Dwg. No.: A18-1978

承認字號

Issued Date: 2018/9/18

Customer	:深圳市瑞浦實業有限公司
(客 戶)	
Part No. (貴公司料號)	:

SPECIFICATION FOR APPROVAL

承 認 書

Description : (零件名稱)	ALUMINUM ELECTROLYTIC CAPACITORS
Lelon Series : (立 隆 系 列)	RGA Series
Lelon Part No.:	

LELON ELECTRONICS CORP.

立隆電子工業股份有限公司

Headquarters

147, Sec. 1, Guoguang Rd., Dali District, Taichung, Taiwan TEL: +886-4-2418-1856 FAX: +886-4-2418-1906

Manufacturing Sites

- Lelon Electronics Corp.

 147, Sec. 1, Guoguang Rd., Dali District, Taichung, Taiwan
 TEL: +886-4-2418-1856 FAX: +886-4-2418-1906
- Lelon Electronics (Huizhou) Co., Ltd.
 Taiyang Industrial Zone, Baihua Town, Huidong County, Huizhou City,
 Guangdong, China
 TEL: +86-752-8768222 FAX: +86-752-8768199
- Lelon Electronics (Suzhou) Co., Ltd.
 1220, Zhongshan North Rd., Songling Town, Wujiang City, Jiangsu, China TEL: +86-512-63457588 FAX: +86-512-63457791

Approval Signatures

貴公司承認印

Approval	Check	Design
核 准	確 認	作 成
研發部	研發部	研發部
SP 18 2018	SP 18 2018	SP 18 2018
蕭正浩	陳 筱	朱玉芳

Please Return One Copy with Your Approval 承 認 後 請 寄 回 本 圖 一 份 LELON ELECTRONICS CORP. Ver. 02

Part Numbering System

Product Code Guide - Radial Type

RGA series	10μF	±20%	50V	Formed Lead Taping	Gas Type	5φ×11L	Pb-free wire + Black PET sleeve	
<u>RGA</u>	<u>100</u>	<u>M</u>	<u>1H</u>	<u>TA</u>	=	<u>0511</u>	<u>G</u>	
1	2	3	4	⑤	6	7	8	9
Series	Capacitance	Capacitance Tolerance	Rated Voltage	Lead Configuration & Package	Rubber Type	Case size	Lead Wire and Sleeve Type	Supplement Code

1) Series:

Series is represented by a three-letter code. When the series name only has two letters, use a hyphen, "-", to fill the third blank.

2 Capacitance:

Capacitance in μF is represented by a three-digit code. The first two digits are significant and the third digit indicates the number of zeros following the significant figure. "R" represents the decimal point for capacitance under 10 μF .

Capacitance	0.1	0.47	1	4.7	10	47	100	470	1,000	4,700	10,000
Part number	0R1	R47	010	4R7	100	470	101	471	102	472	103

3 Tolerance:

J = -5% ~ +5%	K = -10% ~ +10%	M = -20% ~ +20%	V = -10% ~ +20%

4 Rated voltage:

Rated voltage in volts (V) is represented by a two-digit code

••	moa vonago ni vi	0.10 (1).	o .op.oo	01110000)	, a	ngit oout	•						
	Voltage (WV)	2.5	4	6.3	10	16	20	25	35	50	63	80	100
	Code	0E	0G	0J	1A	1C	1D	1E	1V	1H	1J	1K	2A
	Voltage (WV)	160	200	250	315	350	400	420	450	500	525		
	Code	2C	2D	2E	2F	2V	2G	2P	2W	2H	2Y		

(5) Lead configuration and package:

BK = Bulk Package	TA = Formed Lead Taping
FC = Formed & Cut Lead	SA = Straight Lead Taping
CC = Cut Lead	SD = Bent Cathode Lead
SF = Snap-in & Formed Cut Lead	BC = Bent & Cut Lead (Leads in Right Direction)
SC = Snap-in & Cut Lead	BU = Bent & Cut Lead (Leads in Left Direction)

Rubber type:

– = Gas escape type	F = Flat rubber bung

Note: For case size of 3φx5L, 12.5φx16L, 16φx16L, 16φx20L, 18φx16L, 18φx20L, 18φx25L of aluminum e-caps, flat rubber bung is the standard design, In these cases, use a hyphen, "-", in this digit.

7 Case size:

The first two digits indicate case diameter and the last two digits indicate case length in mm.

φD×L	3×5	4×5	4×7	5×5	5×7	5×11	6.3×5	6.3×7	6.3×11	6.3×15
Code	0305	0405	0407	0505	0507	0511	0605	0607	0611	0615
φD×L	8×5	8×7	8 × 9	8×11.5	8×15	8×20	10×9	10×12.5	10×16	10×20
Code	0805	0807	0809	0811	0815	0820	1009	1012	1016	1020
φD×L	10×25	10×30	10×35	10×40	10×45	10×50	12.5×16	12.5×20	12.5×25	12.5×30
Code	1025	1030	1035	1040	1045	1050	1316	1320	1325	1330
φD×L	12.5×35	12.5×40	12.5×45	12.5×50	16×16	16×20	16×25	16×31.5	16×35.5	16×40
Code	1335	1340	1345	1350	1616	1620	1625	1632	1636	1640
φD×L	16×45	16×50	18×16	18×20	18×25	18×31.5	18×35.5	18×40	18×45	18×50
Code	1645	1650	1816	1820	1825	1832	1836	1840	1845	1850
φD×L	20×30	20×35	22×35	22×40	22×45	25×40	25×45			
Code	2030	2035	2235	2240	2245	2540	2545			

Note: When a case size is required and not shown in the table, please contact with us for further discussion.

(8) Lead Wire and Sleeve Type:

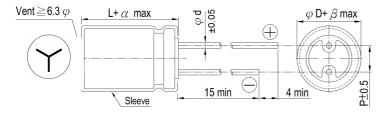
None = Standard design Pb-free wire + PET sleeve (aluminum e-cap)	T = Sn-Pb wire + PET sleeve
Pb-free wire + Coating case (OP-CAP)	
B = Sn-Bi wire + PET sleeve	G = Pb-free wire + Black PET sleeve (for RGA & SG series only)
K / L = Automotive control code	P = Pb-free wire + PET sleeve

^{*} When a supplement code following a blank digit code of lead wire and sleeve type (standard design), use a hyphen, "-", to fill the blank digit.

Supplement code (Optional):

For special control purposes

^{*} When the automotive control code is required, please contact with us for further discussion.


