

R1130x SERIES

300mA LDO REGULATOR

NO.EA-078-140822

OUTLINE

The R1130x Series are CMOS-based voltage regulator (VR) ICs. VR function has features of high ripple rejection, low dropout voltage, high output voltage accuracy, and ultra-low supply current. Each of these ICs consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, and a current limit circuit. Each of the R1130xxxxA/B type includes also a chip enable circuit.

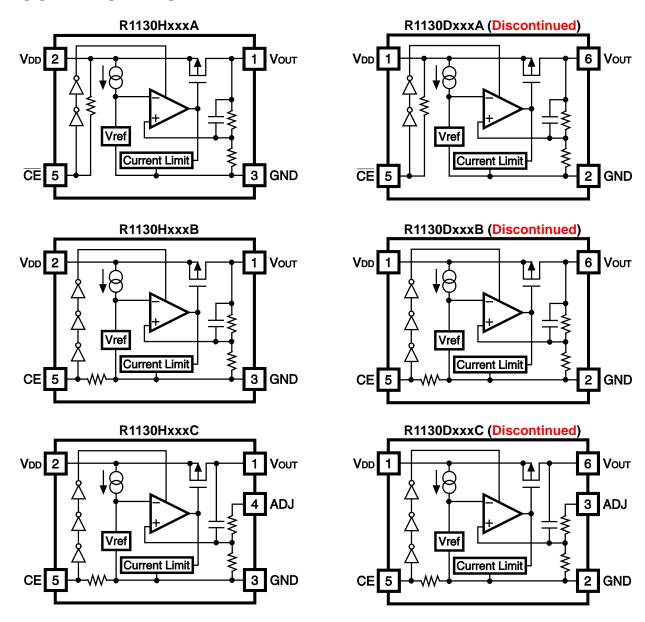
The output voltage of the R1130xxxxC type is adjustable with external resistors.

The output voltage of R1130xxxxA/B is fixed in the IC. Low supply current by the merit of CMOS process and built-in transistors with low ON-resistance make low dropout voltage. These regulators in the R1130x Series are remarkable improvement on the current regulators in terms of ripple rejection, input transient response, and load transient response. Maximum Output Current is large for its compact size.

Thus, the R1130x Series are suitable for power supply for CD-drives, DVD-drives, and so forth.

Since the packages for these ICs are the SOT-89-5 package or HSON-6 (Discontinued), high density mounting of the ICs on boards is possible.

FEATURES


Supply Current	Typ. 50μA
Standby Current	Typ. 0.1μA (VR) for A type
Ripple Rejection	Typ. 60dB (f=1kHz) (VR)
Output Current	Min. 300mA (V _{IN} =V _{OUT} +1V)
Output Voltage Range	1.5V to 5.0V (0.1V steps)
	Externally specified with the ADJUST pin
	(Reference Voltage 1.8V : C Version)
	(For other voltages, please refer to MARK INFORMATIONS.)
Output Voltage Accuracy	±2.0%(VR) for A/B type,
	±2.0% (Reference Voltage for adjustable VR) for C type
Dropout Voltage	Typ. 0.2V (Iоυт=100mA) (VR)
• Temperature-drift Coefficient of Output Voltage	±100ppm/°C
Absolute Maximum Voltage	9.0V
Packages	SOT-89-5, HSON-6 (Discontinued)
Built-in Current Limit Circuit	

Internal Phase Compensation (small output capacitance such as 0.1µF Ceramic can be used with.)

APPLICATIONS

- Power source for CD-drives and DVD-drives, HDD.
- Local Power source for Notebook PC.

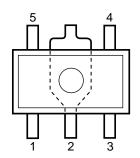
BLOCK DIAGRAMS

SELECTION GUIDE

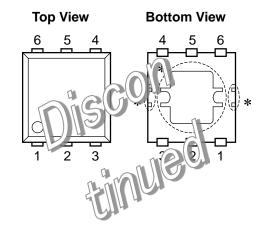
The output voltage, CE pin polarity, package for the ICs can be selected at the user's request.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1130Dxx1*-TR-FE	HSON-6 (Discontinued)	3,000 pcs	Yes	Yes
R1130Hxx1*-T1-FE	SOT-89-5	1,000 pcs	Yes	Yes

xx: The output voltage can be designated in the range from 1.5V(15) to 5.0V(50) in 0.1V steps. (C Version is fixed at 00.)


