1 A 36V Input Low Supply Current LDO

NO.EA-329-230124

OUTLINE

R1518x is a CMOS-based LDO that specifically designed for automotive applications featuring 1 A output current and 36 V input voltage. In addition to a conventional regulator circuit, R1518x consists of a constant slope circuit as a soft-start function, a fold-back protection circuit, a short current limit circuit, and a thermal shutdown circuit. Besides the low supply current by CMOS, the operating temperature is $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ and the maximum input voltage is 36 V , the R 1518 x is very suitable for power source of car accessories. R1518x is available in R1518xxxxB/D/E/F with the internally fixed output voltage, and R1518xxxxD/F with the auto-discharge function at standby.
The output voltage of R1518x001C can be set with an external resistor, and the setting range is from 2.5 V to Max 20V.R1518xxxxB/C/D internally fixes the soft-start time at $120 \mu \mathrm{~s}$ (Typ). R1518xxxxE/F can adjust the soft-start time with an external capacitor.

R1518x is available in two packages for ultra high wattage: HSOP-6J and TO-252-5-P2.

FEATURES

- Standby Current... $0.1 \mu \mathrm{~A}$

- Packages ... TO-252-5-P2
 2.5V/3.3V/3.4V/5.0V/6.0V/8.5V/9.0V R1518x001C: Adjustable from 2.5 V to 20.0 V with external resistor
Feedback Voltage: 2.5 V
- Built-in Short Current Limit Circuit Typ. 150 mA

- Built-in Thermal Shutdown Circuit $160^{\circ} \mathrm{C}$
- Built-in Soft-start Circuit Typ. 120 нs

R1518xxxxE/F: Adjustable Time Setting with External Capacitors.

- Ceramic Capacitors can be used $\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$ R1518xxxxB/D/E/F: $0.1 \mu \mathrm{~F}$ or more

R1518x001C: $1.0 \mu \mathrm{~F}$ or more

APPLICATIONS

- Power source for home appliances such as refrigerators, rice cookers, electric water warmers.
- Power source for notebook PCs, digital TVs, telephones, private LAN systems.
- Power source for office equipment such as copiers, printers, facsimiles, scanners, and projectors

SELECTION GUIDE

The output voltage, version, and package type for this device can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1518Sxx1*-E2-FE	HSOP-6J	1,000 pcs	Yes	Yes
R1518Jxx1*-T1-FE	TO-252-5-P2	3,000 pcs	Yes	Yes

xx : Specify the set output voltage ($\mathrm{V}_{\text {SET }}$)

$$
2.5 \mathrm{~V}(25) / 3.3 \mathrm{~V}(33) / 3.4 \mathrm{~V}(34) / 5.0 \mathrm{~V}(50) / 6.0 \mathrm{~V}(60) / 8.5 \mathrm{~V}(85) / 9.0 \mathrm{~V}(90)
$$

Adjustable output voltage setting type is fixed to (00)

Note: R1518x001C-T1-\#E only support

* : Specify the version with desired functions

B: No auto-discharge function
C: No auto-discharge function / Adjustable output voltage setting
D: Auto-discharge function
E: No auto-discharge function / Adjustable soft-start time setting
F: Auto-discharge function / Adjustable soft-start time setting

Auto-Discharge function quickly lowers the output voltage to 0 V by releasing the electrical charge in the external capacitor when the chip enable signal is switched from the active mode to the standby mode.

BLOCK DIAGRAMS

R1518xxxxD

PIN DESCRIPTION

HSOP-6J

TO-252-5-P2

HSOP-6J

Pin No.	Symbol	Description	
1	VDD	Input Pin	
2	GND	Ground Pin	R1518SxxxB/D
3	NC	No Connection	R1518S001C
	VFB	Feedback Pin	R1518SxxxE/F
	DELAY	Adjustable Soft-start Time Pin	
4	CE	Chip Enable Pin, Active-high	
5	GND	Ground Pin	
6	VOUT	Output Pin	

TO-252-5-P2

Pin No.	Symbol	Description	
1	VDD	Input Pin	
2	NC	No Connection	R1518Jxx1B/D
	VFB	Feedback Pin	R1518J001C
	DELAY	Adjustable Soft-start Time Pin	R1518Jxx1E/F
3	GND	Ground Pin	
4	CE	Chip Enable Pin, Active-high	
5	VOUT	Output Pin	

[^0] level). The tab is recommended to connect to the ground plane on the board. Otherwise it may be left floating.