LELON ELECTRONICS CORP. ER-RGA-06

RGA Series Type

Specifications

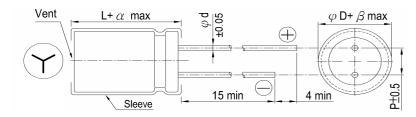
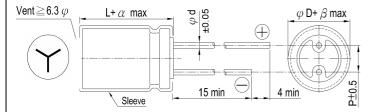

Capacitance Tolerance		± 20% at 120Hz, 20℃														
Category Temperature			(6.3 ~	400V	1			450V							
Range			-40°C ~ +105°C				-25℃ ~ +105℃									
				۱۱/۵۱۴		0.0	40	40	25	25	50	<u> </u>	2 40			
		-	Rated Volt		<u> </u>	6.3	10	16	25	35	50	6:				
Rated Working Voltage and Surge Voltage		F	Surge Volt Rated Volt			7.3	11.5	18.4		40.3	57.5	72	.5 11	ວ		
and Jurge Voltage			Surge			160 184	200	250 288	350 385	400	450 495					
			Surge	e voit	aye	104	230	200	300	440	495					
Leakage Current (at20°C)	then te	rmina / 5 m Rate	al volta inutes	I voltage may reach the ra nutes shall be below the v d voltage ≤100V			rated w value V nutes									
			ge Cur		whic	.01CV c hever is t; C = ra	greate	ėr I =	= 0.03C	[1000 V+15 (_L JF; V =	ιΑ) I rated D	= 0.	CV > 10 <u>02CV+</u> orking	25 (µ		V.
	****	0.0, 1	- loak	ugo o	411011	1, 0 - 10	itou ou	paona		ai , v —	ratoa E		onung	Volta	90 111 1	
	Rated			d Volt	age	6.3	10	16	25	35	50	6	3 10	00		
Tan δ (at 120 Hz, 20°ℂ)	Tanδ(ιδ(ma	x)	0.23	0.20	0.16	0.14	0.12	0.10	0.0	0.0	08		
Tail 0 (at 120 112, 20 C)	Rated V			d Volt	age	160	200	250	350	400	450					
				ιδ(ma	•	0.12	0.14	0.17		0.25	0.25					
	\	Nhen	the ca	pacita	ance	exceeds	1000μF , 0.02 shall be added every 1000μF increase.									
	Impedance ratio shall not exceed the values given in the table below															
			Rat	ted Vo			6.3	10	_	25	35	50			00	
				Z(-25		φD<16		3	3	2	2	2		2		
I. T			edance atio	Z(+20 Z(-40	-	φD≥16 φD<16	_	6	6	3	3	3		3		
Low Temperature Characteristics (at 120Hz)				Z(+20		φD < 10 φD≥16		10		8	8	8		6		
onaraotonomo (at 120112)			Rat	ted Vo		<u> </u>	160	200	_	350	400	450	_	,		
		lmne	edance	1		 (+20°C)	3	6	8	12	14	16				
			atio	-		(+20°C)	4	8	10	16	18	-				
							1	1	-	•						
			Cai	p.(μ F)	F	Freq.(Hz	60 (50)	120	500	11	<	10k up	,		
Ripple Current &					der 1	100	0.7	0	1.00	1.30	1.4	10	1.50			
Frequency Multipliers			1	00 <	C ≦	1,000	0.7	'5	1.00	1.20	1.3	30	1.35			
				1000	up a	bove	0.8	80	1.00	1.10	1.1	2	1.15			

Diagram of Dimensions

Lead	Spac	ing a	nd Di	iamet	ter			Unit	: mm
φD	5	6.3	8	10	12.5	16	18	22	25
Р	2.0	2.5	3.5	5.0	10	12.5			
φd	0.	.5		0.6		0	.8	1	.0
α		L <	20: 1	.5, L	≥ 20:	2.0		2	.0
β					0.5				

The case size of 12.5×16, 16×16, 16×20, 18×16, 18×20 and 18×25 are suitable for below diagram:

Dimension & Permissible Ripple Current


Dimension: $\phi D \times L(mm)$ Ripple Current: mA/rms at 120 Hz, 105°C

Dimens	SIUII Q	r emis	SIDIC I	ribbie (Juliei	IL						Libbie i	Juliel	it: ma/m	iis at i	20112,	105 0
	V. DC	6.3V	(0J)	10V (1A)	16V (1C)	25V (1E)	35V (1V)	50V (1H)	63V ((1J)	100V	(2A)
μF	ontents	φD×L	mA	φDxL	mA	φDxL	mA	φDxL	mA	φDxL	mΑ	φDxL	mA	φD×L	mA	φDxL	mA
2.2	2R2											5×11	20			5×11	30
3.3	3R3											5×11	30			5×11	31
4.7	4R7											5×11	33			5×11	36
10	100					5×11	35			5×11	46	5×11	50			6.3×11	54
22	220											5×11	78	6.3×11	86	6.3×11 8×11.5	93 99
33	330					5×11	71			5×11	75	5×11	90	6.3×11	100	8×11.5	130
47	470					5×11	85	5×11	97	5x11 6.3x11	90 100	6.3×11	120	6.3×11 8×11.5	130 141	10×12.5	165
100	101					5×11	110	5×11 6.3×11	120 142	6.3x11 8x11.5	150 180	8×11.5	188	10×12.5	235	10×20 12.5×16	265 290
220	221	5×11	140	6.3×11	175	6.3×11	190	8×11.5	236	8×11.5	270	10×12.5	240	10×16	335	12.5×25 16×16	440 420
330	331			6.3×11	200	8×11.5	270	8×11.5 10×12.5	310 335	10×12.5	350	10×16	410	10×20 12.5×16	510 460	16×25	620
470	471	6.3×11	230	8×11.5	290	8×11.5 10×12.5	310 370	10×12.5	380	10×16	460	10×20 12.5×16	530 425	12.5×20 16×16	640 665	16×31.5 18×25	715 745
1,000	102	8×11.5	380	10×12.5	460	10×16	560	10×20 12.5×16	680 590	10×25 12.5×20 16×16	830 810 720	12.5×25 16×20	950 830	16×25	930	18×40	1,275
2,200	222	10×16	690	10×20	760	12.5×16	780	10×30 12.5×25	1,050 1,110	16×25 18×20	1,260 1,110	16×35.5 18×31.5		18×40	2,280	25×45	2,400
3,300	332	10×20 12.5×16	840 850	12.5×20 16×16	1,100 940	12.5×25 16×16	1,170 950	16×25 18×20	1,440 1,220	16×31.5 18×25	1,420 1,570	18×35.5	1,770	22×40	2,510		
4,700	472	12.5×20 16×16	1,010	12.5×25 16×16	1,260 1,060	16×20 18×16	1,185 1,290	16×31.5 18×25	1,650 1,550	18×35.5	1,900	22×40	2,340	25×40	3,000		
6,800	682	12.5×25 16×20	1,460 1,190	16×20	1,270	16×31.5 18×20	1,930 1,585	16×40 18×35.5	2,000 2,160	18×40	2,250	25×40	2,530				
10,000	103	16×20	1,340	16×31.5 18×25	2,220 1,800	16×35.5 18×31.5	2,210	18×45 22×40	2,410 2,720								
15,000	153	16×31.5 18×25	2,365 2,290	16×35.5 18×31.5		18×40	2,950	25×40	3,200								
22,000	223	16×40 18×35.5	2,800 2,930	18×40	3,230	22×40	3,460										
33,000	333	18×45	3,080	22×40	4,090	25×45	4,500										