(For other voltages, please refer to MARK INFORMATIONS.)

- * : CE pin polarity are options as follows.


 - (A) "L" active
 (B) "H" active
 (C) "H" active, with ADJUST pin.

PIN CONFIGURATION

• SOT-89-5

• HSON-6

PIN DESCRIPTIONS

• SOT-89-5

Pin No.	Symbol	Description
1	Vouт	Voltage Regulator Output Pin
2	V _{DD}	Input Pin
3	GND	Ground Pin
	NC (A/B type)	No Connection
4	ADJ (C type)	Adjustable Regulator feedback Input Pin (Connect to resistor voltage divider.)
5	CE (A type)or CE(B/D type)	Chip Enable Pin

• HSON-6 (Discontinued)

Pin No.	Symbol	Description
1	V _{DD}	Input Pin
2	GND	Ground Pin
	NC (A/B type)	No Connection
3	ADJ (C type)	Adjustable Regulator feedback Input Pin (Connect to resistor voltage divider.)
4	NC	No Connection
5	CE (A type)or CE(B/D type)	Chip Enable Pin
6	Vouт	Voltage Regulator Output Pin

^{*)} Tab and tab suspension leads are V_{DD} level. (They are connected to the reverse side of the IC.) The tab is better to be connected to the V_{DD}, but leaving it open is also acceptable.

The tab suspension leads should be open and do not connect to other wires or land patterns.

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
VIN	Input Voltage	9.0	V
Vce	Input Voltage (CE or CE Input Pin)	-0.3~9.0	V
V _{ADJ}	Input Voltage (ADJ Input Pin)	-0.3~9.0	V
Vouт	Output Voltage	-0.3~Vin+0.3	V
І оит	Output Current	450	mA
D	Power Dissipation (SOT-89-5)*	900	\/
Po	Power Dissipation (HSON-6)* (Discontinued)	900	- mW
Topt	Operating Temperature Range	-40~85	°C
Tstg	Storage Temperature Range	-55~125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field.

The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

• R1130xxxxA

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vin	Input Voltage		2.5		8.0	V
lss ₁	Supply Current 1	Vin-Vout=1.0V,Vin=GND		50	100	μΑ
Istandby	Standby Current	Vin-Vout=1.0V,Vin=Vce		0.1	1.0	μΑ
Vоит	Output Voltage	V_{IN} - V_{OUT} =1.0 V 1mA \leq lout \leq 80mA	V _{OUT} × 0.980	Set Vout	V _{оит×} 1.020	V
І оит1	Output Current	Refer to the table of Input Voltage by Set Output Voltage	300			mA
ΔVουτ/ΔΙουτ	Load Regulation	V_{IN} - V_{OUT} =1.0 V 1mA \leq lout \leq 80mA		40	80	mV
V _{DIF}	Dropout Voltage	Iouт=100mA	Refer to the ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE			
ΔV out $/\Delta V$ in	Line Regulation	Iout=80mA,Set Vout>2.0V: Vout+0.5V \leq VIN \leq 8.0V Set out \leq 1.9V: .5V \leq VIN \leq 8.0V		0.1	0.2	%/V
RR	Ripple Rejection	f=1kHz Ripple 0.5Vp-p lout = 80mA Set Vout \geq 1.8V, Vin-Vout = 1.0V Set Vout \leq 1.7, Vin = 2.8V		60		dB
ΔV оит/ ΔT орt	Output Voltage Temperature Coefficient	$I_{OUT} = 30 \text{mA}, V_{IN} - V_{OUT} = 1.0 \text{V} \\ -40 ^{\circ}\text{C} \leq Topt \leq 85 ^{\circ}\text{C}$		±100		ppm /°C
l	Short Current Limit	Set Vout ≤ 3.9V,Vout = 0V		70		~ Λ
Isc	Short Current Limit	Set Vout>4.0V,Vout = 0V		50		mA
Rpu	CE Pull-up Resistance		2.5	5.0	10.0	МΩ
Vceh	CE Input Voltage "H"	V _{IN} =2.5V	1.5		Vin	V
Vcel	CE Input Voltage "L"	V _{IN} =2.5V	0.00		0.25	V

