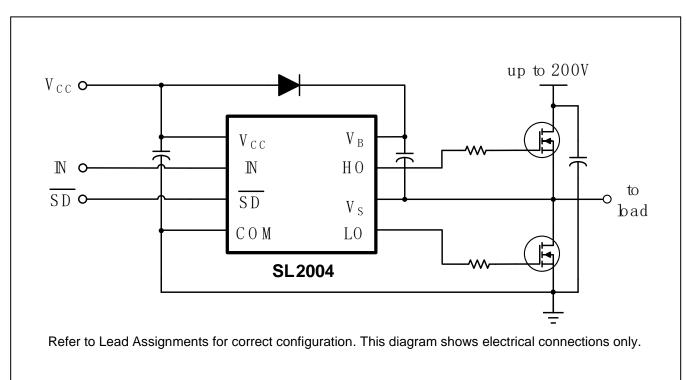


200V Half-Bridge Driver

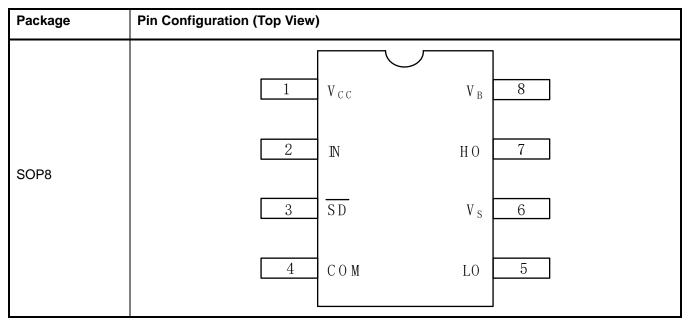
PRODUCT SUMMARY


- **V**_{OFFSET} 200 V max.
- I₀+/- (min.) 130 mA/270 mA
- **V**_{OUT} 10 V 20 V
- t_{on/off} (typ.) 680 ns/180 ns
- Deadtime (typ.) 520 ns

GENERAL DESCRIPTION

The SL2004 is a high voltage, high speed power MOSFET and IGBT drivers with dependent highand low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 200 V.

FEATURES

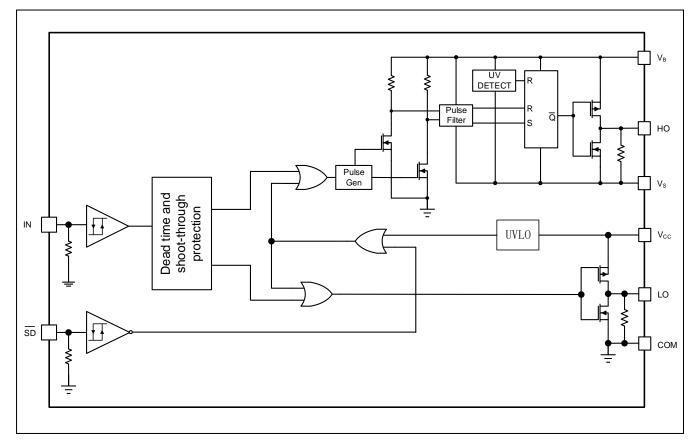

- Floating channel designed for bootstrap operation
- Fully operational to +200 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Internal set deadtime
- Shutdown input turns off both channels
- RoHS compliant
- SOP8 package

TYPICAL APPLICATION CIRCUIT

PIN CONFIGURATION

PIN DESCRIPTION

No.	Pin	Description
1	Vcc	Low-side and logic fixed supply
2	IN	Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO
3	SD	Logic input for shutdown
4	COM	Low-side return
5	LO	Low-side gate drive output
6	Vs	High-side floating supply return
7	HO	High-side gate drive output
8	VB	High-side floating supply


ORDERING INFORMATION

Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SL2004	SOP8, Pb-Free	2500/Reel

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition	Min.	Max.	Units
VB	High-side floating absolute voltage	-0.3	225	
Vs	High-side floating supply offset voltage	V _B - 25	V _B + 0.3	-
Vно	High-side floating output voltage	Vs-0.3	V _B + 0.3	
Vcc	Low-side and logic fixed supply voltage	-0.3	25	V
Vlo	Low-side output voltage	-0.3	Vcc + 0.3	
Vin	Logic input voltage (IN & SD)	-0.3	Vcc + 0.3	
dVs/dt	Allowable offset supply voltage transient		50	V/ns
PD	Package power dissipation @ $T_A \le +25^{\circ}C$		0.625	W
θ _{JA}	Thermal resistance, junction to ambient		200	°C/W
TJ	Junction temperature		150	
Ts	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		300	-

Note: Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATION CONDITIONS

Symbol	Definition	Min.	Max.	Units
VB	High-side floating absolute voltage	Vs+10	Vs + 20	
Vs	High-side floating supply offset voltage		200	-
Vно	High-side floating output voltage	Vs	VB	
Vcc	Low-side and logic fixed supply voltage	10	20	V
VLO	Low-side output voltage	0	Vcc	-
VIN	Logic input voltage (IN & SD)	0	Vcc	1
T _A	Ambient temperature	- 40	125	°C

Note: The input/output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15 V differential.

DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	Vs = 0 V		680	820	
t _{off}	Turn-off propagation delay	Vs = 0 V		180	280	
t _{sd}	Shutdown propagation delay			220	300	
tr	Turn-on rise time			70	170	ns
t _f	Turn-off fall time			25	90	
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off		400	520	650	

STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM and are applicable to all logic input leads: IN and \overline{SD} . The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vih	Logic "1" input voltage		2.5			
VIL	Logic "0" input voltage	V _{CC} = 10 V to 20V			0.8	
VSD, TH+	SD input positive going threshold		2.5			V
VSD, TH-	SD input negative going threshold				0.8	. v
Vон	High level output voltage, V _{BIAS} - Vo	lo = 20 mA		0.45	0.6	
Vol	Low level output voltage, Vo	10 – 20 MA		0.15	0.2	
Ilk	Offset supply leakage current	$V_{B} = V_{S} = 200 V$			50	
I _{QBS}	Quiescent V _{BS} supply current	V _{IN} = 0 V		60	78	
Ιαςς	Quiescent Vcc supply current			220	280	μA
I _{IN+}	Logic "1" input bias current	V _{IN} = 5 V		8	15	
I _{IN-}	Logic "0" input bias current	$V_{IN} = 0 V$			5	
V _{CCUV+} V _{BSUV+}	V_{CC} and V_{BS} supply undervoltage positive going threshold		8	8.9	9.8	V
Vccuv- Vbsuv-	V_{CC} and V_{BS} supply undervoltage negative going threshold		7.4	8.2	9	V

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{O+}	Output high short circuit pulsed current	V_{O} = 0 V, V_{IN} = V_{IH} PW \leqslant 10 µs	130	290		mA
lo-	Output low short circuit pulsed current	$\label{eq:Vo} \begin{split} V_{\text{O}} = 15 \; \text{V}, V_{\text{IN}} = V_{\text{IL}} \\ PW \leqslant 10 \; \mu\text{s} \end{split}$	270	600		

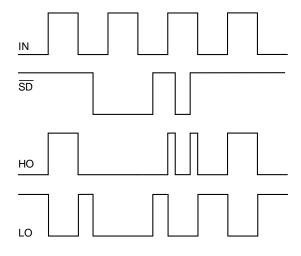


Figure 1. Input/Output Timing Diagram

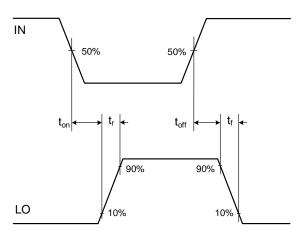


Figure 3. Low Side Switching Time Waveform

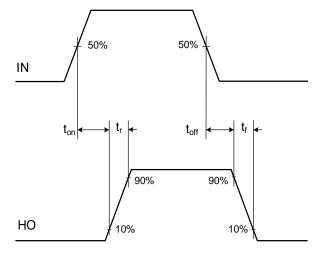


Figure 2. High Side Switching Time Waveform

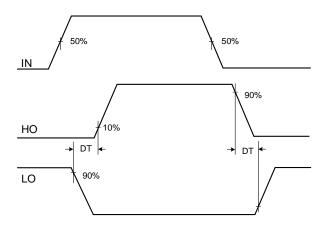
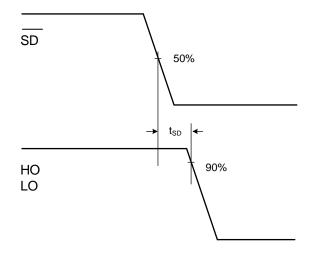
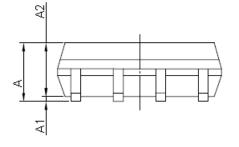
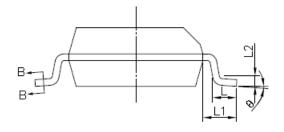
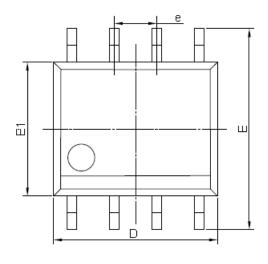


Figure 4. Dead Time Waveform


Figure 5. Shutdown Time Waveform

PACKAGE CASE OUTLINES

B-B └─────				
	υ			
b1	Dimension	MIN	NOM	MAX
'	A	-	-	1.75
	A1	0.1	-	0.25
	A2	1.25	-	-
	L	0.4	0.835	1.27
	L1	-	1.04	-
	L2	-	0.25	-
	θ	0	-	8
	b	0.31	-	0.51
	b1	0.28	-	0.48
	С	0.1	-	0.25
	c1	0.1	-	0.25
	D	-	4.9	-
	E	-	6	-
	E1	-	3.9	-
	е		1.27 BSC	
		Unit	mm	

Figure 6. SOP8 Outline Dimensions

5