LELON ELECTRONICS CORP. ER-RGA-06

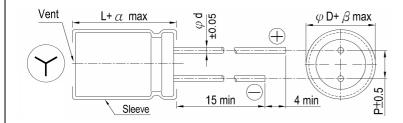
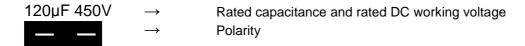
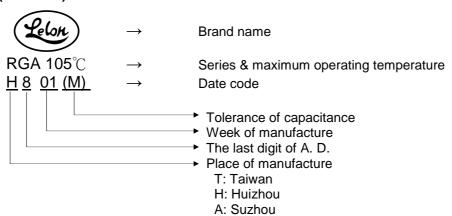

	V. DC	160V	(2C)	200V	(2D)	250V	(2E)	350V (2V)	400V	(2G)	450V (2W)
μF C	ontents	φD×L	mΑ	φD×L	mΑ	φD×L	mΑ	φDxL	mΑ	φD×L	mΑ	φD×L	mΑ
1	010	6.3×11	17							6.3×11	21	8×11.5	27
2.2	2R2			6.3×11	30	6.3×11	35	6.3×11	35	8×11.5	39	8×11.5	39
3.3	3R3			6.3×11	39	6.3×11	40	8×11.5	43	8×11.5 10×12.5	45 45	8×11.5	45
4.7	4R7			6.3×11	43	8×11.5	45	8×11.5 10×12.5	45 55	8×11.5 10×12.5	50 55	8×11.5 10×12.5	50 55
6.8	6R8									8×11.5	70		
10	100	8×11.5	65	8×11.5	65	10×12.5	92	10×16	95	10×12.5	92	10×20	105
22	220	10×12.5	110	10×16	140	10×16	140	12.5×20	220	12.5×16 12.5×20	160 160	12.5×20 16×25	160 200
33	330	10×16	150	10×20	170	12.5×16	175	12.5×25 16×16	215 205	12.5×20 16×20	235 225	16×20 18×16	225 220
47	470	10×20	195	12.5×16	215	12.5×20 16×16	230 245	16×20	255	16×25	295	16×25 18×31.5	280 345
68	680	12.5×20	275	12.5×20 16×16	265 290	16×20	320	18×25 16×31.5	360 370	16x25 18x25 16x31.5	440 360 375	16×35.5 18×31.5	400 420
100	101	12.5×25	355	16×20 18×16	365 360	16×25 18×20	425 415	18×31.5 16×35.5	460 430	18×35.5	540	18×40	560
180				_						18×40	650	_	
220	221	16×31.5	660	18×31.5	750	18×35.5	760	22×45 25×40	850 865	22×45	930		
330	331	18×35.5	820	18×40	965	22×40	1,140	25×45	1,070				
470	471	22×40	1,130	22×40	1,130	25×40	1,325						

Diagram of Dimensions:

Lead	Spac	ing &	Diame	eter				Unit	: mm
φD	5	6.3	8	10	12.5	16	18	22	25
Р	2.0	2.5	3.5	5.0	5.0	7.5	7.5	10	12.5
φd	0	.5		0.6		0.	.8	1	.0
α		L	< 20: 1	1.5, L≧	≧20: 2	.0		2	.0
β					0.5				


The case size of 12.5×16, 16×16, 16×20, 18×16, 18×20 and 18×25 are suitable for below diagram:


Marking:

Each capacitor shall be marked with the following information.

(The Front)

(The Back)

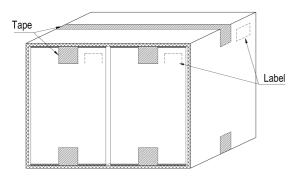
Appearance:

Marking color: White

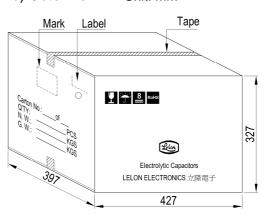
Sleeve color: Black ----- RGA Series

Sleeve material: PET

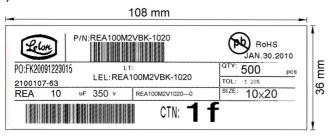
Packaging Quantity:

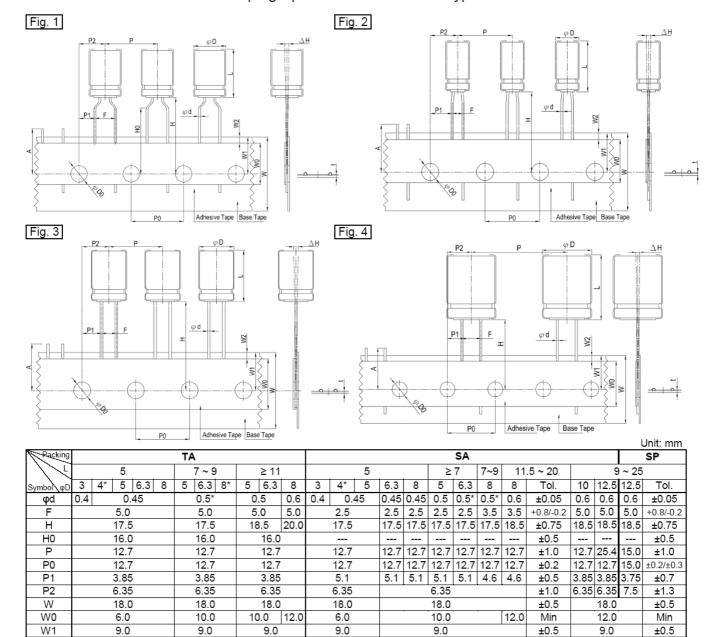

1. Radial Type in Bulk Pack (Long Lead):

Case Size	Pcs / Bag	Inner Box	Pcs /	Case Size	Pcs / Bag	Inner Box	Pcs /
Odoc Olzc	1 00 / Dag	/ Carton	Carton	Oddo Olzo	1 00 / Dag	/ Carton	Carton
3φ × 5	1,000	2	60,000	10φ × 16L	500	2	7,000
$4\phi \times 5 \sim 7L$	1,000	2	50,000	10φ × 20 ~ 25L	500	2	6,000
5φ × 5 ~ 7L	1,000	2	40,000	10φ × 30 ~ 40L	400	2	4,000
*5φ × 8	*1000	2	*20,000	10φ × 45 ~ 50L	200	2	3,000
5φ × 11L	1,000	2	30,000	12.5φ × 16 ~ 25L	250	2	3,000
$6.3\phi \times 5 \sim 7L$	1,000	2	30,000	12.5φ × 30 ~ 35L	250	2	2,500
*6.3φ × 5.5 ~ 8L	*1000	2	*20,000	12.5φ × 40L	250	2	2,000
6.20 111	1,000	2	20,000	12.5φ × 45 ~ 50L	100	2	2,000
6.3φ × 11L	*1000	2	*20,000	16φ × 16 ~ 25L	150	2	1,800
$6.3\phi \times 15L$	1,000	2	15,000	16φ × 31.5L	100	2	1,200
8φ × 5 ~ 9L	1,000	2	15,000	16φ × 35.5L	100	2	1,200
8φ × 11.5L	1,000	2	12,000	16φ × 40 ~ 50L	100	2	1,000
*8φ × 8 ~12L	*1000	2	*12,000	18φ × 16L	150	2	1,800
8φ × 15L	1,000	2	10,000	18φ × 20 ~ 31.5L	100	2	1,200
8φ × 20L	1,000	2	8,000	18φ × 35.5 ~ 40L	100	2	800
8φ × 25 ~ 30L	500	2	6,000	18φ × 45 ~ 50L	50	2	600
8φ × 35 ~ 50L	250	2	3,000	20φ × 40L	50	2	600
*10φ × 7.7 ~10L	*500	2	*10,000	22φ	50	2	500
10φ × 9L	1,000	2	12,000	25φ × 40L	25	2	300
10φ × 12.5 ~13L	500	2	8,000	25φ × 45 ~ 50L	25	2	250


Remark: "*" Suitable for CA04 type (OP-CAP).

Packing Figure:


a) Inner Box


b) Outer Box Unit: mm

C) Label

Taping Specification for Radial Type

2 Fig. No. 3 Remark: 1. 4ϕ in mark of "*" is $4\phi \times 7L$ the same spec. "SA" packing: $5 \sim 6.3\phi \times 11 \sim 15L$ in H is 18.5mm.

1.5

11.0

4.0

0

0.7

1

1.5

11.0

4.0

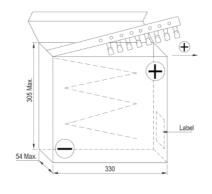
0

0.7

1

- 2. For 3 \sim 8 ϕ ×5L, W0 = 10.0 is available. 3. ϕ in mark of " * " is 0.6mm for OP-CAP's 6.3 ϕ and 8 ϕ 4. The " Tol." of " TA " is the same " SA ".

Packaging


W2

Α

φD0

ΔΗ

Fig. 5 Ammo pack box

1.5

11.0

4.0

0

0.7

1

1.5

11.0

4.0

0

0.7

1.5

11.0

4.0

0

0.7

3

Packagir	ng Qua	antity			Uı	nit: pc	s/box
φD	3	4	5	6.3	8	10	12.5
TA SA	3 000	2 000	2 000	2 000	1 000	500	300

Max

Max

±0.2

±1.0

±0.2

1.5

11.0

4.0

0

0.7

4

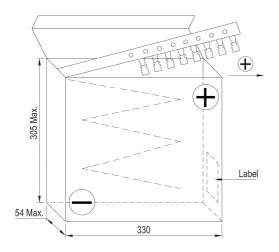
Max

Max

±0.2

±1.0

±0.2

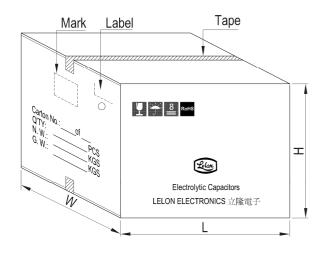

Note: The component shall be oriented on the tape as such that the positive lead is leading or the negative lead is leading with customer's request.

LELON ELECTRONICS CORP. Radial-PAC

Packing Quantity:

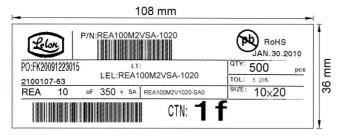
2. Radial Type in Taping Pack:

Inner Box of Ammo Pack:


	Unit: mm
φD	TA, SA
3	3,000
4	2,500
5	2,000
6.3	2,000
8	1,000
10φ × 8 ~ 30L	500
10φ × 35 ~ 50L	250
12.5	300
16	200

NOTE: (1) Above quantities are principle. Some difference may be provided.

(2) The component shall be orient on the tape as such that the positive lead is leading or the negative lead is leading with customer's request.


Packing Figure:

a) Outer Box

Case Size	L	W	Н
3 ~ 4φ	427	345	230
5φ	491	345	275
6.3φ	597	349	294
8φ	491	345	275
10φ× 8 ~ 30L	412	358	303
10φ× 35 ~ 50L	210	358	405
12.5φ× 16 ~ 40L	597	349	294
16φ× 16 ~ 25L	430	330	325