• R1130xxxxB

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vin	Input Voltage		2.5		8.0	V
lss ₁	Supply Current 1	VIN-VOUT=1.0V, VIN=VCE		50	100	μΑ
Istandby	Standby Current	VIN-VOUT=1.0V, VIN=GND		0.1		μΑ
Vоит	Output Voltage	V_{IN} - V_{OUT} =1.0 V 1 $mA \le I_{OUT} \le 80mA$	V _{оит×} 0.980	Set Vout	V _{оит×} 1.020	V
І оит1	Output Current	Refer to the table of Input Voltage by Set Output Voltage	300			mA
ΔVουτ/ΔΙουτ	Load Regulation	V_{IN} - V_{OUT} =1.0 V 1 $mA \le I_{OUT} \le 80mA$		40	80	mV
V _{DIF}	Dropout Voltage	louт=100mA	Refer to the Table of Dropou Voltage by Set Output Voltage			
ΔVουτ/ΔVιν	Line Regulation	Iout=80mA, Set Vout>2.0V: Vout+0.5V \leq Vin \leq 8.0V Set Vout \leq 1.9V: 2.5V \leq Vin \leq 8.0V		0.1	0.2	%/V
RR	Ripple Rejection	f=1kHz Ripple 0.5Vp-p $I_{OUT}=80mA$ Set $V_{OUT} \ge 1.8V$, V_{IN} - $V_{OUT}=1.0V$ Set $V_{OUT} \le 1.7$, $V_{IN}=2.8V$		60		dB
ΔV _{OUT} / ΔTopt	Output Voltage Temperature Coefficient	$I_{OUT} = 10 \text{mA}, V_{IN} - V_{OUT} = 1.0 \text{V}$ $-40^{\circ}\text{C} \leq Topt \leq 85^{\circ}\text{C}$		±100		ppm /°C
l	Short Current Limit	Set Vouт ≤ 3.9V,Vouт = 0V		70		m Λ
Isc	Short Current Limit	Set Vouт ≥ 4.0V,Vouт = 0V		50		mA
Rpu	Pull-down Resistance for CE pin		2.5	5.0	10.0	ΜΩ
Vсен	CE Input Voltage "H"	V _{IN} =2.5V	1.5		Vin	V
Vcel	CE Input Voltage "L"	V _{IN} =2.5V	0.00		0.25	V

• Dropout Voltage by Set Output Voltage

 $Topt = 25^{\circ}C$

	Dropout Voltage			
Output Voltage Vουτ (V)	V _{DIF} (V)			
1331 (1)	Тур.	Max.		
Vоит = 1.5	1.00	1.05		
Vоит = 1.6	0.90	0.95		
Vout = 1.7	0.80	0.85		
Vоит = 1.8	0.70	0.75		
Vоит = 1.9	0.60	0.65		
Vоит = 2.0	0.50	0.60		
Vоит = 2.1	0.40	0.55		
2.2 ≦ Vout ≦ 2.5	0.30	0.49		
2.6 ≤ Vout ≤ 3.3	0.25	0.34		
3.4 ≤ Vout ≤ 5.0	0.20	0.28		

Dropout Voltage by Set Output Voltage

 $Topt = 25^{\circ}C$

Output Voltage Vουτ (V)	Input Voltage (V)
1.5 ≦ Vout ≦ 1.9	VIN=VOUT+1.5V
$2.0 \leq V_{\text{OUT}} \leq 2.7$	VIN=VOUT+1.3V
2.8 ≤ Vout ≤ 5.0	VIN=VOUT+1.0V

