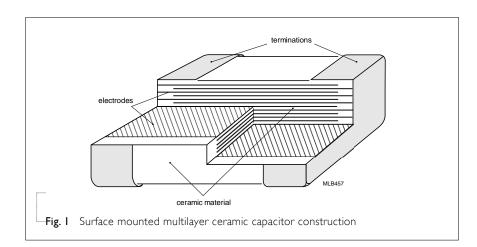
8 = 25 V

9 = 50 V

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point


Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

CONSTRUCTION

YAGEO

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig.I.



DIMENSION

Table I For outlines see fig. 2

TYPE	(mm)	\\/ (mm)	T (MM)	L ₂ / L ₃ (mm)		L ₄ (mm)
IIFE	L _I (mm) W (mm)		1 (11111)	min.	max.	min.
0201	0.6 ±0.03	0.3 ±0.03	=	0.10	0.20	0.20
0402	1.0 ±0.05	0.5 ±0.05	_	0.15	0.35	0.30
0603	1.6 ±0.10	0.8 ±0.10		0.20	0.60	0.40
0805	2.0 ±0.10 ⁽¹⁾	1.25 ±0.10 ⁽¹⁾		0.25	0.75	0.70
0803	2.0 ±0.20 ⁽²⁾	1.25 ±0.20 ⁽²⁾	-	0.23	0.75	0.70
1206	3.2 ±0.15 ⁽¹⁾	1.6 ±0.15 ⁽¹⁾	Refer to table 2 to 4	0.25	0.75	1.40
1200	3.2 ±0.30 ⁽²⁾	1.6 ±0.20 ⁽²⁾	- Lable 2 to 4	0.23	0.73	1.10
1210	3.2 ±0.20 ^(I)	2.5 ±0.20 ⁽¹⁾		0.25	0.75	1.40
1210	3.2 ±0.40 ⁽²⁾	2.5 ±0.30 ⁽²⁾	_	0.23	0.73	1.40
1812	4.5 ±0.20 ^(I)	3.2 ±0.20 ^(I)		0.25	0.75	2.20
1012	4.5 ±0.40 ⁽²⁾	3.2 ±0.40 ⁽²⁾		0.25	0.75	2.20

OUTLINES

NOTE

- 1. Dimension for size 0805 to 1812, $C \le 100 \text{ nF}$
- 2. Dimension for size 0805 to 1812, C > 100 nF

Y5V 6.3 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR Y5V

 Table	2	Sizes	from	0201	to	0402
iabie	_	\mathcal{I}	II OI I I	0201	ιO	UTUZ

CAP.	0201		0402				
	6.3 V	25 V	6.3 V	10 V	16 V	25 V	50 V
IO nF		0.3±0.03		0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05
22 nF				0.5±0.05	0.5±0.05	0.5±0.05	
47 nF				0.5±0.05	0.5±0.05	0.5±0.05	
100 nF	0.3±0.03		0.5±0.05	0.5±0.05	0.5±0.05	0.5±0.05	
220 nF			0.5±0.05	0.5±0.05	0.5±0.05		
470 nF			0.5±0.05	0.5±0.05	0.5±0.05		
Ι.Ο μF			0.5±0.05	0.5±0.05			
2.2 µF							
4.7 µF							
IO μF							
22 µF							
47 µF							

Table 3 Sizes from 0603 to 0805

CAP.	0603					0805				
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50 V
10 nF				0.8±0.1	0.8±0.1				0.6±0.1	0.6±0.1
22 nF				0.8±0.1	0.8±0.1				0.6±0.1	0.6±0.1
47 nF				0.8±0.1	0.8±0.1				0.6±0.1	0.6±0.1
100 nF			0.8±0.1	0.8±0.1	0.8±0.1				0.6±0.1	0.6±0.1
220 nF			0.8±0.1	0.8±0.1	0.8±0.1			0.6±0.1	0.85±0.1	0.85±0.1
470 nF			0.8±0.1	0.8±0.1				0.85±0.1	0.85±0.1	0.85±0.1
Ι.0 μF	0.8±0.1	0.8±0.1	0.8±0.1	0.8±0.1				0.85±0.1	0.85±0.1	1.25±0.2
2.2 μF	0.8±0.1	0.8±0.1	0.8±0.1			0.85±0.1	0.85±0.1	0.85±0.1	1.25±0.2	
4.7 µF	0.8±0.1	0.8±0.1				0.85±0.1	0.85±0.1	1.25±0.2		
ΙΟ μF						1.25±0.2	1.25±0.2			
22 µF						1.25±0.2	1.25±0.2			
47 µF										

