

XBT-3535-UV Surface Mount UVC LED

Table of Contents

Binning and Ordering Information2
Optical and Electrical Characteristics 4
Mechanical Dimensions 7
Soldering Profile8
Product Shipping & Labeling Information9
Precautions for Use 10
History of Changes 11

Features:

- UVC LED with emission wavelength between 270 nm and 285 nm
- High Optical Power: Up to 80 mW of UVC power at maximum rated current
- Compact form factor: 3.5 mm x 3.5 mm package with optically transparent window
- Viewing angle of 130 degrees
- Standard SMT process
- RoHS and REACH compliant

Applications

- Water/ Air/ Surface Disinfection
- Healthcare
- Food & Pharmaceutical Processing
- Analytical Instruments
- Horticulture

XBT-3535-UV Binning Structure

XBT-3535-UV LEDs are tested at a drive current of 350 mA, 20 ms single pulse at 25° C and placed into one of the following radiometric flux, wavelength, and forward voltage bins.

Radiometric Flux Bins

The LEDs can also be driven at higher drive currents, to achieve the correlated flux values listed in the table.

Flux Bin (FF)	Minimum Flux (mW)	Maximum Flux (mW)	C	х	
	350 mA, 25º C	350 mA, 25º C	500 mA	650 mA	800 mA
СС	30	35	42	55	68
CD	35	40	49	64	79
CE	40	45	56	74	90
CF	45	50	63	83	101
CG	50	55	70	92	113

Note 1: Product lifetime is a function of drive current. Sustained operation at absolute maximum current of 800 mA will result in a reduction of device lifetime compared to typical forward drive currents (350 mA-500 mA). Actual device lifetimes will also depend on junction temperature. Contact Luminus for information on product lifetime.

Wavelength Bins

Wavelength Bin (WWW)	Minimum Wavelength (nm)	Maximum Wavelength (nm)
270	270	275
275	275	280
280	280	285

Note 2: Luminus maintains a +/-6% tolerance on flux measurements and +/-1 nm on wavelength measurements.

Forward Voltage Bins

Voltage Bin	Minimum Forward Voltage (V)	Maximum Forward Voltage (V)
V3	5.0	5.5
V4	5.5	6.0
V5	6.0	6.5
V6	6.5	7.0
V7	7.0	7.5

Note 3: Individual flux bins are not orderable. Please refer to product ordering information on page 3 for a list of ordering part numbers.

Part Number Nomenclature

XBT –	- 3535	<uv></uv>	— < A ###>	— <ff###-##></ff###-##>
Product Family	Package Type	Color	Package Configuration	Bin kit
XBT: UVC Surface Mount Package	3535: 3.5 mm x 3.5 mm	Ultraviolet	A130: 130 degree view- ing angle	Flux and Wavelength bin kit code - See ordering informaton

Ordering Part Numbers

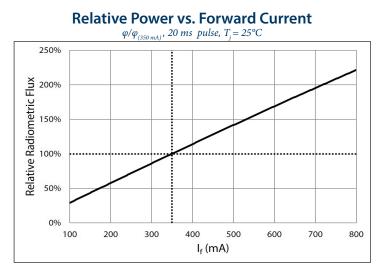
The table below lists ordering part numbers available for XBT-3535-UV LEDs. The part number includes a bin kit, a group of flux and wavelength bins described in page 2, that are shippable for a given ordering part number. Individual flux or wavelength bins are not orderable. Flux bin listed is minimum bin shipped - higher bins may be included at Luminus' discretion.