• R1130xxxxC

Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
Vin	Input Voltage		2.5		8.0	V
Iss ₁	Supply Current	VIN-VOUT=1.0V, VIN=VCE		50	100	μΑ
Istandby	Standby Current	VIN-VOUT=1.0V, VIN=GND		0.1	1.0	μΑ
Vоит	Reference Voltage for Adjustable Voltage Regulator	Vout=Vadu, Vin-Vout=1.0V lout=80mA	1.764	1.800	1.836	V
І оит1	Output Current	Vout=Vadj, Vin-Vout=1.5V	300			mA
ΔVουτ/ΔΙουτ	Load Regulation	$V_{IN}=2.5V$, $V_{OUT}=V_{ADJ}$ $1mA \leq I_{OUT} \leq 80mA$		40	80	mV
V _{DIF}	Dropout Voltage	IOUT=100mA, VOUT=VADJ		0.1	0.2	V
ΔVουτ/ΔVιν	Line Regulation	$I_{OUT}=80$ mA, $V_{OUT}=V_{ADJ}$ 2.5 V $\leq V_{IN} \leq 8.0$ V		0.1	0.2	%/V
RR	Ripple Rejection	f=1kHz Ripple 0.5Vp-p lout = 80mA,VIN-Vout = 1.0V Vout=VADJ,lout=80mA		60		dB
ΔVουτ/ ΔTopt	Output Voltage Temperature Coefficient	$I_{OUT} = 10 mA$, $V_{IN} - V_{OUT} = 1.0 V$ $-40 ^{\circ} C \le Topt \le 85 ^{\circ} C$		±100		ppm /°C
Isc	Short Current Limit	Vout = 0V		70		mA
Rpu	Pull-down Resistance for CE pin		2.5	5.0	10.0	МΩ
Vсен	CE Input Voltage "H"	V _{IN} =2.5V	1.5		Vin	V
Vcel	CE Input Voltage "L"	V _{IN} =2.5V	0.00		0.25	V

TEST CIRCUITS (Pin number is applied to R1130H Series)

R1130HxxxA

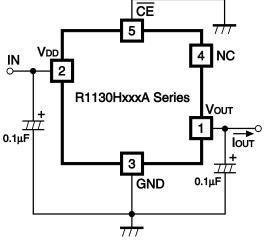


Fig.1 Standard test Circuit

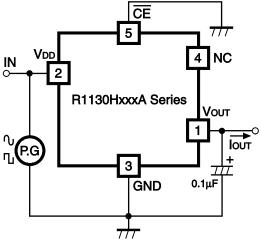
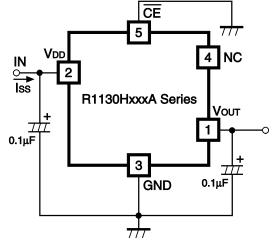
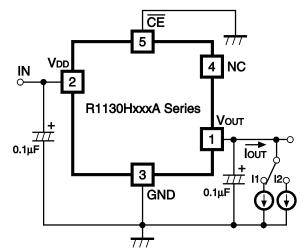




Fig.3 Ripple Rejection, Line Transient Response Test Circuit

Fig.2 Supply Current Test Circuit

Fig.4 Load Transient Response Test Circuit

• R1130HxxxB

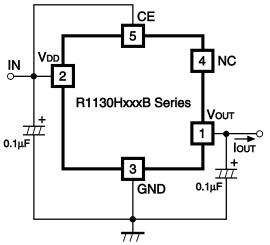


Fig.1 Standard test Circuit

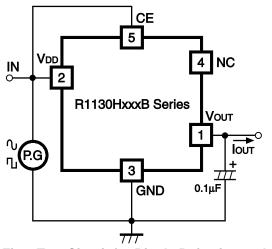
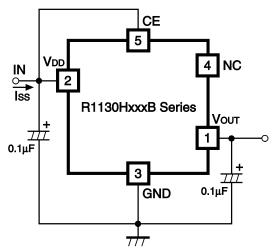



Fig.3 Test Circuit for Ripple Rejection and Input Transient Response

Fig.2 Supply Current Test Circuit

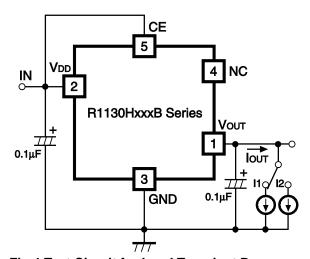
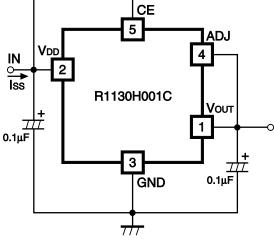