b) Label

Lead Forming & Cutting Specification

Radial Type Unit: mm

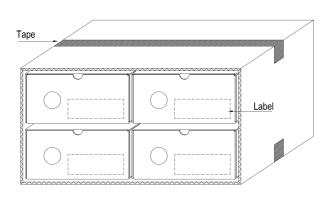
Forming Method	Code	Shape	Dimensions
, onlining Method	Code	·	
		L 5.0±0.5	φD×L φd F F' H
			3 x 5 0.4 1.0 5.0 5.0
F			4 × 5 0.45 1.5 5.0 5.0
Forming Cut	FC	φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ Φ	5 × 5 0.45 2.0 5.0 5.0
(4φ ~ 8φ)			6.3~8 × 5
		2.5 Max	4 × 7 0.45 1.5 5.0 5.0 5 × 7~11 0.5 2.0 5.0 5.0
		 	6.3 × 7~15 0.5 2.0 5.0 5.0
			8 × 7~9 0.5 3.5 5.0 5.0
		L P 0 0 5:03	8 × 11.5~50 0.6 3.5 5.0 5.0
		φ d φ d F±0.5	10 0.6 5.0 4.5
			12.5 0.6 5.0 4.5
Cut	СС	9	16 0.8 7.5 4.5
$(3\phi \sim 25\phi)$	00		18 0.8 7.5 4.5
			22 1.0 10.0 4.5
		H±0.5	25 1.0 12.5 4.5
Snap-in Forming Cut (4φ ~ 8φ)	SF	0.5 H2+1.0 H1±0.5 H3 Max	φD × L φd H1 H2 H3 F P E 4 ~ 8 × 5 0.45 5.0 2.8 2.5 5.0 1.1 1.1 4 × 7 0.45 5.0 2.8 2.5 5.0 1.1 1.1 5 × 7~11 0.5 5.0 2.8 2.5 5.0 1.1 1.1 6.3 × 7~15 0.5 5.0 2.8 2.5 5.0 1.1 1.1 8 × 7~9 0.5 5.0 2.8 2.5 5.0 1.1 1.1
			8 × 11.5~50 0.6 5.0 2.8 2.5 5.0 1.1 1.1
1		-0.5 H2+1.0	10 0.6 4.5 2.5 5.0 1.2 1.1
1			12.5
		φ D	16 0.8 4.5 2.5 7.5 1.2 1.1 18 0.8 4.5 2.5 7.5 1.2 1.1
			22 1.0 4.5 2.5 10.0 1.2 1.3
Snap-in Cut	sc	H1±0.5	25 1.0 4.5 2.5 12.5 1.2 1.3
(10φ ~ 25φ)	30		
		P Max	
1			
1		1.5±0.5	
Bending Cut	вс	0000.4	φD × L
(5φ ~ 25φ)			6.3 × 11 ~ 15 0.5 2.5
		- L	8 × 11.5 ~ 50 0.6 3.5
		Ш_i ─ Щ _{F±0.5} Ш	10 0.6 5.0 2.3
			12.5 0.6 5.0 2.3
		3.7±0.5 8 W	16 0.8 7.5 2.7
		1.3 Max w	18 0.8 7.5 2.7
Cathode Lead			22 1.0 10.0 2.7
Bending	SD	Q 9	25 1.0 12.5 2.7
(10φ ~ 25φ)			"*E" is only suitable for SD cutting "*BU": Leads bending cut are different
		Pos	direction from BC.
		- L *	

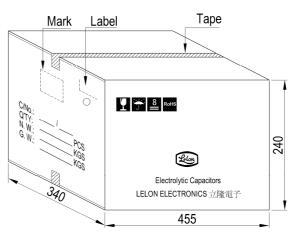
LELON ELECTRONICS CORP. Radial-PAC

Packaging Quantity:

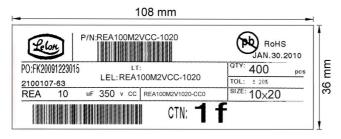

3. Radial Type in Cutting Pack:

Case Size	pcs / Bag	Inner Box / Carton	Pcs / Carton	Case Size	pcs / Bag	Inner Box / Carton	Pcs / Carton
3φ × 5	1,000	8	80,000	*10φ × 8 ~ 10L	*500	8	*12,000
4φ × 5 ~ 7L	1,000	8	80,000	10φ × 12.5 ~ 16L	500	8	8,000
5φ × 5 ~ 7L	1,000	8	56,000	10φ × 20L	400	8	6,400
*5φ × 8L	*1000	8	*24,000	10φ × 25L	300	8	4,800
5φ × 11L	1,000	8	40,000	10φ × 30 ~ 40L	250	8	4,000
$6.3\phi \times 5 \sim 7L$	1,000	8	40,000	10φ × 45 ~ 50L	200	8	3,200
*6.3φ × 5.5 ~ 8L	*1000	8	*20,000	12.5φ × 16 ~ 25L	200	8	3,200
6.3φ × 11L	1,000	8	24,000	12.5φ × 30 ~ 40L	150	8	2,400
0.5ψ Χ ΤΤΕ	*1000	8	*20,000	12.5φ × 45 ~ 50L	100	8	1,600
$6.3\phi \times 15L$	500	8	12,000	16φ × 16 ~ 31.5L	100	8	1,600
8φ × 5 ~ 9L	1,000	8	16,000	16φ × 35.5 ~ 40L	75	8	1,200
8φ × 11.5L	1,000	8	16,000	16φ × 45 ~ 50L	50	8	800
*8φ × 8 ~ 12L	*1000	8	*16,000	18φ × 16 ~ 25L	100	8	1,600
8φ × 15L	800	8	12,800	18φ × 31.5 ~ 35.5L	75	8	1,200
8φ × 20L	500	8	8,000	18φ × 40L	50	8	800
8φ × 25 ~ 30L	500	8	8,000	18φ × 45 ~ 50L	50	8	400
8φ × 35 ~ 50L	250	8	4,000	20 ~ 25φ			400
10φ × 9L	500	8	12,000				


Remark: "*" Suitable for CA04 type (OP-CAP).


Packing Figure:

a) Inner Box



Unit: mm

c) Label:

Endurance Characteristic:

No.	Item	Conditions		Specification
1	Rotational	Capacitor is placed in an oven whose temperature	Capacitance	
·	Temperature Test	follow specific regulation to " +25 $^{\circ}$ C (3 min.) \rightarrow	change	Within ± 10% of initial value.
		-40° C / -25° C (30 min.) → $+25^{\circ}$ C (3 min.) → $+105^{\circ}$ C	Tanδ	Within specified value
		(30 min.) →+25°C (3 min.)", and it is called a cycle. The test totals 10 cycles. And then the capacitor	Leakage Current	Within specified value
		shall be subjected to standard atmospheric	Physical	No broken and undamaged
		conditions for 4 hours, after which measurements		G
		shall be made. 6.3 ~ 400V: -40℃; 450V: -25℃		
2	High Temperature	Capacitors shall be placed in oven with	Capacitance	Within ± 20% of initial value.
	Endurance Life Test	application of ripple current and rated voltage	change	
	1621	for 2000 +72 / -0 hours at 105° C.	Tanδ	Less than 200% of specified value
		The capacitor should be used within specified permissible ripple current in each standard	Leakage Current	Within specified value
		products table (the sum of DC voltage and AC	Physical	No broken and undamaged
		peak voltage shall be equal to the rated DC working voltage).		
		3. The specified maximum permissible ripple		
		current in defined at 105°C and 120Hz (unless otherwise specified).		
		Then the capacitor shall be subjected to standard		
		atmospheric conditions for 4 hours, after which		
3	High Temperature	measurements shall be made. After 1000 +48 / -0 hours test at 105℃ without rated	Capacitance	
	Unload Life Test	working voltage. And then the capacitor shall be	change	Within ± 20% of initial value.
		subjected to standard atmospheric conditions for	Tanδ	Less than 200% of specified value
		4 hours, after which measurements shall be made The rated voltage shall be applied to the capacitors	Leakage Current	Within specified value
		before the measurenments for 160 ~ 450V (Refer to JIS C 5101-4 4.1)	Physical	No broken and undamaged
4	Humidity Test	Capacitors shall be exposed for 1000 +48 / -0 hours	Capacitance	Within ± 10% of initial value.
		in an atmosphere of 90% ~ 95% R. H. at $60 \pm 3^{\circ}$ C	change	
		And then the capacitor shall be subjected to	Tanδ	Less than 120% of specified value
		standard atmospheric conditions for 4 hours, after which measurements shall be made.	Leakage Current	Within specified value
			Physical	No broken and undamaged
5	Low Temperature Test	Capacitors are placed at -40 / -25 ±3°C for 96 ± 4	Capacitance	Within ± 10% of initial value.
	1651	hours. And then the capacitor shall be subjected to atmospheric conditions for 4 hours, after which	change Tanδ	Within specified value
		measurements shall be made.	Leakage	
		6.3 ~ 400V: -40°C; 450V: -25°C	Current	Within specified value
			Physical	No broken and undamaged
6	Vibration Test	Fix it at the point 4mm or less form body. For ones of 12.5mm or more in diameter or 25	Capacitance change	Within ± 10% of initial value.
		mm or more length, use separate fixture.	Tanδ	Within specified value
		2. Direction and during of vibration:	Leakage	Within specified value
		3 orthogonal directions mutually each for 2 hours (total of 6 hours).	Current Physical	No broken and undamaged
		3. Frequency:	11, 5.00/	
		10 to 55 Hz reciprocation for 1min. 4. Total amplitude: 1.5mm		
7	Solder Heat-	The section of lead below 4mm form the body of	Capacitance	Within ± 10% of initial value.
	Resistance	capacitor must be immersed in 260 ± 5°C liquid tin	change	
	Test	10 ± 1 seconds, than, after removing the following	Tanδ	Within specified value
		specifications shall be satisfied when capacitor terminal is restored to 20°C over 4 hours.	Leakage Current	Within specified value
			Physical	No broken and undamaged

	Item		Co	nditio	ns						Sp	ecification
8	Surge Voltage Test		pacitor shall be some \mathbb{C} . Protective so						Capacita change	nce	Within	± 20% of initial value.
		consist	ing of a charge p	eriod	of 30 ±	5 seco	onds,		Tanδ		Less th	an 175% of specified value
		followe minute:	d by discharge ps.	eriod	of appr	oximat	ely 5.5		Leakage Current		Within	specified value
									Physical		No bro	ken and undamaged
		Applyin	ng voltage:									
		F	Rated Voltage(V)	6.3	10	16	25	35	50	63	100	
		5	Surge Voltage(V)	7.3	11.5	18.4	28.8	40.3	57.5	72.5	115	
		F	Rated Voltage(V)	160	200	250	350	400	3 450			•
		5	Surge Voltage(V)	184	230	288	385	440	495			
9	Mechanical Characteristics Test	2. Tens	test is about lead sion Test: lead tabs shall r ssing the followin	ot be	broken Jht on t	or any he lead	d tabs	of ca	pacitor fo	r 10 ±	1 secs	capacitor vertically and
				Lea	ad tabs	diame	ter (mr	m)	We	ight (ł	(g)	
						≦ 0.5				0.5		
						6 ~ 0.8	3			1.0		
						> 0.8				2.0		
			ding Test:									
		The 90°	capacitor is held	n the c	pposite	osition. e direct	ion. Re	epea	t it again	ne lea (5 sed	cs / cyc	slowly rotate the capacitor e). The lead tabs shall not
		The 90°	capacitor is held to a same way in	n the c	pposite	osition. e direct	ion. Re	epea	t it again	ne lea (5 sed	cs / cyc	
		The 90°	capacitor is held to a same way in	n the c	pposite	osition. e direct diame ≤ 0.5	ion. Re	epea	t it again	ne lea (5 sed eight(k 0.25	cs / cyc	
		The 90°	capacitor is held to a same way in	n the c	pposite ad tabs	osition. e direct diame ≤ 0.5 $6 \sim 0.8$	ion. Re	epea	t it again	ne lea (5 sec eight(k 0.25 0.50	cs / cyc	
		The 90°	capacitor is held to a same way in	n the c	pposite ad tabs	osition. e direct diame ≤ 0.5	ion. Re	epea	t it again	ne lea (5 sed eight(k 0.25	cs / cyc	
10	Solderability Test	The 90° be b	capacitor is held to a same way in proken or cracked	the cd.	pposite ad tabs 0	position. The diamed ≤ 0.5 $6 \sim 0.8$	ter (mi	m)	t it again We	ne lea (5 sec eight(k 0.25 0.50 1.00	(g)	
	·	The 90° be b	capacitor is held to a same way in proken or cracked the lead wire fully must be more t	immer	ad tabs 0 rsed in 5%.	osition. e direct diame ≤ 0.5 $6 \sim 0.8$ the sol	eter (mi	m)	t it again We	ne lea (5 sec eight(k 0.25 0.50 1.00	cs / cycl	e). The lead tabs shall not
10	Solderability Test Venting Test	After th coating 1. Appl 2. Test (1) A	ne lead wire fully must be more t icable to the cap condition:	immer han 95 acitors	opposite ad tabs 0 rsed in 6%. s with connecte	position. The diameter ≤ 0.5 and ≤ 0.8 the solution as ≤ 0.8 as ≤ 0.8 as ≤ 0.8	eter (mi	m) 2 ± is 6.	t it again We 0.5 secs 3 mm an	ne lea (5 sec eight(k 0.25 0.50 1.00 at a te	cs / cycl	e). The lead tabs shall not
	·	After th coating 1. Appl 2. Test (1) A Ti vo (2) D	ne lead wire fully must be more t icable to the cap condition: C test: he capacitor sha bitage or 250Vrm	immer han 95 acitors Il be cons AC DC rate eter: φ	onnectowhiche	position. The diameter of the solution of the	eter (minute) der for ameter oss an he low the current of the cur	m) 2 ± · is 6. apply eer.	0.5 secs 3 mm an ying 50 o	ne lea (5 sec eight(k 0.25 0.50 1.00 at a te d larg	cs / cycl	e). The lead tabs shall not ure of 245 \pm 5°C, the solder
	·	After the coating 1. Appl 2. Test (1) A The vocation (2) D All W	ne lead wire fully must be more to condition: Conditi	immer han 95 acitors OC rate eter: of the control of the contro	ad tabs 0 resed in 5%. s with connecte whiche ed volta D \(\) 2 vent onal and device	osition. e diame diame ≤ 0.5 6 ~ 0.8 > 0.8 the sol ase dia ed acrover is the sol 2.4mm perated metal	der for ameter bess an he low the curre and	m) 2 ± is 6. apply er. DC ma DC r capaca.) or	0.5 secs 3 mm an ying 50 o the capa ax nax citor shall	ne lea (5 sec eight(k 0.25 0.50 1.00 at a te d larger 60 H acitor.	empera er.	e). The lead tabs shall not ure of 245 \pm 5°C, the solder

Precautions and Guidelines for Aluminum Electrolytic Capacitors

1. Guidelines for Circuit Design (General / Application guidelines for using electrolytic capacitors)

Selecting of a right capacitor is a key to a good circuit design.