PIN EQUIVALENT CIRCUIT DIAGRAMS

Vout Pin

DELAY Pin
(R1518xxxxE/F)

CE Pin

$V_{\text {FB }}$ Pin
(R1518x001C)

ABSOLUTE MAXMUM RATINGS

Symbol	Item		Rating	Unit
VIN	Input Voltage		-0.3 to 50	V
VIN	Peak Input Voltage ${ }^{(1)}$		60	V
Vce	Input Voltage (CE Pin)		-0.3 to 50	V
$V_{\text {FB }}$	Input Voltage (VFb Pin)		-0.3 to 50	V
Vout	Output Voltage		-0.3 to $\mathrm{V}_{\mathrm{IN}}+0.3 \leq 50$	V
PD	Power Dissipation ${ }^{(2)}$ (JEDEC STD.51-7)	HSOP-6J	2700	mW
		TO-252-5-P2	3800	
Tj	Junction Temperature Range		-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range		-55 to 125	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECCOMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Parameter	Rating	Unit
$\mathrm{V}_{\text {IN }}$	Input Voltage	3.5 to 36	V
Ta	Operating Temperature Range	-40 to 105	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

[^1]
ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+1.0 \mathrm{~V}$, lout $=1 \mathrm{~mA}, \mathrm{C}_{\text {IN }}=$ Cout $=0.1 \mu \mathrm{~F}$, unless otherwise noted.
The specifications surrounded by \qquad are guaranteed by design engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$.

R1518xxxxB/D

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Symbol	Item	Conditions		Min.	Typ.	Max.	Unit
Vout	Output Voltage	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {SET }} \leq 5.0 \mathrm{~V}$	$\times 0.992$		$\times 1.008$	V
			$\mathrm{V}_{\text {SEt }}>5.0 \mathrm{~V}$	$\times 0.99$		$\times 1.01$	V
		$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {SET }} \leq 5.0 \mathrm{~V}$	$\times 0.982$		$\times 1.018$	V
			$\mathrm{V}_{\text {SEt }}>5.0 \mathrm{~V}$	$\times 0.98$		$\times 1.02$	V
Δ Vout IDlout	Load Regulation	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+2.0 \mathrm{~V}, 1 \mathrm{~mA} \leq$ lout $\leq 250 \mathrm{~mA}$		-15	3	25	mV
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+2.0 \mathrm{~V}, 1 \mathrm{~mA} \leq$ lout $\leq 1 \mathrm{~A}$		-60	10	60	mV
VDIF	Dropout Voltage	lout $=1 \mathrm{~A}$		Refer to the Product-specific Electrical Characteristics			
Iss	Supply Current	lout $=0 \mathrm{~mA}$			18	36	$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\text {CE }}=0 \mathrm{~V}$			0.1	2.0	$\mu \mathrm{A}$
Δ Vout $I \Delta V_{\text {IN }}$	Line Regulation	$\mathrm{V}_{\text {SET }}+0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 36 \mathrm{~V}$, Under the condition of $\mathrm{V}_{\mathrm{IN}} \geq 3.5 \mathrm{~V}$			0.01	0.02	\%/V
$\begin{aligned} & \hline \Delta \mathrm{V} \text { out } \\ & I \Delta \mathrm{Ta} \end{aligned}$	Output Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$			± 60		$\begin{aligned} & \mathrm{ppm} \\ & { }_{10} \mathrm{C} \end{aligned}$
ILIM	Output Current Limit	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+2.0 \mathrm{~V}$		1			A
Isc	Short Current Limit	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$, Vout $=0 \mathrm{~V}$			150		mA
IPD	CE Pull-down Current	$\mathrm{V}_{\text {CE }}=5.0 \mathrm{~V}$			0.2	0.6	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CE }}=36 \mathrm{~V}$			0.5	1.3	$\mu \mathrm{A}$
to1	Soft-start Time 1				120		$\mu \mathrm{s}$
$V_{\text {ceh }}$	CE Input Voltage "H"			2.2			V
$V_{\text {cel }}$	CE Input Voltage "L"					1.0	V
$\mathrm{T}_{\text {TSD }}$	Thermal Shutdown Temperature	Junction Temperature			160		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {TSR }}$	Thermal Shutdown Released Temperature	Junction Temperature			135		${ }^{\circ} \mathrm{C}$
Row	Low Output Nch Tr. ON Resistance (R1518xxxxD)	$\mathrm{V}_{\mathrm{IN}}=14.0 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$			3.2		k Ω