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-3 series is on request

Y5V 6.3 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR Y5V

Table 4	Sizes from	1206 to 1210	

CAP.	1206					1210				
	6.3 V	10 V	16 V	25 V	50 V	6.3 V	10 V	16 V	25 V	50V
IO nF				0.6±0.1	0.6±0.1					
22 nF				0.6±0.1	0.6±0.1					
47 nF				0.6±0.1	0.6±0.1					
100 nF				0.6±0.1	0.6±0.1					
220 nF				0.6±0.1	0.6±0.1					
470 nF				0.85±0.1	0.85±0.1					
Ι.0 μF			0.85±0.1	0.85±0.1	0.85±0.1					
2.2 µF		0.85±0.1	0.85±0.1	0.85±0.1						
4.7 µF		0.85±0.1	0.85±0.1							
ΙΟ μF	0.85±0.1	0.85±0.1	1.15±0.1	1.6±0.2		1.5±0.1	1.5±0.1	1.5±0.1	1.5±0.1	1.5±0.1
22 µF	1.6±0.2	1.6±0.2	1.6±0.2			1.6±0.2	1.6±0.2	1.6±0.2		
47 µF										

NOTE

- 1. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-3 series is on request

Surface-Mount Ceramic Multilayer Capacitors | General Purpose & High Cap. | Y5V | 6.3 V to 50 V

THICKNESS CLASSES AND PACKING QUANTITY

_	_			_
	n	h	\sim	٠.
	ıa	u	_	J

SIZE	THICKNESS	TAPE WIDTH -	Ø180 MM	/ 7 INCH	Ø330 MM	/ 13 INCH	QUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1206	1.25 ±0.2 mm	8 mm		3,000		10,000	
	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		10,000	
	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			

Surface-Mount Ceramic Multilayer Capacitors

General Purpose & High Cap.

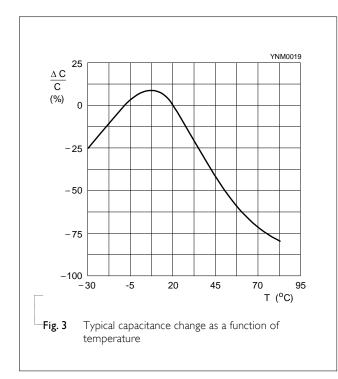
Y5V 6.3 V to 50 V

ELECTRICAL CHARACTERISTICS

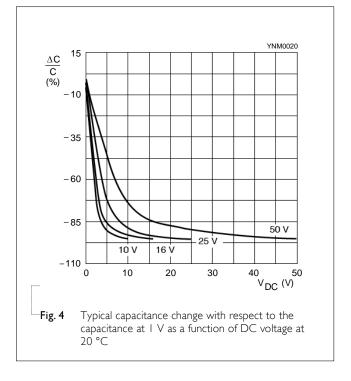
Y5V DIELECTRIC CAPACITORS; NISN TERMINATIONS

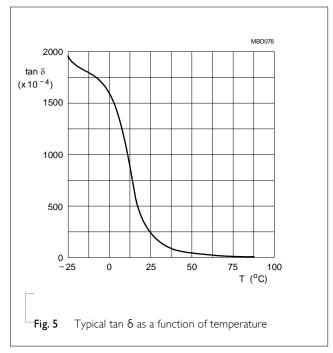
Unless otherwise specified, all test and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

Temperature: 15 °C to 35 °C
Relative humidity: 25% to 75%
Air pressure: 86 kPa to 106 kPa


Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.