(1) Polarity

Most of the aluminum electrolytic capacitors are polarized. Therefore, they must be installed with the correct polarity. Usage in the reverse polarity results into a short-circuit condition that may damage or even explode the capacitor. In addition, it may influence circuit functionality. A bi-polar electrolytic capacitor should be installed when polarity across a capacitor is unstable / reversible. It should be, however, noted that usage of both polar and bi-polar capacitors are limited to DC applications. They must NOT be used for AC application.

(2) Operating Voltage

Applied DC voltage must not exceed rated voltage of the capacitor. Applying higher voltage than its rated voltage across a capacitor terminals cause overheating due to higher leakage currents and capacitor dielectric/insulation deterioration that will ultimately affect a capacitor's performance. The device, however, is capable of working under short-time transient voltages such as DC transients and peak AC ripples. Reverse voltages higher than 1 Volt within a specified temperature limit or AC voltages are not permissible. Overall, using capacitors at recommended operating voltages can prolong its lifespan. Note that the result of DC voltage overlapped with peak ripple voltage should not exceed rated voltage.

(3) Ripple Current

One of the key functions of any capacitor is removal of the ripple current i.e. the RMS value of AC flowing through a capacitor. But, a ripple current higher than rated ripple current will drop resultant capacitance, cause undue internal heating and thus reduces life span of the capacitor. In extreme cases, internal high temperature will cause the pressure relief vent to operate while destroying the device. Overall, it is important to note that an electrolytic capacitor must be used within a permissible range of ripple current. Indicators like temperature coefficient of allowable ripple current are generally used to determine life expectancy of the capacitor, but to avoid related complex calculations and for the sake of simplicity, we haven't provided temperature coefficient in the catalogue. But it offers key indicators like maximum operating temperature for calculation of life expectancy at a given temperature.

(4) Operating Temperature

Capacitors should be used within a permissible range of operating temperatures. Using capacitor at a higher temperature than maximum rated temperature will considerably shorten its life. In the worst-case scenario, high temperature can cause pressure relief vent to operate and the device will get destroyed. Using capacitors at an ambient room temperature assure their longer life.

(5) Leakage Current

Leakage current flows through a capacitor when DC voltage is applied across it. Leakage current varies with changes in ambient temperature and applied DC voltage level and its time of application. Overvoltage situation, presence of moisture, and thermal stresses, especially occurring during the soldering process can enhance leakage current. Initial leakage current is usually higher and does not decrease until voltage is applied for a certain period of time. It is recommended to keep initial leakage current within specified levels.

(6) Charge and Discharge

Regular electrolytic capacitors are not suitable for rapid charging/discharging circuits. Such usage may either cause reduction in overall capacitance or damage due to overheating. Lelon provides special assistance for selecting appropriate capacitors for rapid charging/discharging circuits.

(7) Surge Voltage

The Surge voltage rating is referred as the maximum DC overvoltage that may be applied to an electrolytic capacitor for a short time interval of 30 seconds at infrequent time intervals not exceeding 5.5minutes with a limiting resistance of $1k\Omega$. Unless otherwise described on the catalogue or product specifications, please do not apply a voltage exceeding the capacitor's voltage rating. The rated surge voltages corresponding to rated voltages of electrolytic capacitors are presented as follows:

Rated Voltage(V)	4	6.3	10	16	25	35	50
Surge Voltage(V)	4.6	7.3	11.5	18.4	28.8	40.3	57.5
Rated Voltage(V)	63	80	100	160	200	250	315
Surge Voltage(V)	72.5	92	115	184	230	288	347
							1
Rated Voltage(V)	350	400	420	450	500	525	
Surge Voltage(V)	385	440	462	495	550	578	

(8) Condition of Use

The capacitors shall NOT be exposed to:

- (a) Fluids including water, saltwater spray, oil, fumes, highly humid or condensed climates, etc.
- (b) Ambient conditions containing hazardous gases/fumes like hydrogen sulfide, sulfurous acid, nitrous acid, chlorine or bromine gas, ammonia, etc.
- (c) Exposed to ozone, ultraviolet rays and radiation.
- (d) Severe vibrations or physical shocks that exceeds the specifications mentioned in this catalogue.

(9) Circuit Design Consideration

- (a) Please ensure whether application, operating and mounting conditions satisfy the conditions specified in the catalog before installation of a capacitor. Please consult Lelon, if any of the conditions are beyond the conditions specified in the catalog.
- (b) Heat-generating components or heat sinks should not be placed closer to Aluminum electrolytic capacitors on the PCB to avoid their premature failure. A cooling system is recommended to improve their reliable working.
- (c) Electrical characteristics and performance of aluminum electrolytic capacitors are affected by variation of applied voltage, ripple current, ripple frequency and operating temperature. Therefore, these parameters shall not exceed specified values in the catalog.
- (d) Aluminum capacitors may be connected in the parallel fashion for increasing total capacitance and/or for achieving higher ripple current capability. But, such design may cause unequal current flow through each of the capacitors due to differences in their impedances.
- (e) When two or more capacitors are connected in series, voltage across each capacitor may differ and fall below the applied voltage. A resistor should be placed across each capacitor so as to match applied voltage with voltage across a capacitor.
- (f) Please consult Lelon while selecting a capacitor for highfrequency switching circuit or a circuit that undergoes rapid charging/ discharging
- (g) Standard outer sleeve of the capacitor is not a perfect electrical insulator therefore is unsuitable for the applications that requires perfect electrical insulation. Please consult Lelon, if your application requires perfect electrical insulation.
- (h) Tilting or twisting capacitor body is not recommended once it is soldered to the PCB.

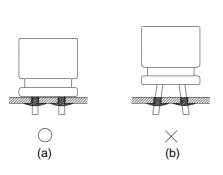
2. Caution for Assembling Capacitors

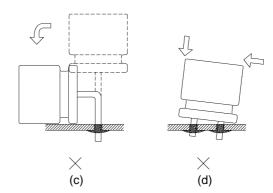
(1) Mounting

(a) Aluminum electrolytic capacitors are not recommended to reuse in other circuits once they are mounted and powered in a circuit.