All test items listed under Electrical Characteristics are done under the pulse load condition ($\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$) except for Output Voltage Temperature Coefficient and Soft-start Time 1.
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {FB }}(=2.5 \mathrm{~V})+1.0 \mathrm{~V}=3.5 \mathrm{~V}$, lout $=1 \mathrm{~mA}, \mathrm{C}_{\mathrm{IN}}=0.1 \mu \mathrm{~F}$, COUT $=1.0 \mu \mathrm{~F}$ unless otherwise noted.
The specifications surrounded by \qquad are guaranteed by design engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$.

R1518x001C

518x001			$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$			
Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {fb }}$	Feedback Voltage	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	2.480		2.520	V
		$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$	2.455		2.545	V
Δ Vout IAlout	Load Regulation	$\begin{aligned} & \mathrm{V}_{\mathbb{I N}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \leq \mathrm{lout} \leq 250 \mathrm{~mA} \end{aligned}$	-10	3	10	mV
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}, \\ & 1 \mathrm{~mA} \leq \text { lout } \leq 1 \mathrm{~A} \end{aligned}$	-25	5	35	mV
$\mathrm{V}_{\text {DIF }}$	Dropout Voltage	lout $=1 \mathrm{~A}$		1.0	1.8	V
Iss	Supply Current	lout $=0 \mathrm{~mA}$		18	36	$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\text {CE }}=0 \mathrm{~V}$		0.1	2.0	$\mu \mathrm{A}$
Δ Vout / $\Delta \mathrm{V}_{\mathrm{IN}}$	Line Regulation	$3.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 36 \mathrm{~V}$		0.01	0.02	\%/V
$\Delta V_{\text {out }}$ I $\Delta \mathrm{Ta}$	Output Voltage Temperature Coefficient	$-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$		± 60		$\begin{aligned} & \mathrm{ppm} \\ & /^{\circ} \mathrm{C} \end{aligned}$
ILIM	Output Current Limit	$\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}$	1			A
Isc	Short Current Limit	$\mathrm{V}_{\text {CE }}=5.0 \mathrm{~V}$, $\mathrm{V}_{\text {OUt }}=\mathrm{V}_{\text {Fb }}=0 \mathrm{~V}$		150		mA
IPD	CE Pull-down Current	$\mathrm{V}_{\text {CE }}=5.0 \mathrm{~V}$		0.2	0.6	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CE }}=36 \mathrm{~V}$		0.5	1.3	$\mu \mathrm{A}$
to1	Soft-start Time 1			120		$\mu \mathrm{s}$
$\mathrm{V}_{\text {ceh }}$	CE Input Voltage "H"		2.2			V
Vcel	CE Input Voltage "L"				1.0	V
TTsD	Thermal Shutdown Temperature	Junction Temperature		160		${ }^{\circ} \mathrm{C}$
TTSR	Thermal Shutdown Released Temperature	Junction Temperature		135		${ }^{\circ} \mathrm{C}$

$V_{\text {OUT }}=\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}$ (excluding short circuit current)
All test items listed under Electrical Characteristics are done under the pulse load condition ($\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$) except for Output Voltage Temperature coefficient and Soft-start Time 1.
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+1.0 \mathrm{~V}$, Iout $=1 \mathrm{~mA}, \mathrm{C}_{\text {IN }}=\mathrm{C}_{\text {out }}=0.1 \mu \mathrm{~F}$, unless otherwise noted.
The specifications surrounded by \qquad are guaranteed by design engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$.

R1518xxxxE/F

$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

All test items listed under Electrical Characteristics are done under the pulse load condition ($\mathrm{Tj} \approx \mathrm{Ta}=25^{\circ} \mathrm{C}$) except for Output Voltage Temperature Coefficient, Soft-start Time 1, and Soft-start Time 2.

The specifications surrounded by \square are guaranteed by design engineering at $-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$.

