

R1511x Series

300mA 36V Input Regulator

NO.EA-300-221111

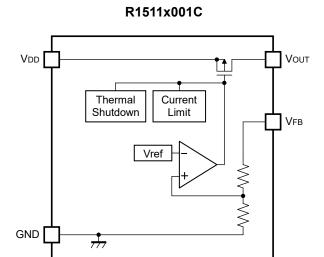
OUTLINE

The R1511x Series are CMOS-based high-voltage resistant and fast response voltage regulators that provide the minimum 300mA of output current. Internally, R1511x consists of an Output Short-circuit Protection Circuit, an Over-current Protection Circuit, and a Thermal Shutdown Circuit in addition to the basic regulator circuits. The operating temperature range is between –40°C to +105°C, and the maximum input voltage is 36V. All these features allow the R1511x Series to become an ideal power source of electric home appliances.

R1511x is available in B version (R1511xxxxB) with the fixed output voltage type, and C version (R1511x001C) with adjustable output voltage type with external resistors. The output voltage accuracy is ±1.0%.

R1511x is available in two types of packages: HSOP-6J for high-density mounting and TO-252-5-P2 for high wattage.

FEATURES


•	Input Voltage Range ·····	3.5V to 36V
•	Supply Current ·····	Typ. 100μA
•	Supply Current (Standby Mode) ·····	Typ. 0.1µA (R1511xxxxB)
•	Output Voltage Range ······	R1511xxxxB: 3.0V to 9.0V (0.1V step)
	(For c	ther voltages, please refer to MARK INFORMATIONS.)
		R1511xxxxC: 3.0V to 12.0V
•	Output Voltage Accuracy·····	R1511xxxxB: ±1.0% (Ta=25°C)
•	Feed Back Voltage ······	R1511xxxxC: 3.0V ±1.0% (Ta=25°C)
•	Output Voltage Temperature-Drift Coefficient	Typ. ±60ppm/°C
•	Line Regulation·····	Typ. 0.01%/V (V _{DD} =V _{OUT} +0.5V to 36V)
•	Dropout Voltage ·····	Typ. 0.64V (Iout=300mA, Vout=5.0V)
•	Package Option ·····	HSOP-6J, TO-252-5-P2
•	Built-in Output Short-circuit Protection Circuit ······	Typ. 50mA
•	Built-in Over-current Protection Circuit ·····	Typ. 450mA
•	Built-in Thermal Shutdown Circuit ·····	Thermal Shutdown Temperature: Typ. 160°C
•	Operating Temperature Range ······	40 to +105°C
•	Ripple Rejection·····	·Typ. 65dB (1kHz)
•	Ceramic capacitors are recommended to be used	with this IC
		·CIN=1.0uF or more. COUT=6.8uF or more

APPLICATIONS

- For home electrical appliances: refrigerators, rice cookers, electrical pots, etc.
- For digital equipments: laptop PCs, digital TVs, telephone equipments, home LAN systems, etc.
- For OA equipments: copy machines, printers, fax machines, scanners, projectors, etc.

BLOCK DIAGRAMS

R1511xxxxB Vout Thermal Shutdown Limit ON/OFF Circuit CE

SELECTION GUIDE

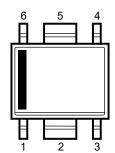
GND

The output voltage, version and the package type for the ICs can be selected at the user's request.

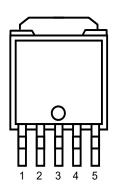
Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1511Sxxx*-E2-FE	HSOP-6J	1,000pcs	Yes	Yes
R1511Jxxx*-T1-FE	TO-252-5-P2	3,000pcs	Yes	Yes

xxx : Specify the output setting voltage (V_{SET})

R1511xxxxB: Specify the output voltage within the range of 3.0V (030) to 9.0V (090) in 0.1V steps.


(For other voltages, please refer to MARK INFORMATIONS.)

R1511x001C: only (001)


- * : Specify the version
 - (B) Fixed output and Built-in Chip Enable ("H" active)
 - (C) Adjustable output

PIN CONFIGHURATIONS

• HSOP-6J

• TO-252-5-P2

PIN DESCRIPTIONS

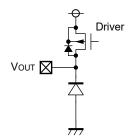
R1511S:HSOP-6J

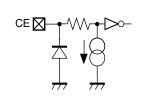
Pin No.	Symbol	Description			
1	V _{DD}	Input Pin	Input Pin		
2	GND*	Ground Pin	Ground Pin		
3	GND*	Ground Pin	Ground Pin		
1	CE	R1511SxxxB	Chip Enable Pin ("H" Active)		
4	V _{FB}	R1511S001C	Feed Back Pin		
5	GND*	Ground Pin			
6	Vоит	Output Pin			

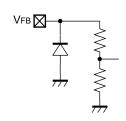
^{*)} No. 2, No. 3 and No. 5 pins must be wired to the GND plane when they are mounted on board.

R1511J:TO-252-5-P2

Pin No.	Symbol		Description		
1	V _{DD}	Input Pin	Input Pin		
2	GND*	Ground Pin	Ground Pin		
3	GND*	Ground Pin			
4	CE	R1511JxxxB	Chip Enable Pin ("H" Active)		
4	V _{FB}	R1511J001C Feed Back Pin			
5	Vouт	Output Pin			


^{*)} No. 2 and No. 3 pins must be wired to the GND plane when they are mounted on board.