Wayalangth Danga	Radiometric Flux		Ordering Part Number	
Wavelength Range	Wavelength Bins	Bin Kit Flux Code	Min. Flux (mW)	Ordering Part Number
270-280	270, 275	СС	30	XBT-3535-UV-A130-CC270-00
275-280	275	СС	30	XBT-3535-UV-A130-CC275-01
280-285	280	СС	30	XBT-3535-UV-A130-CC280-01
275-285	275, 280	СС	30	XBT-3535-UV-A130-CC275-00
270-280	270, 275	CD	35	XBT-3535-UV-A130-CD270-00
275-280	275	CD	35	XBT-3535-UV-A130-CD275-01
280-285	280	CD	35	XBT-3535-UV-A130-CD280-01
275-285	275, 280	CD	35	XBT-3535-UV-A130-CD275-00

Optical and Electrical Characteristics^{1,3}

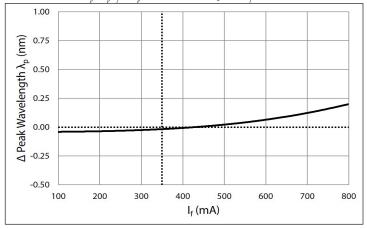
Parameter	Symbol	Value	Unit
Minimum Forward Voltage	V _{f-min}	5.0	V
Typical Forward Voltage	V _{f-typ}	6.5	V
Maximum Forward Voltage	V _{f-max}	7.5	V
FWHM	Δλ	10	nm
Viewing Angle	20 _{1/2}	130	o
Thermal Resistance (junction-solder point)	R _{th}	5.0	°C/W

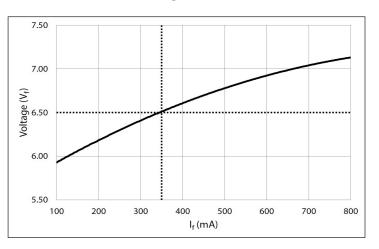
Absolute Maximum Ratings ^{2,3}

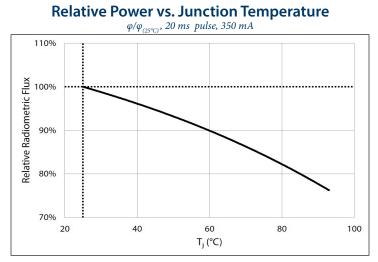

Parameter	Symbol	Value	Unit
Forward Current	 f-max	800	mA
Junction Temperature	T _{j-max}	100	°C

Note 1: Ratings are based on operation at a constant junction temperature of $T_i = 25$ °C. Test conditions: 350 mA, 20 ms pulse at 25 °C.

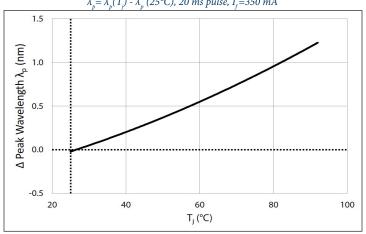
Note 2: Product lifetime is a function of drive current. Sustained operation at absolute maximum current of 800 mA will result in a reduction of device lifetime compared to typical forward drive currents (350-500 mA). Actual device lifetimes will also depend on junction temperature. Contact Luminus for details.


Note 3: XBT-3535-UV LEDs are short wavelength, deep UV LEDs. During operation, the LED emits high intensity UVC radiation, which is harmful to skin and eyes. UV light is also hazardous to skin and may cause cancer. Avoid exposure to deep UV light when LED is operational.

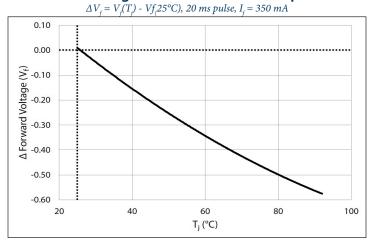



Optical & Electrical Characteristics

Peak Wavelength Shift vs. Forward Current $\lambda_{a} = \lambda_{a}(I_{c}) - \lambda_{b} (350 \text{ mA}), 20 \text{ ms pulse}, T_{i} = 25^{\circ}C$