R1518xxxxB/D/E/F Product-specific Electrical Characteristics

$$
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)
$$

Product Name	Vout [V] ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)			Vout [V] $\left(-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}\right)$			$\mathrm{V}_{\text {dif }}$ [V]	
	Min.	Typ.	Max.	Min.	Typ.	Max.	Typ.	Max.
R1518x251x	2.480	2.500	2.520	2.455	2.500	2.545	1.00	1.80
R1518x331x	3.274	3.300	3.326	3.241	3.300	3.359	0.90	1.60
R1518x341x	3.373	3.400	3.427	3.339	3.400	3.461		
R1518x501x	4.960	5.000	5.040	4.910	5.000	5.090	0.70	1.30
R1518x601x	5.940	6.000	6.060	5.880	6.000	6.120		
R1518x851x	8.415	8.500	8.585	8.330	8.500	8.670	0.65	1.10
R1518x901x	8.910	9.000	9.090	8.820	9.000	9.180	0.65	1.10

OPERATION DESCRIPTION

Thermal Shutdown Function

Thermal shutdown function is included in this device. If the junction temperature is more than or equal to $160^{\circ} \mathrm{C}$ (Typ.), the operation of the regulator would stop. After that, when the junction temperature is less than or equal to $135^{\circ} \mathrm{C}$ (Typ.), the operation of the regulator would restart. Unless the cause of rising temperature is removed, the regulator repeats on and off, and output waveform would be like consecutive pulses.

Adjustable Output Voltage Setting (R1518x001C)

The output voltage of R1518x001C can be adjusted by using the external divider resistors (R1, R2). By using the following equation, the output voltage ($\mathrm{VOut}_{\text {) }}$ can be determined. The voltage which is fixed inside the IC is described as V_{Fb}.

$$
V_{\text {OUT }}=V_{F B} \times((R 1+R 2) / R 2)
$$

Recommended Range: $2.5 \mathrm{~V} \leq \mathrm{V}_{\text {out }} \leq 20.0 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{FB}}=2.5 \mathrm{~V}
$$

Output Voltage Adjustment Using External Divider Resistors (R1, R2)

RIC of the R1518x001C is approximately Typ. $1.35 \mathrm{M} \Omega\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, guaranteed by design engineering). For better accuracy, setting R1 << RIc reduces errors. The resistance value for R2 should be set to $10 \mathrm{k} \Omega$ or lower. It is easily affected by noises when setting the value of R 1 and R 2 larger, which makes the impedance of V_{FB} pin larger.

Ric could be affected by the temperature, therefore evaluate the circuit taking the actual conditions of use into account when deciding the resistance values for R1 and R2.

Soft-start Function

R1518x is equipped with a constant slope circuit, which achieves a soft-start function. This circuit allows the output voltage to start up gradually when the CE is turned on. The constant slope circuit minimizes the inrush current at the start-up and also prevents the overshoot of the output voltage. For R1518xxxxB/C/D, the capacitor to create the start-up slope is built in this device that does not require any external components. The start-up time and the start-up slope angle are fixed inside the device. As for R1518xxxxE/F, the soft-start time is adjustable by inserting the external capacitor to DELAY pin. By using the following equation, the relation between the soft-start time to $[\mathrm{s}]$ and DELAY pin capacitor $\mathrm{C}_{\mathrm{D}}[F]$ is determined.

$$
t_{D}=\left(\left(C_{D}+90 \times 10^{-12}\right) / \text { IdeLaY }\right) \times 0.73
$$

When the capacitor Co_{o} of R1518xxxxE/F is not used, use the DELAY pin as OPEN. At that time, $\mathrm{C}_{\mathrm{o}}=0$ in the above equation, therefore the start-up time is about $26 \mu \mathrm{~s}$. However, be sure to consider approximately $50 \mu \mathrm{~s}$ of CE delay time.

The capacity (C_{D}) of the DELAY pin is discharged when $V_{\mathbb{I}}$ is input and $C E=L$. If the C_{D} is restarted without being discharged, the soft start time may be shorter than the set time.

Conventional Inrush Current Limit Circuit
(Diagrammatic sketch)

Constant Slope Circuit
(Diagrammatic sketch)

APPLICATION INFORMATION

TYPICAL APPLICATION

R1518xxxxB/D Typical Application

R1518x001C Typical Application

R1518xxx1E/F Typical Application

External Components :

Symbol	
R1518xxxxB/D/E/F	
$\mathrm{C}^{2}\left(\mathrm{C}_{\mathrm{IN}}\right)$	
C2 (Cout)	

ESR vs. Output Current

It is recommended that a ceramic type capacitor be used for this device. However, other types of capacitors having lower ESR can also be used. The relation between the output current (lоut) and the ESR of output capacitor is shown below.