PIN EQIVALENT CIRCUIT DIAGRAMS



<CE Pin (R1511xxxxB)>

<V_{FB} Pin (R1511x001C)>

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	em Rating		Unit
Vin	Input Voltage	-0.3 to	o 50	V
Vin	Peak Input Voltage*1	60)	V
Vce	Input Voltage (CE Pin)	-0.3 to	-0.3 to 50	
V _{FB}	Input Voltage (VFB Pin)	-0.3 to	-0.3 to 50	
Vоит	Output Voltage	-0.3 to V _{IN} -	-0.3 to V _{IN} +0.3 ≤ 50	
D-	Power Dissipation	HSOP-6J	2700	m\\/
P _D	(JEDEC STD. 51-7)*2	TO-252-5-P2	3800	mW
Tj	Operating Junction Temperature Range	-40 to	-40 to +125	
Tstg	Storage Temperature Range	-55 to	+125	°C

^{*1)} Duration time: 200ms

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	ltem	Rating	Unit
Ta	Operating Temperature Range	-40 to +105	°C

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

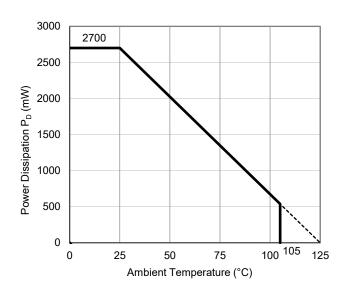
^{*2)} For Power Dissipation, please refer to next page to be described.

Power Dissipation (HSOP-6J)

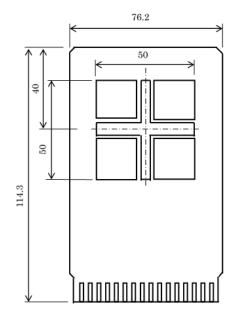
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.3 mm × 28 pcs


Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$


Item	Measurement Result
Power Dissipation	2700 mW
Thermal Resistance (θja)	θja = 37°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 7°C/W

θja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

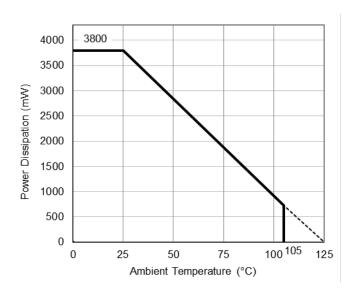
Measurement Board Pattern

Power Dissipation (TO-252-5-P2)

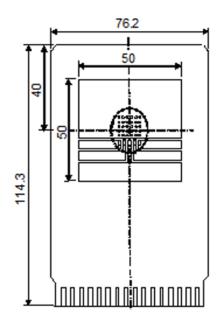
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material Glass Cloth Epoxy Plastic (Four-Layer Board)	
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.3 mm × 21 pcs


Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$


Item	Measurement Result
Power Dissipation	3800 mW
Thermal Resistance (θ ja)	θja = 26°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 7°C/W

 θ ja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

ELECTRICAL CHARACTERISTICS

C_{IN}=1.0μF, C_{OUT}=6.8μF, unless otherwise noted.

Thermal Shutdown

Released Temperature

TTSR

The specification surrounded by ___ are guaranteed by design engeneering at -40°C ≤ Ta ≤ +105°C.

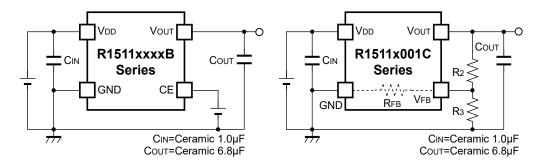
Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
Vin	Input Voltage			3.5	7.	36	V
Iss	Supply Current	VIN=VSET+1.0V, IOUT	VIN=VSET+1.0V, IOUT=0mA		100	180	μΑ
Istandby	Standby Current	VIN=36V, VCE=0V			0.1	2.0	<u>.</u> μΑ
	0.4	VIN=VSET+2.0V	Ta=25°C	×0.99		×1.01	V
Vout	Output Voltage	Iоит=1mA	–40°C≤Ta≤+105°C	×0.98		×1.02	
ΔV оит	Load Degulation	VIN=VSET+2.0V	Vser≤5.0V	-20		100	\/
Δ lоит	Load Regulation	1mA≤Iouт≤300mA	5.0V <v<sub>SET</v<sub>	-20		120	mV
ΔV out $/\Delta V$ in	Line Regulation	Vset+0.5V≤Vin≤36V	/, Іоит=1mA		0.01	0.02	%/V
			3.0V≤V _{SET} ≤3.1V		0.98	1.5	
			3.1V <v<sub>SET≤3.4V</v<sub>		0.94	1.4	V
	Dropout Voltage	Іоит= 300mA	3.4V <v<sub>SET≤3.8V</v<sub>		0.88	1.3	
			3.8V <v<sub>SET≤4.3V</v<sub>		0.79	1.2	
V_{DIF}			4.3V <v<sub>SET≤4.9V</v<sub>		0.71	1.1	
			4.9V <v<sub>SET≤5.7V</v<sub>		0.64	1.0	
			5.7V <v<sub>SET≤6.8V</v<sub>		0.59	0.9	
			6.8V <v<sub>SET≤8.3V</v<sub>		0.54	0.8	
			8.3V <v<sub>SET≤9.0V</v<sub>		0.47	0.7	
Δ V ουτ /Δ T a	Output Voltage Temperature Coefficient	V _{IN} =V _{SET} +2.0V, I _{OUT} -40°C≤T _a ≤+105°C			±60		ppm /°C
Ішм	Output Current Limit	VIN=VSET+2.5V			450		mA
Isc	Short Current Limit	Vоит=0V			50		mA
RR	Ripple Rejection	f=1kHz, Ripple=0.5			65		dB
VCEH	CE Input Voltage "H"			2.2		36	V
Vcel	CE Input Voltage "L"			0		1.0	V
	0F D 1 0 :	V _{CE} =5.0V			0.2	0.6	
PD	CE Pull-down Current	Vc=36V			0.5	1.3	μA
TTSD	Thermal Shutdown Temparature	Junction Temperate	ure		160		°C
-		1		i	1	1	

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25°C) except for Ripple Rejection and Output Voltage Temperature Coefficient.