Table 6			
DESCRIPTION			VALUE
Capacitance range			10 nF to 22 μF
Canaditan as talawan as			±20%
Capacitance tolerance			-20% to +80%
Dissipation factor (D.F.)	≤ 6.3 V		≤ 15%
		Exception:	2 0805 ≥ 22 μF ≤ 20%
	10 V		≤ 12.5%
		Exception:	: 0402 ≥ 680 nF; 0603 ≥ 2.2 μF; ≤ 15%
			0805 ≥ 10 μF; 1206 ≥ 10 μF ≤ 20%
	16 V		≤ 12.5%
		Exception:	: 0603 ≥ 4.7 μF ≤ 15%
			1206 ≥ 10 μF ≤ 20%
	≥ 25 V		≤ 9%
		Exception:	: 0201 ≥ 10 nF ≤ 12.5%
			Rins \geq 10 G Ω or Rins \times Cr \geq 500 Ω .F whichever is less
Insulation resistance after	I minute at U	(DC)	Rins × Cr \geq 100 $\Omega.F$: 0603 , 4.7uF, 6.3V and 10V; 0805, 22uF, 10V
-			Rins × Cr ≥ 50Ω.F: 0805, 22uF, 6.3V
Maximum capacitance cha	inge as a function	on of tempe	erature
(temperature characterist	ic/coefficient):		+22% to -82%
Operating temperature ra	ange:		–30 °C to +85 °C



YAGEO

SOLDERING RECOMMENDATION

Table 7

SOLDERING	SIZE					
METHOD	0201	0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	> 100 nF	> 1.0 µF	> 2.2 µF	> 2.2 µF	Reflow only
Reflow/Wave		≤ 100 nF	≤ 1.0 µF	≤ 2.2 µF	≤ 2.2 µF	

TESTS AND REQUIREMENTS

Table 8	Test	procedures an	d requirements
---------	------	---------------	----------------

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS		
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage		
Visual inspection and dimension check		4.4	Any applicable method using × 10 magnification	In accordance with specification		
Capacitance (1)		4.5.1	Class 2: At 20 °C, 24 hrs after annealing $f = 1 \text{ KHz for } C \leq 10 \mu\text{F, rated voltage} > 6.3 \text{ V, measuring at voltage } 1 \text{ V}_{ms} \text{ at } 20 \text{ °C}$ $f = 1 \text{ KHz, for } C \leq 10 \mu\text{F, rated voltage} \leq 6.3 \text{ V, measuring at voltage } 0.5 \text{ V}_{ms} \text{ at } 20 \text{ °C}$ $f = 120 \text{ Hz for } C > 10 \mu\text{F, measuring at voltage } 0.5 \text{ V}_{ms} \text{ at } 20 \text{ °C}$	Within specified tolerance		
Dissipation factor (D.F.) (1)		4.5.2	Class 2: At 20 °C, 24 hrs after annealing $f = 1 \text{ KHz for } C \leq 10 \mu\text{F, rated voltage} > 6.3 \text{ V, measuring at voltage } 1 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 1 \text{ KHz, for } C \leq 10 \mu\text{F, rated voltage} \leq 6.3 \text{ V, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$ $f = 120 \text{ Hz for } C > 10 \mu\text{F, measuring at voltage } 0.5 \text{ V}_{rms} \text{ at } 20 \text{ °C}$	In accordance with specification		
Insulation resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification		
Temperature characteristic		4.6	Class 2: Between minimum and maximum temperature Y5V: -30 °C to +85 °C Normal Temperature: 20 °C	<general purpose="" series=""> ΔC/C Class 2: Y5V: 22% to -82% <high capacitance="" series=""> ΔC/C Class 2: Y5V: 22% to -82%</high></general>		
Adhesion		4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N size = 0402: 2.5N size = 0201: 1N		

NOTE:

 $\label{eq:local_special} \textbf{I. For individual product specification, please contact local sales.}$

Y5V 6.3 V to 50 V

TEST	TEST METHOD		PROCEDURE	REQUIREMENTS
Bending strength	IEC 60384- 21/22	4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3	No visible damage
, and the second			Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	<general purpose="" series=""> ΔC/C</general>
				Class2: Y5V: ±10%
				<high capacitance="" series=""></high>
				ΔC/C
				Class2: Y5V: ±10%
Resistance to soldering heat		4.9	Precondition: $150 \pm 0/-10$ °C for I hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for I minute	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			Preheating: for size >1206: 100 °C to 120 °C for I	<general purpose="" series=""></general>
			minute and 170 °C to 200 °C for I minute	ΔC/C
			Solder bath temperature: 260 ±5 °C Dipping time: 10 ±0.5 seconds	Class2: Y5V: ±20%
			Recovery time: 24 ±2 hours	<high capacitance="" series=""></high>
				ΔC/C
				Class2:
				Y5V: ±20%
			-	D.F. within initial specified value
				R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			I. Temperature: 235±5°C / Dipping time: 2 ±0.5 s	
			2. Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free)	
			Depth of immersion: 10mm	