- (b) Aluminum electrolytic capacitors may hold static charge between its anode and cathode, which is recommended to be discharged through a 1kΩ resistor before re-use.
- (c) A long storage of capacitors may result into its insulation deterioration. This can lead to a high leakage current when voltage is applied that may damage the capacitor. Capacitors following a long storage period must undergo voltage treatment/re-forming.
 - Capacitors are charged by applying rated DC voltage through a resistor of $1k\Omega$ in series at least for an hour. It is recommended to increase applied voltage gradually using a voltage regulator unit once capacitors are assembled on the board. The charging should be followed by discharging through a $1k\Omega$ resistor.
- (d) Please check capacitor rated voltage before mounting.
- (e) Please check capacitor polarity before mounting.
- (f) Please don't drop capacitor on the floor / hard object.
- (g) Please don't deform the capacitor during installation.
- (h) Please confirm whether the lead spacing of the capacitors match with its pad spacing / footprint on PCB prior to installation.
- Please avoid excessive mechanical shocks to capacitor during the auto-insertion process, inspection or centering operations.
- (j) Please don't place any wiring or circuit over the capacitor's pressure relief vent. The pressure relief vent may fail to open if adequate clearance space is not provided. Following table shows minimum clearance space required for different case diameters.

Case Diameter	φ 6.3 ~ φ 16	φ 18 ~ φ 35	ϕ 40 or above
Clearance (min)	2 mm	3 mm	5 mm


(2) Soldering


- (a) Please confirm that soldering conditions, especially temperature and contact time are within our specifications. Dip or flow soldering temperature should be limited at 260 ± 5°C for 10 ± 1 sec while manual soldering using soldering iron should be limited at 350 ± 5°C for 3 +1/-0 seconds. Please do not dip capacitor body into molten solder. A capacitor's life will be negatively affected if these conditions are violated.
- (b) Storage of capacitors in high humidity conditions is likely to affect the solder-ability of lead wires and terminals.

- (c) Reflow soldering should NOLY be used for SMD type capacitors. The temperature and duration shall not exceed the specified temperature and duration in the specification. If the temperature or duration is higher than the value specified, please consult Lelon before usage.
- (d) Standard aluminum electrolytic capacitors are not designed to withstand multiple reflow processes. Please consult Lelon if repeated reflowing is unavoidable.
- (e) Incorrect mounting on PCB with improper external strength applied on its lead wires or capacitor body after soldering may damage a capacitor's internal structure, cause short circuit, or lead to high leakage current issues. Do not bend or twist the capacitor body after soldering. Referring to the drawings below only case (i) is recommended.
 - (i) Correct soldering
 - (ii) Hole-to-hole spacing on PCB differs from the lead space of lead wires.
 - (iii) Lead wires are bent after soldering.
 - (iv) Capacitor body doesn't stand vertical on PCB after soldering.

(3) Cleaning Circuit Boards after Soldering

- (a) Following chemicals are not recommended for cleaning: Solvent containing halogen ions, Alkaline solvent, Xylene, Acetone, Terpene, petro-based solvent.
- (b) Recommended cleaning conditions: Fatty-alcohol - Pine Alpha ST-100S, Clean Through-750H and IPA (isopropyl alcohol) are examples of the most acceptable cleaning agents. Temperature of the cleaning agent must not exceed 60°C. Flux content in the cleaning agents should be limited to 2 Wt. %. Overall length of cleaning process (e.g., immersion, ultrasonic or other) shall be within 5 minutes (5 ~ 7mm height within 3 minutes). CFC substitute cleaning agents such as AK225AES can also be used for cleaning. In this case, its temperature shall not exceed 40 C and cleaning process (e.g., immersion, ultrasonic or other) shall be completed within 2 ~ 3 minutes. After cleaning capacitors should be dried with hot air for at least 10 minutes along with the PCB. Temperature of hot air shall not exceed maximum category temperature of the capacitor. Insufficient drying may cause appearance defects, sleeve shrinkage, and bottom-plate bulging. However, usage of this CFC substitute must completely regulated for protection of environment.

3. Maintenance Inspection

Periodical inspection of aluminum capacitors is absolutely necessary, especially when they are used with industrial equipment. The following items should be checked:

- (1) Appearance: Bloated, vent operated, leaked, etc.
- (2) Electrical characteristic: Capacitance, Tanδ, leakage current, and other specified items listed in specification.

Lelon recommend replacing the capacitors if any of the abovementioned items fail to meet specifications.

4. Storage

- (1) The most suitable conditions for aluminum capacitor storage are 5 °C ~ 35°C and indoor relative humidity less than 75%. High temperature and/or humidity storage is detrimental to the capacitors.
- (2) Capacitors shall not be stored in wet or damp atmospheres containing water, brine, fumes or oil.
- (3) Capacitors storage area shall neither be exposed to hazardous gases such as hydrogen sulfide, sulfurous acid, nitrous acid, chlorine, ammonium, etc. nor to acidic or alkaline solutions.
- (4) Capacitors shall not be exposed to ozone, ultraviolet rays or radiation

5. Disposal

Please consult with a local industrial waste disposal specialist when disposing of aluminum electrolytic capacitors

6. Environmental Consideration

Lelon already have received ISO 14000 certificate. Cadmium (Cd), Lead (Pb), Mercury (Hg), Hexavalent Chromium (Cr⁺⁶), PBB, PBDE, DEHP, BBP, DBP and DIBP have never been using in capacitor. If you need "Halogen-free" products, please consult with us.

7. AEC-Q200 Compliance

Automotive Electronics Counsel (AEC) has established various electronic component qualification/reliability standards in order to serve automotive electronics industry. AEC-Q200 standard is dedicated for passive components like capacitors, inductors, etc. and is widely adopted domestically as well as internationally. Lelon offers compliant product designs and support services to satisfy customers' product requirements, including the ACE-Q200 required criteria of the reliability tests. Lelon's capacitors are professionally designed to outperform all requirements of ACE-Q200.

For further details, please refer to

IEC 60384-4- Fixed capacitors for use in electronic equipment – Part 4: Sectional specification – Aluminium electrolytic capacitors with solid (MnO₂) and non-solid electrolyte (Established in January 1995, Revised in March 2007), and

EIAJ RCR-2367B- Guideline of notabilia for fixed aluminium electrolytic capacitors for use in electronic equipment [Technical Standardization Committee on Passive Components (Established in March 1995, Revised in March 2002)].