Junction Temperature

٥С

135


 $C_{IN}=1.0\mu F$, $C_{OUT}=6.8\mu F$, $V_{OUT}=V_{FB}$, unless otherwise noted. The specification surrounded by ____ are guaranteed by design engeneering at -40°C \leq Ta \leq +105°C.

R1511x001C (Ta=25°C)

Symbol	Item	Cond	litions	Min.	Тур.	Max.	Unit
VIN	Input Voltage			3.5		36	V
Iss	Supply Current	VIN=4.0V, IOUT=0m/	4		100	180	μΑ
Vout	Output Voltage	V _{IN} =5.0V	Ta=25°C	2.97		3.03	V
VOUI	Output voltage	Iоит=1mA	–40°C≤Ta≤+105°C	2.94		3.06	V
ΔV оит / ΔI оит	Load Regulation	V _{IN} =5.0V 1mA≤I _{OUT} ≤300mA		-20		40	mV
ΔVout /ΔVin	Line Regulation	Vset+0.5V≤Vin≤36V Iout=1mA			0.01	0.02	%/V
V_{DIF}	Dropout Voltage	Iоит=300mA			0.98	1.5	V
Δ V ουτ /Δ T a	Output Voltage Temperature Coefficient	V _{IN} =V _{SET} +2.0V, I _{OUT} =1mA -40°C≤T _a ≤+105°C			±60		ppm /°C
ILIM	Output Current Limit	V _{IN} = V _{SET} +2.5V			450		mA
Isc	Short Current Limit	Vout=0V			50		mA
RR	Ripple Rejection	f=1kHz, Ripple=0.5Vpp Iout=10mA, V _{IN} =V _{SET} +2.0V			65		dB
R_FB	V _{FB} Pin Resistanse			1.0	3.0		MΩ
TTSD	Thermal Shutdown Temparature	Junction Temperature			160		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperat	ure		135		°C

All test items listed under Electrical Characteristics are done under the pulse load condition ($Tj\approx Ta=25$ °C) except for Ripple Rejection and Output Voltage Temperature Coefficient.

TYPICAL APPLICATIONS

NOTES CONCERNING EXTERNAL PARTS

Phase Compensation

In the R1511x Series, phase compensation is provided to secure stable operation even when the load current is varied. For this purpose, please make sure to use a Cout capacitor.

In case of using a tantalum type capacitor and the ESR (Equivalent Series Resistance) value of the capacitor is large, the output might be unstable. Evaluate the circuit including consideration of frequency characteristics.

Depending on the capacitor size, manufacturer, and part number, the bias characteristics and temperature characteristics are different. Evaluate the circuit taking actual characteristics into account.

PCB Layout and GND Wiring

Ensure the V_{DD} and GND lines are sufficiently robust. If their impedance is too high, noise pickup or unstable operation may result. Connect a C_{IN} capacitor with 1.0 μ F or more value between the V_{DD} and GND pins, and as close as possible to the pins. Likewise, connect a C_{OUT} capacitor with suitable values between the V_{OUT} and GND pins, and as close as possible to the pins (Please refer to the Typical Application above).

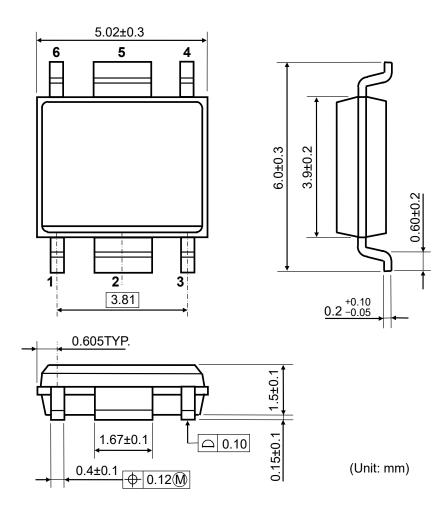
In the case of using HSOP-6J package, please make sure to wire No. 2, No. 3, and No. 5 pins to the GND plane. Also, in the case of using TO-252-5-P2 package, please make sure to wire No. 2 and No. 3 pins to the GND plane.

Thermal Shutdown

R1511x contains a thermal shutdown circuit, which stops regulator operation if the junction temperature of R1511x becomes higher than 160°C (Typ.). Additionally, if the junction temperature after the regulator being stopped decreases to a level below 135°C (Typ.), it restarts regulator operation. As a result the operation of the thermal shutdown circuit causes the regulator repeatedly to turn off and on until the causes of overheating are removed. As a consequence a pulse shaped output voltage occurs.

Output Voltage Setting Method (R1511x001C)

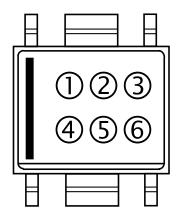
R1511x001C can be adjusted the output voltage up to 12.0V by using the external divider resistors. The output voltage can be calculated by the following equation.


 $V_{OUT}=V_{FB}\times (R_2+R_3)/R_3$

However, output voltage will be as large as "R2×I_{FB}" by the current flowing through the resistor in the IC. Because $I_{FB} = V_{FB}/R_{FB}$, "R2×I_{FB}" cause of error is as follows.