Surface-Mount Ceramic Multilayer Capacitors General Purpose & High Cap. Y5V 6.3 V to 50 V

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Rapid change of temperature	IEC 60384- 21/22	4.11	Preconditioning; 150 +0/-10 °C for I hour, then keep for 24 ± I hours at room temperature 5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature Recovery time 24 ±2 hours	No visual damage <general purpose="" series=""> ΔC/C Class2: Y5V: ±20% <high capacitance="" series=""> ΔC/C Class2: Y5V: ±20% D.F. meet initial specified value R_{ins} meet initial specified value</high></general>
Damp heat with U _r load		4.13	 Preconditioning, class 2 only: 150 +0/-10 °C /I hour, then keep for 24 ± I hour at room temp Initial measure: Spec: refer initial spec C, D, IR Damp heat test: 500 ± I 2 hours at 40 ± 2 °C; 90 to 95% R.H. I.0 U_r applied Recovery: Class 2: 24 ± 2 hours Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be precondition according to "IEC 60384 4.1" and then the requirement shall be met. 	No visual damage after recovery

Surface-Mount Ceramic Multilayer Capacitors | General Purpose & High Cap. | Y5V | 6.3 V to 50 V

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
TEST Endurance	IEC 60384- 4.14 21/22	I. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp 2. Initial measure: Spec: refer initial spec C, D, IR 3. Endurance test: Temperature: Y5V: 85 °C Specified stress voltage applied for 1,000 hours: Applied 2.0 × U _r for general product. Applied 1.5 × U _r for high cap. product. 4. Recovery time: 24 ±2 hours 5. Final measure: C, D, IR P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be precondition according to "IEC 60384 4.1" and then the requirement shall be met.	No visual damage
			R_{ins} Class 2: Y5V: 1,000 M Ω or $R_{ins} \times C_r \ge 10s$ whichever is less
Voltage proof	IEC 60384-1 4.6	Specified stress voltage applied for 1~5 seconds Ur ≤100 V: series applied 2.5 Ur Charge/Discharge current is less than 50 mA	No breakdown or flashover

Surface-Mount Ceramic Multilayer Capacitors | General Purpose & High Cap. | Y5V | 6.3 V to 50 V

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 13	Aug. 10, 2023	-	- 1206, IuF, I6V and 50V
Version 12	Dec. 14, 2022	-	- Add 0603, 220nF, 50V
Version 11	Oct. 05, 2021	-	- Update 0805, 1210 I.R. spec, modify 0402 L4 spec
Version 10	Apr. 29, 2021	-	- Update 206 ≥ 0 μF, 6V Df value
Version 9	Nov. 11, 2019	-	- Add 0603, 4.7uF, 10V
Version 8	Mar. 7, 2017	-	- 0805 L4 spec updated
Version 7	Dec. 9, 2016	-	- Soldering recommendation update
Version 6	Jan. 12, 2016	-	- Update capacitance range & thickness
Version 5	Jul. 29, 2010	-	- Modify the last 2-digit of I 2NC
Version 4	Jun. 24, 2010	-	- Dimension on 1206 case size updated
Version 3	Apr. 22, 2010	-	- Dimension updated
Version 2	Feb. 04, 2010	-	- The statement of "Halogen Free" on the cover added
Vamian	Nov. 04, 2009		- Ordering code updated
Version I			- Dimension updated
Version 0	Apr. 15, 2009	-	- New datasheet for general purpose and high capacitance Y5V series with RoHS compliant
			- Replace the "6.3V to 50V" part of pdf files: Y5V_6.3V_10V_9_Preliminary, Y5V_10V-to-50V_10_Preliminary, Y5V_16V_25V_50V_11
			- Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NPOX5RX7RY5V_0201_6.3-to-50V_2
			- Define global part number
			- Description of "Halogen Free compliant" added
			- Test method and procedure updated

Surface-Mount Ceramic Multilayer Capacitors

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.