LSR102 – LSR106 Taiwan Semiconductor

1A, 20 - 60V Schottky Surface Mount Rectifier

FEATURES

- Plastic package has carries underwriters
- Ideal for automated placement
- Surge overload rating to 25A peak
- Reliable low cost construction utilizing molded
- RoHS Compliant
- Halogen-free according to IEC 61249-2-21

APPLICATIONS

- Inverters
- Converters
- Adapters

MECHANICAL DATA

- Case: MELF
- Molding compound meets UL 94V-0 flammability rating
- Meet JESD 201 class 1A whisker test
- Polarity: Indicated by cathode band
- Weight: 120.00mg (approximately)

KEY PARAMETERS			
PARAMETER	VALUE	UNIT	
I _F	1	А	
V _{RRM}	20 - 60	V	
I _{FSM}	25	А	
T _{J MAX}	150	°C	
Package	MELF		

MELF

ABSOLUTE MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted)							
PARAMETER	SYMBOL	LSR102	LSR103	LSR104	LSR105	LSR106	UNIT
Repetitive peak reverse voltage	V _{RRM}	20	30	40	50	60	V
Reverse voltage, total rms value	V _{R(RMS)}	14	21	28	35	42	V
DC blocking voltage	V _{DC}	20	30	40	50	60	V
Forward current	I _F			1			Α
Surge peak forward current 8.3ms single half sine-wave superimposed on rated load	I _{FSM}	25		A			
Junction temperature	TJ	-65 to +125 -65 to +150		°C			
Storage temperature	T _{STG}	-65 to +150			°C		

THERMAL PERFORMANCE				
PARAMETER	SYMBOL	ТҮР	UNIT	
Junction-to-ambient thermal resistance	R _{eja}	80	°C/W	

ELECTRICAL SPECIFICATIONS (T _A = 25°C unless otherwise noted)						
PARAMETER		CONDITIONS	SYMBOL	ТҮР	MAX	UNIT
Forward voltage ⁽¹⁾	LSR102 – LSR104	I _F = 1.0A	N/	-	0.55	v
Forward voltage	LSR105 – LSR106	$I_F = 1.0A$	V _F	-	0.70	v
Reverse current @ rated V _R ⁽²⁾		$T_J = 25^{\circ}C$	- I _R	-	1	mA
		T _J = 125°C		-	10	mA
Junction	LSR102 – LSR104	$1 MHz, V_{R} = 4.0 V$ C.		110	-	nE
capacitance	LSR105 – LSR106	$\frac{1}{100} 100 $	CJ	80	-	рF

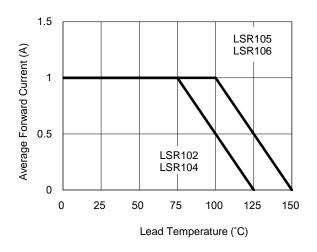
Notes:

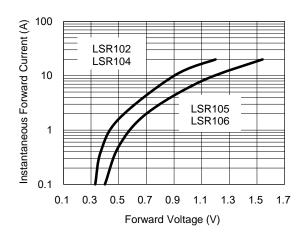
1. Pulse test with PW = 0.3ms

2. Pulse test with PW = 30ms

ORDERING INFORMATION			
ORDERING CODE ⁽¹⁾	PACKAGE	PACKING	
LSR10x L0G	MELF	5,000/13" reel	

Notes:


1. "x" defines voltage from 20V(LSR102) – 60V(LSR106)


CHARACTERISTICS CURVES

 $(T_A = 25^{\circ}C \text{ unless otherwise noted})$

Fig.3 Typical Forward Characteristics

Fig.5 Typical Junction Capacitance

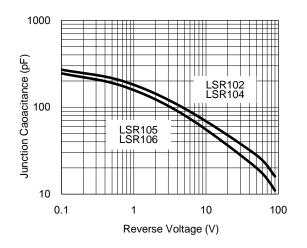
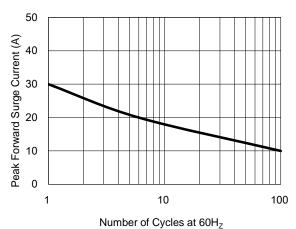
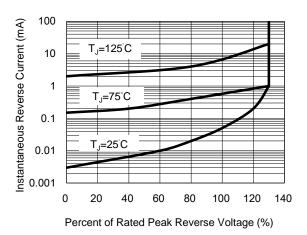




Fig.2 Maximum Non-Repetitive Peak Forward Surge Current

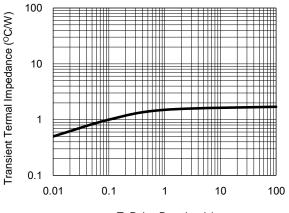
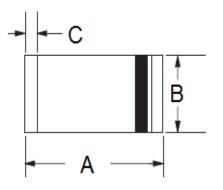
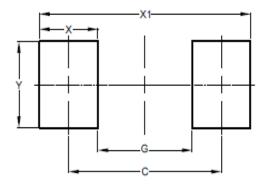


Fig.4 Typical Reverse Characteristics


Fig.6 Typical Transient Thermal Impedance


PACKAGE OUTLINE DIMENSIONS

MELF

	Unit (mm)		Unit (inch)		
DIM	Min	Max	Min	Max	
Α	4.80	5.50	0.189	0.217	
В	2.25	2.67	0.089	0.105	
С	0.30	0.60	0.012	0.024	

SUGGESTED PAD LAYOUT

DIM	Unit (mm)	Unit (inch)
DIIVI	ТҮР	ТҮР
С	4.80	0.189
G	3.30	0.130
Х	1.50	0.059
X1	6.30	0.248
Y	2.70	0.106

Taiwan Semiconductor

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies.

Purchasers are solely responsible for the choice, selection, and use of TSC products and TSC assumes no liability for application assistance or the design of Purchasers' products.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.