R1518xxxxE/F Test Circuit

Measurement conditions

Frequency Band: 10 Hz to 2 MHz
Measurement Temperature: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
Hatched area: Noise level is $40 \mu \mathrm{~V}$ (average) or below
Capacitor: C1 $=$ Ceramic $0.1 \mu \mathrm{~F}, \mathrm{C} 2=0.1 \mu \mathrm{~F}$
R1518x25xx Output Current lout vs. ESR
Vin=2.5V to 36 V

R1518x001C Test Circuit
I

都
TECHNICAL NOTES

Phase Compensation

In LDO regulators, phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, use $0.1 \mu \mathrm{~F}$ or more (R1518xxxxB/D/E/F), $1.0 \mu \mathrm{~F}$ or more (R1518x001C) of the capacitor C2. When using a tantalum type capacitor and the ESR (Equivalent Series Resistance) value is large, the output might be unstable. Evaluate the circuit including consideration of frequency characteristics. For the externally adjustable output voltage type (R1518x001C), use $10 \mathrm{k} \Omega$ or lower resistance R2.

PCB Layout

Ensure the $V_{D D}$ and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result. Connect $0.1 \mu \mathrm{~F}$ or more of the capacitor C 1 between the V_{DD} and GND, and as close as possible to the pins.
In addition, connect the capacitor C2 between Vout and GND, and as close as possible to the pins.

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

1) Output Voltage vs. Output Current ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1518x25xx, R1518x001C

R1518x50xx

R1518x33xx

R1518x85xx

2) Output Voltage vs. Input Voltage $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

R1518x85xx

3) Supply Current vs. Input Voltage (lout $=0 \mathrm{~mA}$)

R1518x50xx

R1518x33xx

R1518x85xx

4) Output Voltage vs. Operating Temperature

R1518x50xx

5) Dropout Voltage vs. Output Current

R1518x25xx, R1518x001C

Output Current lout (mA)

R1518x33xx

R1518x85xx

6) Ripple Rejection vs. Input Voltage ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, Ripple $=0.2 \mathrm{Vpp}$)

R1518x25xx, R1518x001C (lout $=1 \mathrm{~mA}$)

R1518x25xx, R1518x001C $($ lout $=300 \mathrm{~mA})$

R1518x33xx (lout $=\mathbf{3 0 0} \mathbf{m A}$)

R1518x85xx (lоит $=1 \mathrm{~mA}$)

$R 1518 \times 50 x x$ (lout $=\mathbf{3 0 0} \mathbf{m A}$)

R1518x85xx (lочт $=\mathbf{3 0 0} \mathbf{m A}$)

7) Ripple Rejection vs. Frequency ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, Ripple $=0.2 \mathrm{Vpp}$)

R1518x25xx, R1518x001C

R1518x33xx

R1518x85xx

8) Input Transient Response ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, lout $=1 \mathrm{~mA}, \mathrm{tr}=\mathbf{t f}=5 \boldsymbol{\mu s}$)

$$
R 1518 x 25 x x, R 1518 x 001 C(C 2=0.1 \mu F)
$$

R1518x33xx (C2 = $0.1 \boldsymbol{\mu F}$)

R1518x25xx, R1518x001C (C2 = $10 \mu \mathrm{~F})$

R1518x33xx (C2 = $10 \mu \mathrm{~F}$)

9) Load Transient Response ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {out }}+1.0 \mathrm{~V}$, tr $=\mathrm{tf}=0.5 \mu \mathrm{~s}$)

$$
R 1518 x 25 x x, R 1518 x 001 C(C 2=0.1 \mu F)
$$

R1518x25xx, R1518x001C (C2 = $10 \mu \mathrm{~F})$

$R 1518 \times 50 x x(C 2=0.1 \mu \mathrm{~F})$

R1518x85xx (C2 = $0.1 \mu \mathrm{~F})$

$R 1518 \times 33 x x(C 2=10 \mu \mathrm{~F})$

10) CE Transient Response ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1518x25xB/D, R1518x001C (C2 = $0.1 \mu \mathrm{~F}$)