Fig.4 Test Circuit for Load Transient Response

• R1130H001C

Fig.1 Standard test Circuit

Fig.2 Test Circuit Supply Current

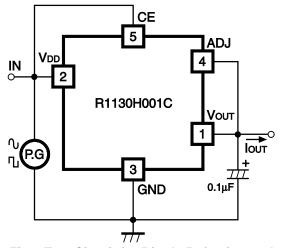
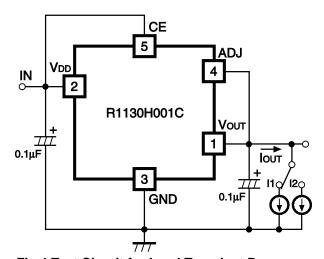
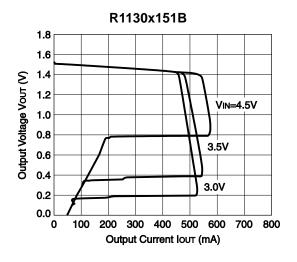
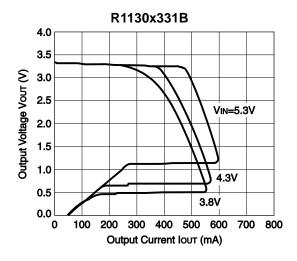
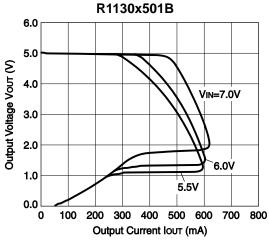
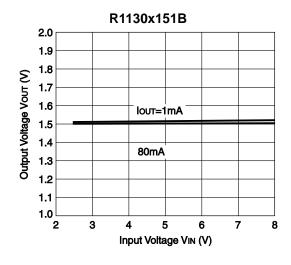


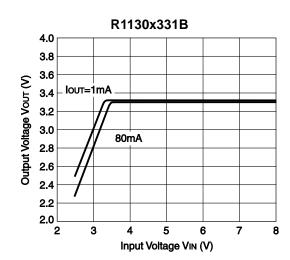
Fig.3 Test Circuit for Ripple Rejection and Input Transient Response

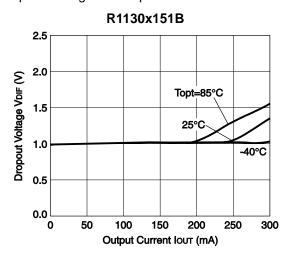




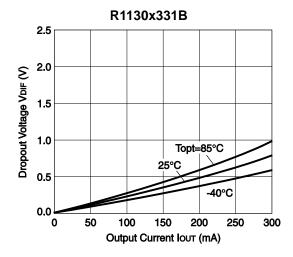

Fig.4 Test Circuit for Load Transient Response

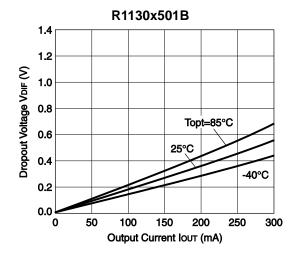
TYPICAL CHARACTERISTICS


1) Output Voltage vs. Output Current (Topt=25°C)