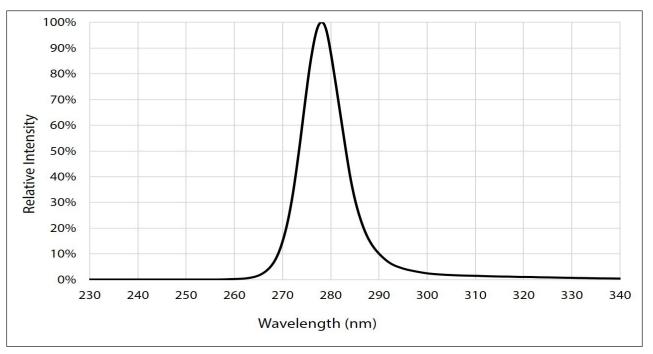


Forward Voltage vs Forward Current

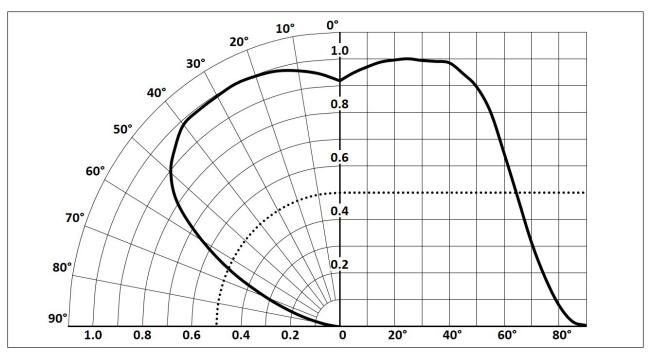


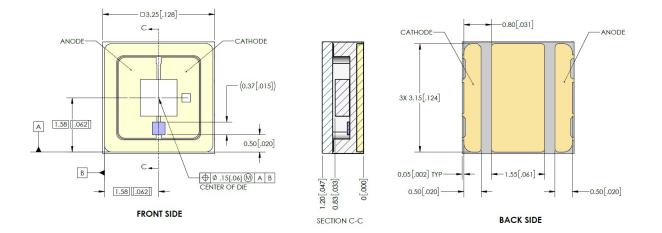
Peak Wavelength Shift vs. Junction Temperature $\lambda_{p} = \lambda_{p}(T) - \lambda_{p}$ (25°C), 20 ms pulse, $I_{c} = 350$ mA

Forward Voltage Shift vs. Junction Temperature

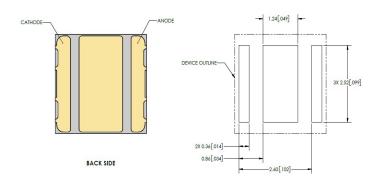


Luminus Devices, Inc. • T 408.708.7000 • www.luminus.com 1145 Sonora Court, Sunnyvale, CA 94086 USA