$R 1518 \times 33 x B / D(C 2=0.1 \mu F)$

$R 1518 \times 50 \times B / D(C 2=0.1 \mu F)$

$\begin{array}{lllllllllll}-0.1 & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9\end{array}$
Timet (ms)

R1518x25xD (C2 = $0.1 \mu \mathrm{~F}$)

R1518x33xD (C2 = $0.1 \mu \mathrm{~F})$

R1518x50xD (C2 = $0.1 \mu \mathrm{~F})$

$R 1518 \times 25 x E / F\left(C 2=0.1 \mu F, C_{D}=1 n F\right)$

$$
R 1518 \times 33 \times E / F\left(C 2=0.1 \mu F, C_{D}=1 n F\right)
$$

R1518x85xD (C2 = $0.1 \mu \mathrm{~F})$

$R 1518 \times 25 \times F\left(C 2=0.1 \mu F, C_{D}=1 n F\right)$

$R 1518 \times 33 \times F\left(C 2=0.1 \mu F, C_{D}=1 n F\right)$

$$
R 1518 \times 50 \times E / F\left(C 2=0.1 \mu F, C_{D}=1 n F\right)
$$

$R 1518 \times 851 E / F\left(C 2=0.1 \mu F, C_{D}=1 n F\right)$
$R 1518 \times 50 \times F\left(C 2=0.1 \mu F, C_{D}=1 n F\right)$

$R 1518 \times 851 \mathrm{~F}(\mathrm{C} 2=0.1 \mu \mathrm{~F}, \mathrm{CD}=1 \mathrm{nF})$

11) Inrush Current Prevention Circuit ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, lоut $=1 \mathrm{~mA}$)

R1518x50xB/D

R1518x33xB/D

R1518x85xB/D

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100\% of 50 mm Square
Through-holes	$\phi 0.3 \mathrm{~mm} \times 28$ pcs

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	2700 mW
Thermal Resistance (日ja)	$\theta \mathrm{ja}=37^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi \mathrm{jt})$	$\psi j \mathrm{j}=7^{\circ} \mathrm{C} / \mathrm{W}$

Өja: Junction-to-Ambient Thermal Resistance
ψj t: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

The above graph shows the power dissipation of the package at Tjmax $=125^{\circ} \mathrm{C}$ and $\mathrm{Tjmax}=150^{\circ} \mathrm{C}$.
Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)
13,000 hours	9 years

HSOP-6J Package Dimensions

Nisshinbo Micro Devices Inc.
(1) (2) (3) 4): Product Code ... Refer to "R1518S MARK SPECIFICATION TABLE (HSOP-6J)"
(5) (6) Lot Number ... Alphanumeric Serial Number

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

R1518S MARK SPECIFICATION TABLE (HSOP-6J)

R1518Sxx1B

Product Name	(1) (2) (3) (4)	$\mathrm{V}_{\text {SET }}$
R1518S251B	W125	2.5 V
R1518S331B	W 133	3.3 V
R1518S341B	W 134	3.4 V
R1518S501B	W 150	5.0 V
R1518S601B	W 160	6.0 V
R1518S851B	W 185	8.5 V
R1518S901B	W 190	9.0 V

R1518Sxx1D

Product Name	(1) (2) (3) 4)	V $_{\text {SET }}$
R1518S251D	W 3 2 5	2.5 V
R1518S331D	W 3 3 3	3.3 V
R1518S341D	W 3 3 4	3.4 V
R1518S501D	W 3 5 0	5.0 V
R1518S601D	W 36 0	6.0 V
R1518S851D	W 3 8 5	8.5 V
R1518S901D	W39 0	9.0 V

R1518Sxx1F

Product Name	(1)(2)(3) 4)	$\mathbf{V}_{\text {SET }}$
R1518S251F	W5 25	2.5 V
R1518S331F	W533	3.3 V
R1518S341F	W534	3.4 V
R1518S501F	W550	5.0 V
R1518S601F	W560	6.0 V
R1518S851F	W585	8.5 V
R1518S901F	W59 0	9.0 V