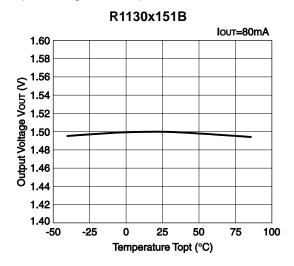


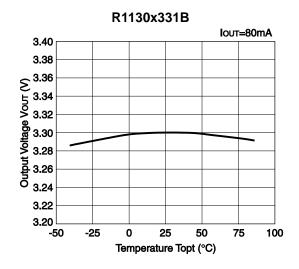


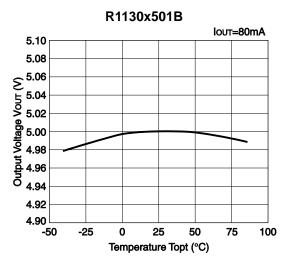




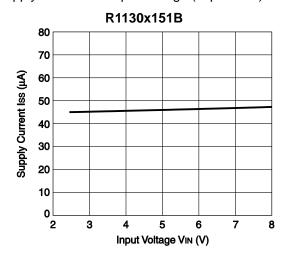
3) Dropout Voltage vs. Output Current

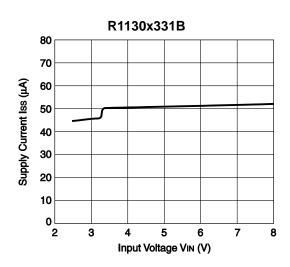


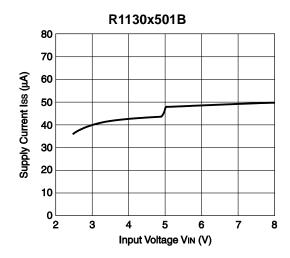


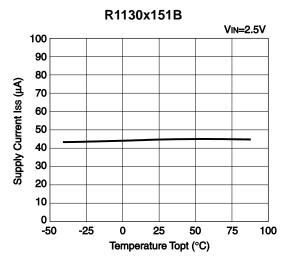


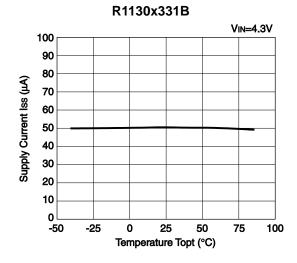
R1130x

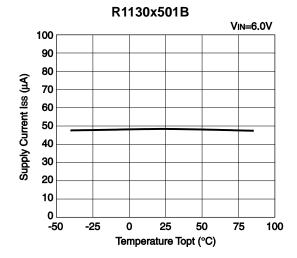

4) Output Voltage vs. Temperature

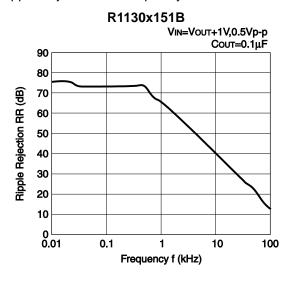


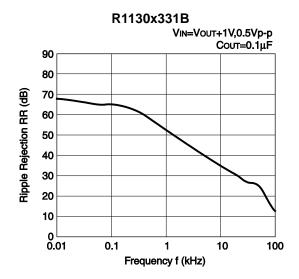


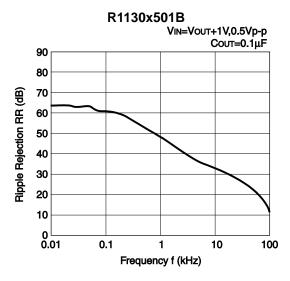

5) Supply Current vs. Input Voltage (Topt=25°C)