R2×IFB=R2×VFB/RFB=VFB×R2/RFB

For better accuracy, choosing R2<<R_{FB} reduces this error. R_{FB} of R1511x is approximately min 1.0M Ω (guaranteed by design).


Package Dimensions (HSOP-6J)

Mark Specification (HSOP-6J)

①②③④: Product Code ... Refer to R1511S Series Mark Specification Table

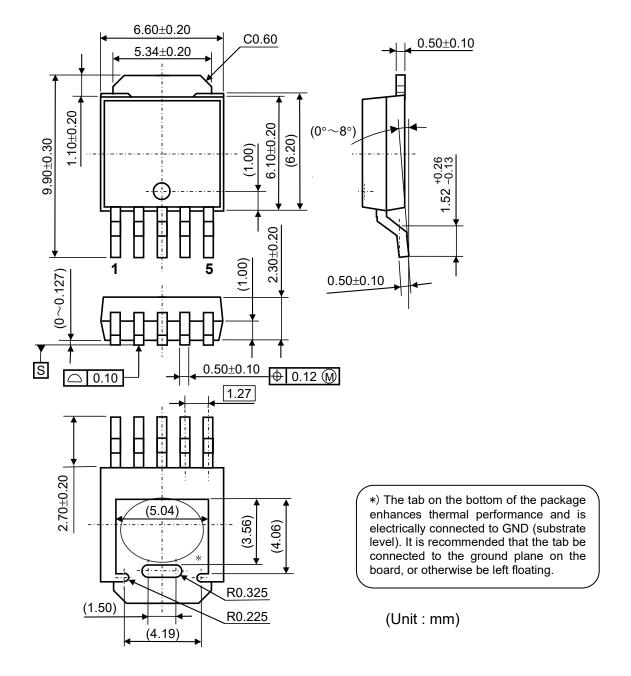
⑤⑥ : Lot Number ... Alphanumeric Serial Number

NOTICE

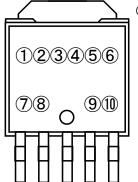
There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

R1511S Series Mark Specification Table PKG: HSOP-6J

R1511SxxxB Mark Specification Table


<u> </u>	0000	V
Product Name	0234	V _{SET}
R1511S030B	S 3 0 B	3.0 V
R1511S031B	S 3 1 B	3.1 V
R1511S032B	S 3 2 B	3.2 V
R1511S033B	S 3 3 B	3.3 V
R1511S034B	S 3 4 B	3.4 V
R1511S035B	S 3 5 B	3.5 V
R1511S036B	S 3 6 B	3.6 V
R1511S037B	S 3 7 B	3.7 V
R1511S038B	S 3 8 B	3.8 V
R1511S039B	S 3 9 B	3.9 V
R1511S040B	S 4 0 B	4.0 V
R1511S041B	S 4 1 B	4.1 V
R1511S042B	S 4 2 B	4.2 V
R1511S043B	S 4 3 B	4.3 V
R1511S044B	S 4 4 B	4.4 V
R1511S045B	S 4 5 B	4.5 V
R1511S046B	S 4 6 B	4.6 V
R1511S047B	S 4 7 B	4.7 V
R1511S048B	S 4 8 B	4.8 V
R1511S049B	S 4 9 B	4.9 V
R1511S050B	S 5 0 B	5.0 V
R1511S051B	S 5 1 B	5.1 V
R1511S052B	S 5 2 B	5.2 V
R1511S053B	S 5 3 B	5.3 V
R1511S054B	S 5 4 B	5.4 V
R1511S055B	S 5 5 B	5.5 V
R1511S056B	S 5 6 B	5.6 V
R1511S057B	S 5 7 B	5.7 V
R1511S058B	S 5 8 B	5.8 V
R1511S059B	S 5 9 B	5.9 V
R1511S060B	S 6 0 B	6.0 V
R1511S061B	S 6 1 B	6.1 V
R1511S062B	S 6 2 B	6.2 V
R1511S063B	S 6 3 B	6.3 V
R1511S064B	S 6 4 B	6.4 V
R1511S065B	S 6 5 B	6.5 V
R1511S066B	S 6 6 B	6.6 V
R1511S067B	S 6 7 B	6.7 V
R1511S068B	S 6 8 B	6.8 V
R1511S069B	S 6 9 B	6.9 V
R1511S070B	S 6 0 B	7.0 V
R1511S071B	S 7 1 B	7.1 V
R1511S072B	S 7 2 B	7.2 V
R1511S073B	S 7 3 B	7.3 V
R1511S074B	S 7 4 B	7.4 V
R1511S075B	S 7 5 B	7.5 V
R1511S076B	S 7 6 B	7.6 V
R1511S077B	S 7 7 B	7.7 V
R1511S078B	S 7 8 B	7.8 V
R1511S079B	S 7 9 B	7.9 V
R1511S080B	S 8 0 B	8.0 V

Product Name	0234	V _{SET}
R1511S081B	S 8 1 B	8.1 V
R1511S082B	S 8 2 B	8.2 V
R1511S083B	S83B	8.3 V
R1511S084B	S 8 4 B	8.4 V
R1511S085B	S 8 5 B	8.5 V
R1511S086B	S86B	8.6 V
R1511S087B	S87B	8.7 V
R1511S088B	S88B	8.8 V
R1511S089B	S89B	8.9 V
R1511S090B	S 9 0 B	9.1 V


R1511S001C Mark Specification Table

Product Name	0234	V _{SET}
R1511S001C	SOOC	3.0 V

Package Dimensions (TO-252-5-P2)