R1518S001C

Product Name	(1)(2)(3)(4)	V $_{\text {SET }}$
R1518S001C	W201	-

R1518Sxx1E

Product Name	(1)(2) (3) 4)	$\mathbf{V}_{\text {SET }}$
R1518S251E	W4 25	2.5 V
R1518S331E	W4 3 3	3.3 V
R1518S341E	W4 34	3.4 V
R1518S501E	W450	5.0 V
R1518S601E	W460	6.0 V
R1518S851E	W485	8.5 V
R1518S901E	W490	9.0 V

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions.
The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Approx.95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100\% of 50 mm Square
Through-holes	$\phi 0.3 \mathrm{~mm} \times 21$ pcs

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	3800 mW
Thermal Resistance (日ja)	$\theta \mathrm{ja}=26^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter ($\psi j \mathrm{j})$	$\psi j \mathrm{t}=7^{\circ} \mathrm{C} / \mathrm{W}$

Өja: Junction-to-Ambient Thermal Resistance
ψj t: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

The above graph shows the power dissipation of the package at $\mathrm{Tjmax}=125^{\circ} \mathrm{C}$ and $\mathrm{Tjmax}=150^{\circ} \mathrm{C}$.
Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows:

Total Hours of Use	Total Years of Use (4 hours/day)
13,000 hours	9 years

Nisshinbo Micro Devices Inc.

(1)(2)(4)(5)(6)(7): Product Code ... Refer to "R1518J MARK SPECIFICATION TABLE (TO-252-5-P2)" (9)(10: Lot Number ... Alphanumeric Serial Number

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

R1518Jxx1B

Product Name	(1) (2) (3)(4)(5) (6) (7) 8	$\mathrm{V}_{\text {SET }}$
R1518J251B	L1J251 B	2.5 V
R1518J331B	L1J331B_	3.3 V
R1518J341B	L1J341B_	3.4 V
R1518J501B	L1J501B_	5.0 V
R1518J601B	L1 J 601 B_	6.0 V
R1518J851B	L 1 J 851 B	8.5 V
R1518J901B	L1 J 9 0 1 B _	9.0 V

R1518Jxx1D

Product Name	(1) (2) (3)(4)(5)(6)(7) 8	$\mathrm{V}_{\text {SET }}$
R1518J251D	L3J251D_	2.5 V
R1518J331D	L 3 J 3 1 D _	3.3 V
R1518J341D	L3J341D_	3.4 V
R1518J501D	L3J501D_	5.0 V
R1518J601D	L 3 J 601 D_	6.0 V
R1518J851D	L3J851D_	8.5 V
R1518J901D	L 3 J 901D_	9.0 V

R1518Jxx1F

Product Name	(1) (2)(3)(4)(5)(6)(7) (8)	$\mathrm{V}_{\text {SET }}$
R1518J251F	L5J251F_	2.5 V
R1518J331F	L5J331F_	3.3 V
R1518J341F	L5J341F_	3.4 V
R1518J501F	L5J501F_	5.0 V
R1518J601F	L5J601F_	6.0 V
R1518J851F	L5J851F_	8.5 V
R1518J901F	L5J901F_	9.0 V

R1518J001C

Product Name	(1)(2)(3)(4)(5)(6)(8)	V $_{\text {SET }}$
R1518J001C	L2J001C_	-

R1518Jxx1E

Product Name	(1) (2) (3)(4)(5)(6)(7) 8	$\mathrm{V}_{\text {SET }}$
R1518J251E	L4J251E _	2.5 V
R1518J331E	L4J331E_	3.3 V
R1518J341E	L4J341E_	3.4 V
R1518J501E	L 4 J 501E	5.0 V
R1518J601E	L4J601E_	6.0 V
R1518J851E	L4J851E_	8.5 V
R1518J901E	L 4 J 901E_	9.0 V

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.

- Aerospace Equipment
- Equipment Used in the Deep Sea
- Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
- Life Maintenance Medical Equipment
- Fire Alarms / Intruder Detectors
- Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
- Various Safety Devices
- Traffic control system
- Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
8. Quality Warranty

8-1. Quality Warranty Period
In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
8-2. Quality Warranty Remedies
When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
8-3. Remedies after Quality Warranty Period
With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
9. Anti-radiation design is not implemented in the products described in this document.
10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/

[^0]: * The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate

[^1]: ${ }^{(1)}$ Duration time $=200 \mathrm{~ms}$
 ${ }^{(2)}$ Refer to POWER DISSIPATION for detailed information