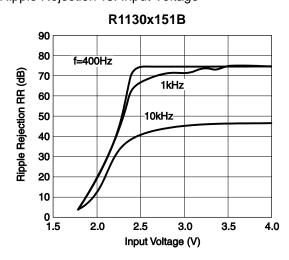


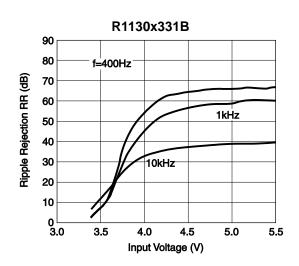


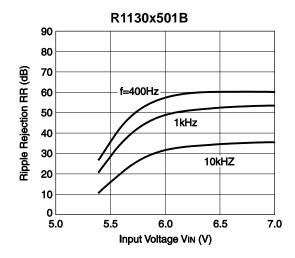

6) Supply Current vs. Temperature

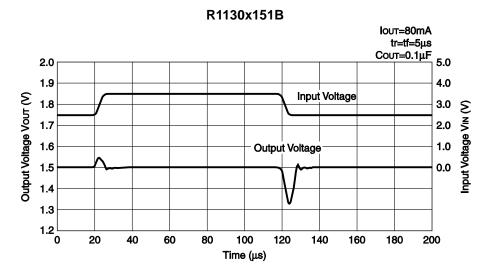


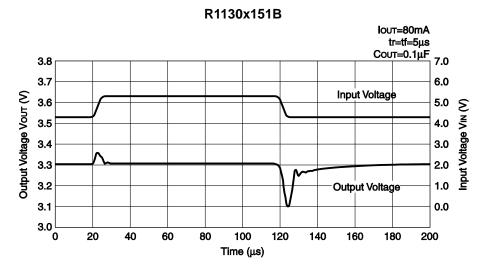


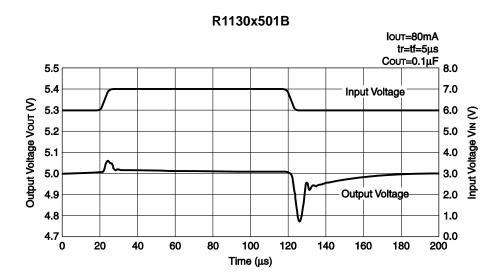

7) Ripple Rejection vs. Frequency

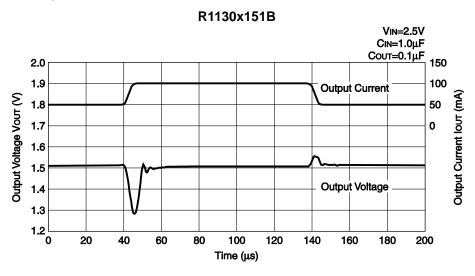


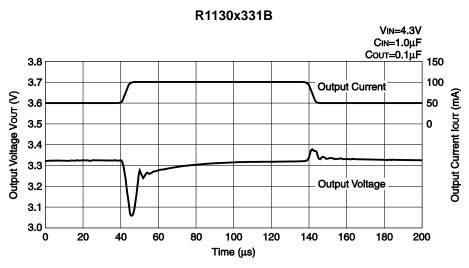


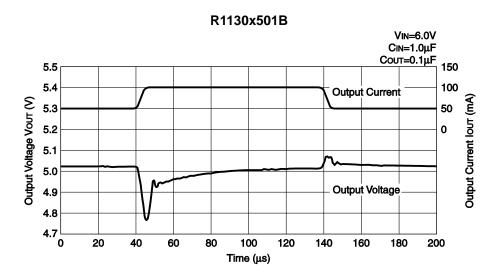

8) Ripple Rejection vs. Input Voltage






9) Input Transient Response





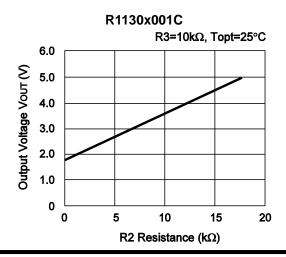
10) Load Transient Response

APPENDIX

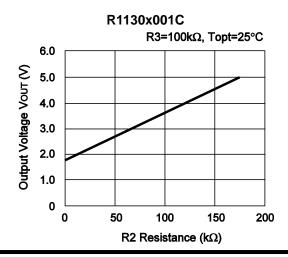
* Technical Notes on Output Voltage Setting of C type

Figure 1. Adjustable Regulator (C type)

Vout
R2 | 12

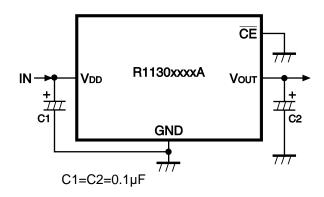

ADJ | IIC
R3 | I3

1.8V

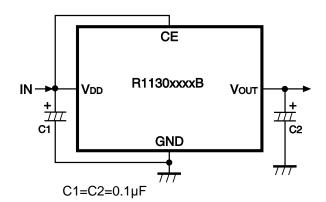

The Output Voltage of Regulator in R1130xxxxC may be adjustable for any output voltage between its 1.8V reference and its V_{DD} setting level. An external pair of resistors is required, as shown in Figure 1.

The complete equation for the output voltage is described step by step as follows;

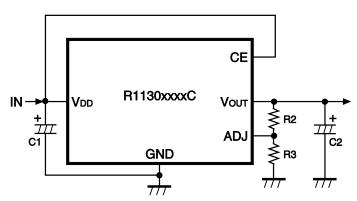
2= _C + 3	
I3=1.8/R3	(2)
Thus,	
I2=Iic+1.8/R3	(3)
Therefore,	
Vout=1.8+R2×I2	(4)
Put Equation (3) into Equation (4), then	
$V_{OUT}=1.8+R2 \times (I_{IC}+1.8/R3)$	
=1.8 × (1+R2/R3)+R2 × I _{IC}	(5)
In 2nd term, or R2 × I _{IC} will produce an error in Vou⊤.	
In Equation (5),	
I _{IC} =1.8/R _{IC}	(6)
$R2 \times I_{IC} = R2 \times 1.8/R_{IC}$	
=1.8 × R2/R _{IC}	(7)
For better accuracy, choosing R2 (< <ric) error.<="" reduces="" td="" this=""><td></td></ric)>	



* Adjustable Resistor Dependence of Output Voltage



TYPICAL APPPLICATION


R1130xxxxA

R1130xxxxB

R1130xxxxC

 $C1\text{=}C2\text{=}0.1\mu\text{F},\,R2,\,R3\text{:}$ Refer to the Technical Notes on Output Voltage setting of C type.

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/