Mark Specification (TO-252-5-P2)

①②③④⑤⑥⑦⑧: Product Code ... <u>Refer to R1511J Series Mark Specification Table</u> ⑨⑩: Lot Number ... Alphanumeric Serial Number

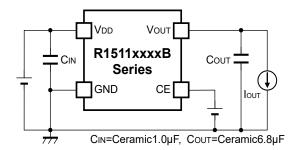
NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

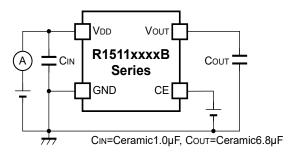
R1511J Series Mark Specification Table

PKG: TO-252-5-P2

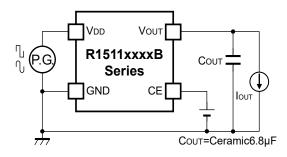
R1511JxxxB Mark Specification Table

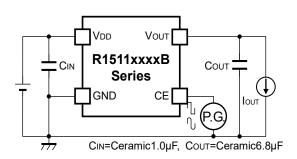

K1511JXXXB Mark Specification Table		
Product Name	02345678	V _{SET}
R1511J030B	H1J030B_	3.0 V
R1511J031B	H1J031B_	3.1 V
R1511J032B	H1J032B_	3.2 V
R1511J033B	H1J033B_	3.3 V
R1511J034B	H1J034B_	3.4 V
R1511J035B	H1J035B_	3.5 V
R1511J036B	H1J036B_	3.6 V
R1511J037B	H1J037B	3.7 V
R1511J038B	H1J038B_	3.8 V
R1511J039B	H1J039B_	3.9 V
R1511J040B	H1J040B_	4.0 V
R1511J041B	H1J041B_	4.1 V
R1511J042B	H1J042B	4.2 V
R1511J043B	H1J043B_	4.3 V
R1511J044B	H1J044B_	4.4 V
R1511J045B	H1J045B_	4.5 V
R1511J046B	H1J046B_	4.6 V
R1511J047B	H1J047B_	4.7 V
R1511J047B	H1J047B_	4.8 V
R1511J049B	H1J049B_	4.9 V
R1511J050B	H1J050B_	5.0 V
R1511J051B	H1J051B_	5.1 V
R1511J052B	H1J051B_	5.2 V
R1511J053B	H1J052B_	5.3 V
R1511J054B	H1J053B_	5.4 V
		5.5 V
R1511J055B R1511J056B	H1J055B_ H1J056B_	5.6 V
R1511J050B	H1J056B_	5.6 V 5.7 V
R1511J057B	H1J057B_	5.7 V 5.8 V
R1511J059B	H1J059B_ H1J060B_	5.9 V 6.0 V
R1511J060B R1511J061B	H1J060B_	6.1 V
R1511J062B	H1J062B_	6.2 V
R1511J063B	H1J063B_	6.3 V
R1511J064B	H1J064B_	6.4 V
R1511J065B	H1J065B_	6.5 V
R1511J066B	H1J066B_	6.6 V
R1511J067B	H1J067B_	6.7 V
R1511J068B	H1J068B_	6.8 V
R1511J069B	H1J069B_	6.9 V
R1511J070B	H1J070B_	7.0 V
R1511J071B	H1J071B_	7.1 V
R1511J072B	H1J072B_	7.2 V
R1511J073B	H1J073B_	7.3 V
R1511J074B	H1J074B_	7.4 V
R1511J075B	H1J075B_	7.5 V
R1511J076B	H1J076B_	7.6 V
R1511J077B	H1J077B_	7.7 V
R1511J078B	H1J078B_	7.8 V
R1511J079B	H1J079B_	7.9 V
R1511J080B	H1J080B_	8.0 V

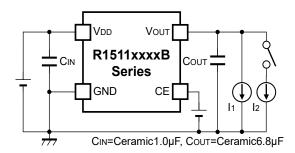
Product Name	02345678	V _{SET}
R1511J081B	H1J081B_	8.1 V
R1511J082B	H1J082B_	8.2 V
R1511J083B	H1J083B_	8.3 V
R1511J084B	H1J084B_	8.4 V
R1511J085B	H1J085B_	8.5 V
R1511J086B	H1J086B_	8.6 V
R1511J087B	H1J087B_	8.7 V
R1511J088B	H1J088B_	8.8 V
R1511J089B	H1J089B_	8.9 V
R1511J090B	H1J090B_	9.0 V

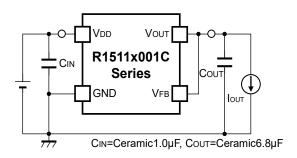

R1511J001C Mark Specification Table

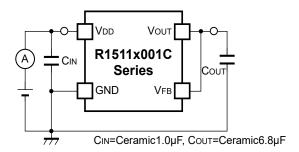
Product Name	02345678	V _{SET}
R1511J001C	H1J001C	3.0 V

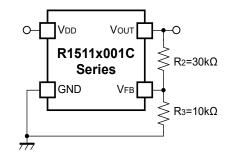

TEST CIRCUITS.