5

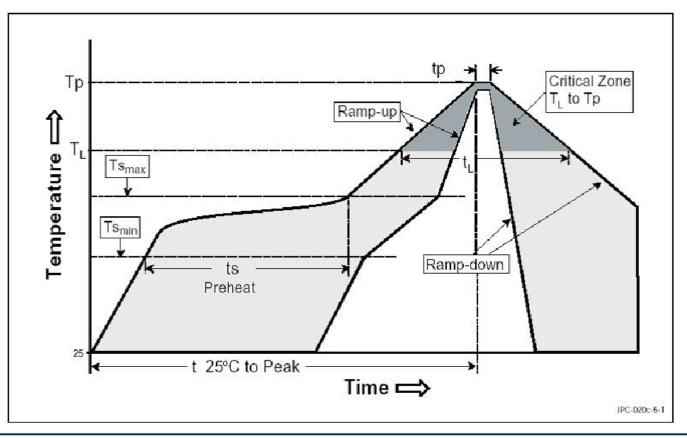


Radiation Pattern



Mechanical Dimensions

Recommended Solder Pad and Stencil Pattern


Solder Pad	3.15 mm x 0.5 mm
Stencil Pattern	2.52 mm x 0.36 mm

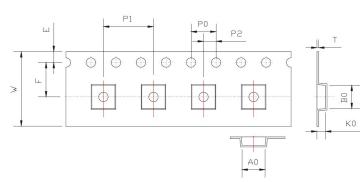
Soldering Profile

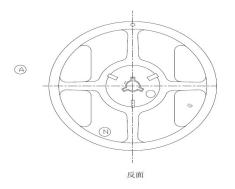
Profile Setting	Pb-Free Profile
Average Ramp-up Rate (Ts _{max} , T _p)	1 °C/sec
Preheat Temperature Min (Ts _{min})	100-150 °C
Preheat Temperature Max (Ts _{max})	180-200 °C
Preheat Time (ts _{min} to ts _{max})	60-120 sec
Liquidus Temperature (T_)	217 °C
Time Maintained Above $T_{L}(t_{L})$	50-80 sec
Peak / Classification Temperature (T _p)	260 °C
Time within 5°C of Actual Peak Temp (t_p)	Max 10 sec
Ramp-Down Rate	2-3 °C /sec
25°C to Peak Temperature time	4 mins

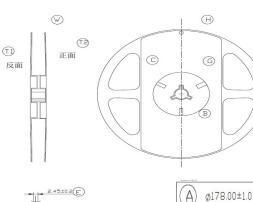
Luminus recommends that users follow the recommended soldering profile provided by the manufacturer of the solder paste used. Note that this general guideline may not apply to all PCB designs and configurations.

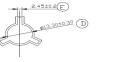
1.3±0.15

1.10±0.15

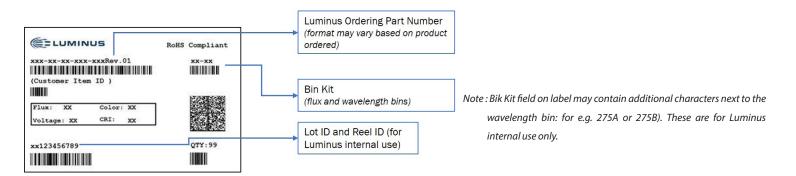

(T1)


(ZZ)


Product Shipping & Labeling Information


All XBT-3535 products are packaged and labeled with their respective bin as outlined in the tables on pages 2 & 3. Each reel will only contain one flux and one wavelength bin

symbol	AO	BO	KO	PO	P1	P2
Spec	3.80 ± 0.10	3.80 ± 0.10	1.35 ± 0.10	4.00±0.10	8.0±0.10	2.0 ± 0.10
symbol	W	Т	E	F	DO	D1
Spec	12.0 ± 0.3	0.25 ± 0.05	1.75±0.10	5.50 \pm 0.05	1.50+0.10	1.50 ± 0.10



XBT-3535-UV Label Information

N

Ø59.00±1.0

2.45±0.2

3.10±0.3

G)

Η

5.10±0.3

Ø4.30±0.3

E

B

9

Precautions for storage, handling and use of UV LEDs

1. UV Light

XBT-3535-UV LEDs are short wavelength, deep UV LEDs. During operation, the LED emits high intensity UVC radiation, which is harmful to skin and eyes. UV light is also hazardous to skin and may cause cancer. Avoid exposure to deep UV light when LED is operational.

Precautions must be taken to avoid looking directly at the UV light without the use of UV light protective glasses. Do not look directly at the front or at the LED's lens when LED is operational.

2. Static Electricity (ESD)

While XBT 3535 LEDs have built-in Zener protection diodes, they are particularly sensitive to ESD (Electrostatic Discharge). Static electricity and surge voltages seriously damage UV LEDs and can result in complete failure of the device. Precautions must be taken against ESD when handling or operating these devices.

3. Operating Conditions

In order to ensure the correct functioning of these LEDs, compliance to maximum allowed specifications is important. UV LEDs are particularly sensitive to drive currents that exceed the max operating specifications and may be damaged by such drive currents. The use of current regulated drive circuits is strongly recommended when operating these devices. Customers should also provide adequate thermal management to ensure LEDs do not exceed maximum recommended temperatures. Operating LEDs at temperatures in excess of specification will result in damage and possibly complete failure of the device.

History of Changes

Rev		Description of Change
1	04/01/2020	Initial Release
2	10/29/2020	New wavelength bins and Vf bins introduced