R1511xxxxB Basic Test Circuit

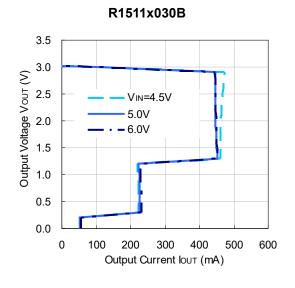

R1511xxxxB Test Circuit for Supply Current

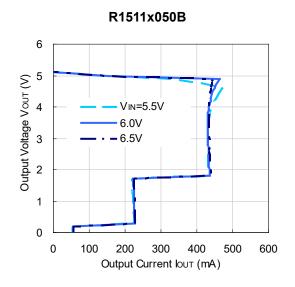

R1511xxxxB Test Circuit for Ripple Rejection and Regulator Input Transient Response

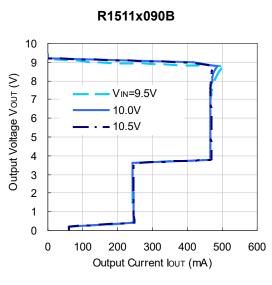

R1511xxxxB Test Circuit for CE Start-up

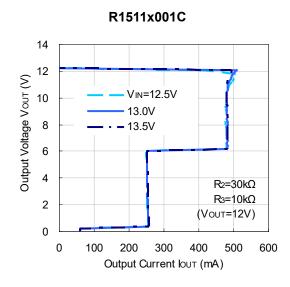

R1511xxxxB Test Circuit for Load Transient Response

R1511x001C Basic Test Circuit

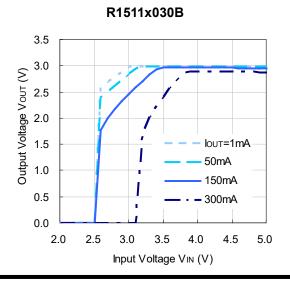

R1511x001C Test Circuit for Supply Current

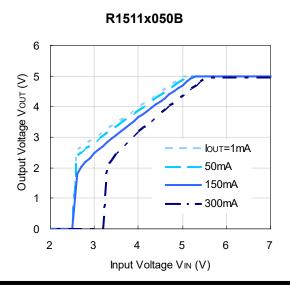


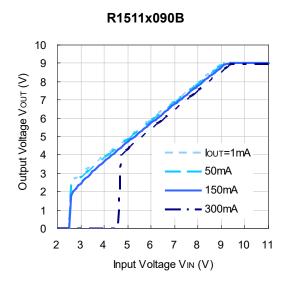

R1511x001C Case of output voltage adjustment by external resistors

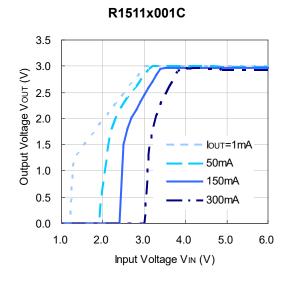

TYPICAL CHARACTERISTICS

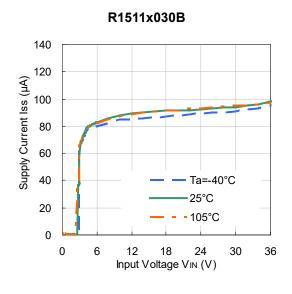
(1) Output Voltage Vs. Output Current (Ta=25°C)

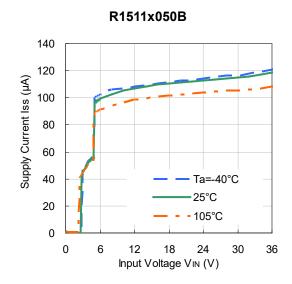


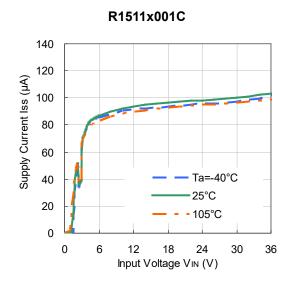




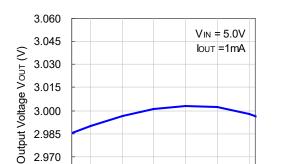

2) Output Voltage Vs. Input Voltage (Ta=25°C)




NO.EA-300-221111



3) Supply Current Vs. Input Voltage



4) Output Voltage Vs. Ambient Temperature

25

Ta (°C)

50

75 100 105

2.955

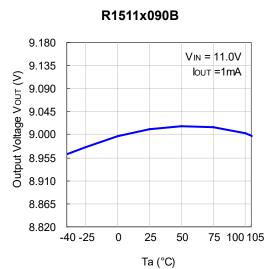
2.940

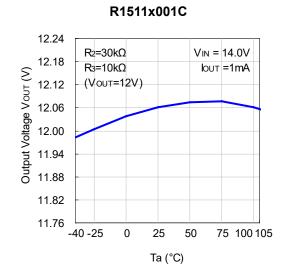
-40 -25

R1511x030B

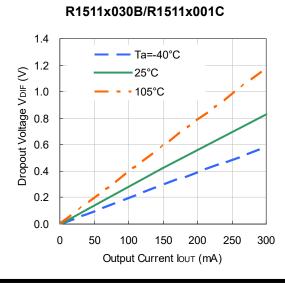
5.100 5.075 5.050 5.050 5.025 5.000 4.975 4.995 4.900

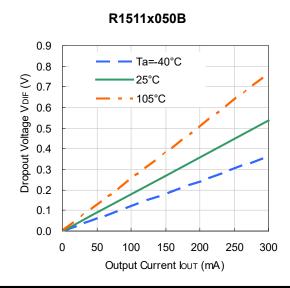
25

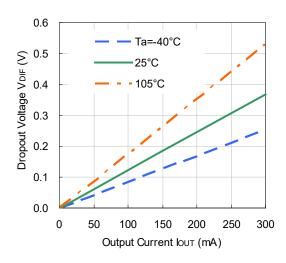

Ta (°C)


50

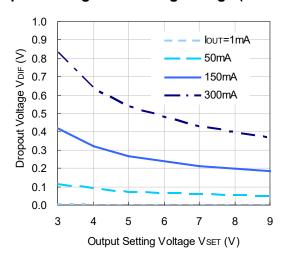
75 100 105


-40 -25

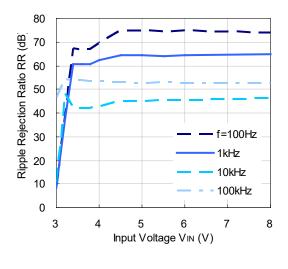

R1511x050B



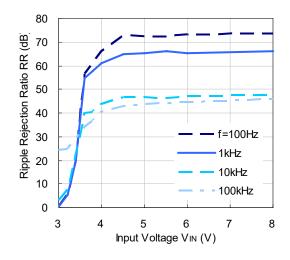
5) Dropout Voltage Vs. Output Current



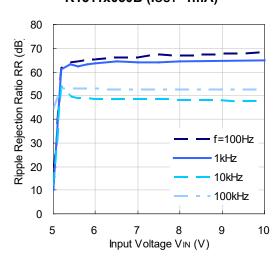
R1511x090B

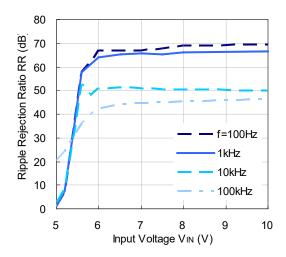


6) Dropout Voltage Vs. Setting Voltage (Ta=25°C)

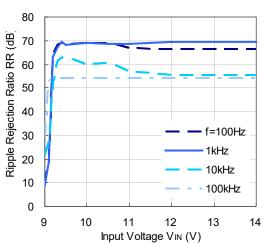


7) Ripple Rejection Vs. Input Bias Voltage (Ta=25°C, Ripple=0.5Vpp)

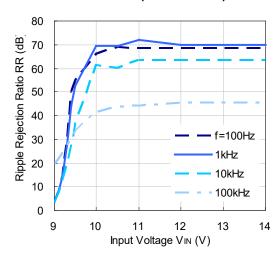

R1511x030B/R1511x001C (IOUT=1mA)


R1511x030B/R1511x001C (IOUT=100mA)

R1511x050B (IOUT=1mA)

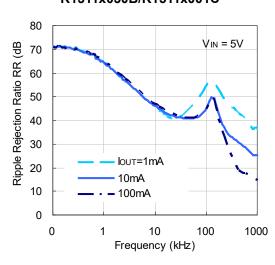


R1511x050B (IOUT=100mA)

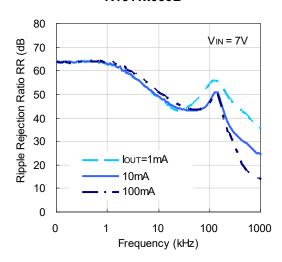


NO.EA-300-221111

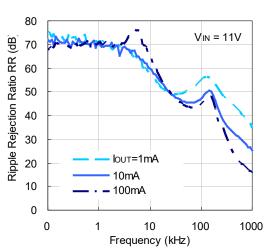
R1511x090B (IOUT=1mA)

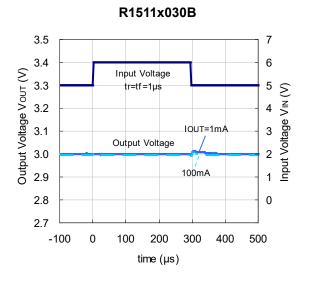


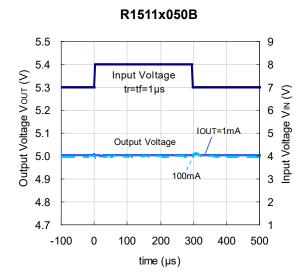
R1511x090B (IOUT=100mA)

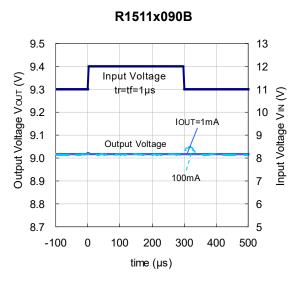


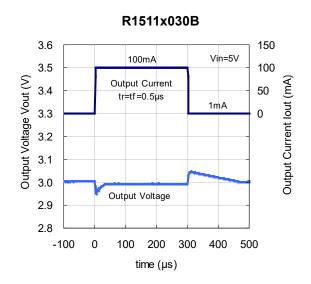
8) Ripple Rejection Vs. Frequency (Ta=25°C, Ripple=0.5Vpp)

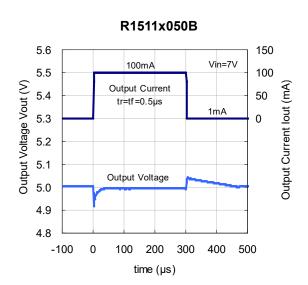

R1511x030B/R1511x001C

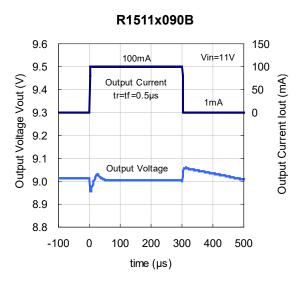

R1511x050B

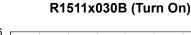


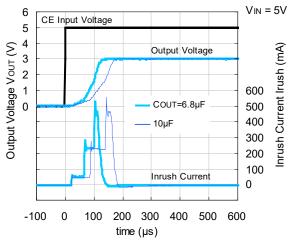

R1511x090B

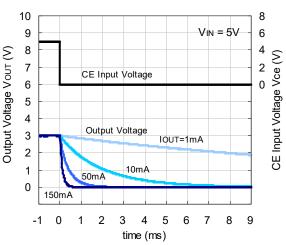

10) Input Transient Response (Ta=25°C)



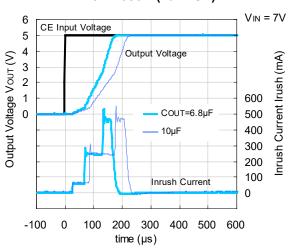


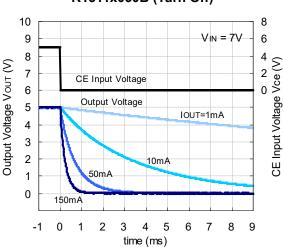

10) Load Transient Response (Ta=25°C)

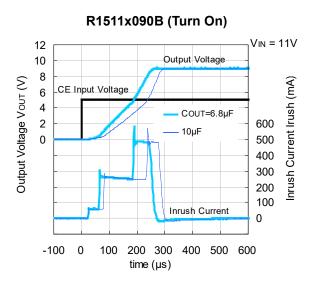


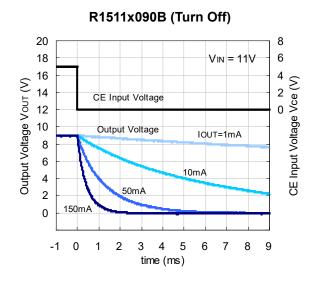


11) CE Response (Ta=25°C)

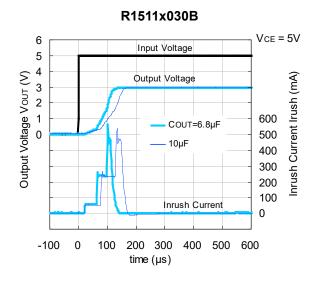


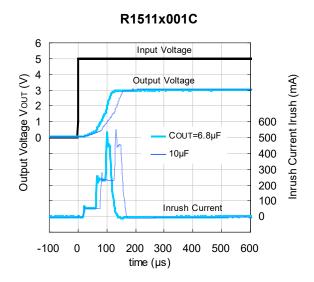

R1511x030B (Turn Off)

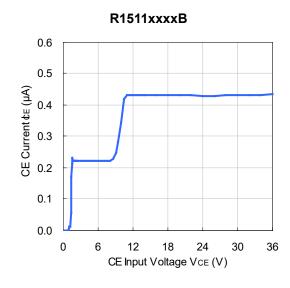




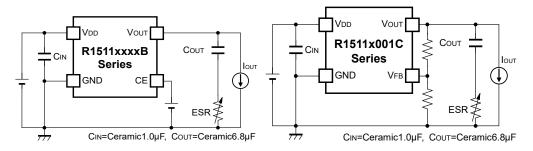
R1511x050B (Turn Off)




NO.EA-300-221111



12) Start Up Waveform (Ta=25°C)



13) CE Pin Current Vs. CE Input Voltage

EFFECTIVE SERIES RESISTANCE (ESR) VS. OUTPUT CURRENT

Ceramic type output capacitor is recommended for this series; however, the other output capacitors with low ESR also can be used. As for reference, the below graphs show the relationship between output current (I_{OUT}) and effective series resistance (ESR). The noise level of the output current (I_{OUT}) was measured by the test circuit and is lower than the specified value.

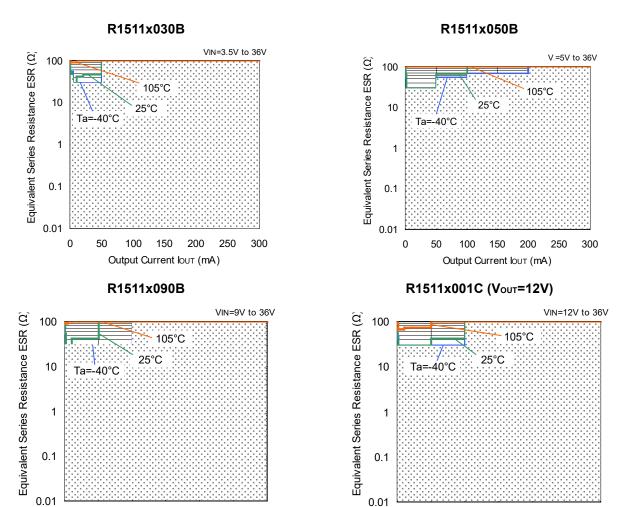
Measurement Conditions

0

50

100

150


Output Current lout (mA)

200

250

300

- Noise Frequency Range: 10Hz to 1MHz
- Ambient Temperature: -40°C to 105°C
- Shaded Area: Noise level is lower than the specified value (40μV)
- Capacitor: C_{IN}=Ceramic 1.0μF, C_{OUT}=Ceramic 6.8μF (C4532X7S1H685K)

0

50

100

150

Output Current lout (mA)

200

250

300

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
- 3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
- 4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.
 - Aerospace Equipment
 - Equipment Used in the Deep Sea
 - · Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
 - · Life Maintenance Medical Equipment
 - · Fire Alarms / Intruder Detectors
 - Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
 - Various Safety Devices
 - · Traffic control system
 - Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
- 8. Quality Warranty
 - 8-1. Quality Warranty Period
 - In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
 - 8-2. Quality Warranty Remedies
 - When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
 - Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
 - 8-3. Remedies after Quality Warranty Period
 - With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
- 9. Anti-radiation design is not implemented in the products described in this document.
- 10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
- 13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/