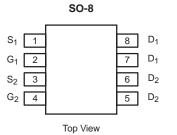
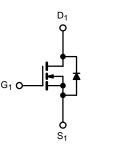
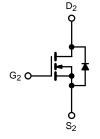
SI4936BDY-T1-E3

Dual N-Channel 30-V (D-S) MOSFET


PRODUCT SUMMARY							
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A)	Q _g (Typ.)				
30	0.022 at V_{GS} = 10 V	6.8	15 nC				
30	0.026 at V _{GS} = 4.5 V	6.0	15110				


FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET[®] Power MOSFET
- 100 % UIS Tested
- 100 % Rg Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Set Top Box
- Low Current DC/DC ٠

N-Channel MOSFET

N-Channel MOSFET

Parameter	Symbol	Limit	Unit		
Drain-Source Voltage		V _{DS}	30	V	
Gate-Source Voltage		V _{GS}	± 20	v	
Continuous Drain Current (T _J = 150 °C)		- I _D -	<u>6.8</u> ^a <u>5.6</u> <u>6.2^{b, c}</u> <u>5.2^{b, c}</u>	A	
Pulsed Drain Current		I _{DM}	30	A	
Continuous Source-Drain Diode Current	T _C = 25 °C T _A = 25 °C	I _S	2.25 1.48 ^{b, c}		
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	5		
Single Pulse Avalanche Energy		E _{AS}	1.25	mJ	
Maximum Power Dissipation	$T_{C} = 25 °C$ $T_{C} = 70 °C$ $T_{A} = 25 °C$ $T_{A} = 70 °C$	- P _D -	2.7 1.77 1.78 ^{b, c} 1.14 ^{b, c}	W	
Operating Junction and Storage Temperature	T _J , T _{stg}	- 55 to 150	°C		

THERMAL RESISTANCE RATINGS						
Parameter		Symbol	Typical	Maximum	Unit	
Maximum Junction-to-Ambient ^{a, c, d}	t ≤ 10 s	R _{thJA}	58	70	°C/W	
Maximum Junction-to-Foot (Drain)	Steady State	R _{thJF}	38	45	0/11	

Notes:

a. Package limited, $T_C = 25 \ ^{\circ}C$.

b. Surface Mounted on 1" x 1" FR4 board.

c. t = 10 s.

d. Maximum under Steady State conditions is 110 °C/W.

3semi

www.VBsemi.com

COMPLIANT HALOGEN

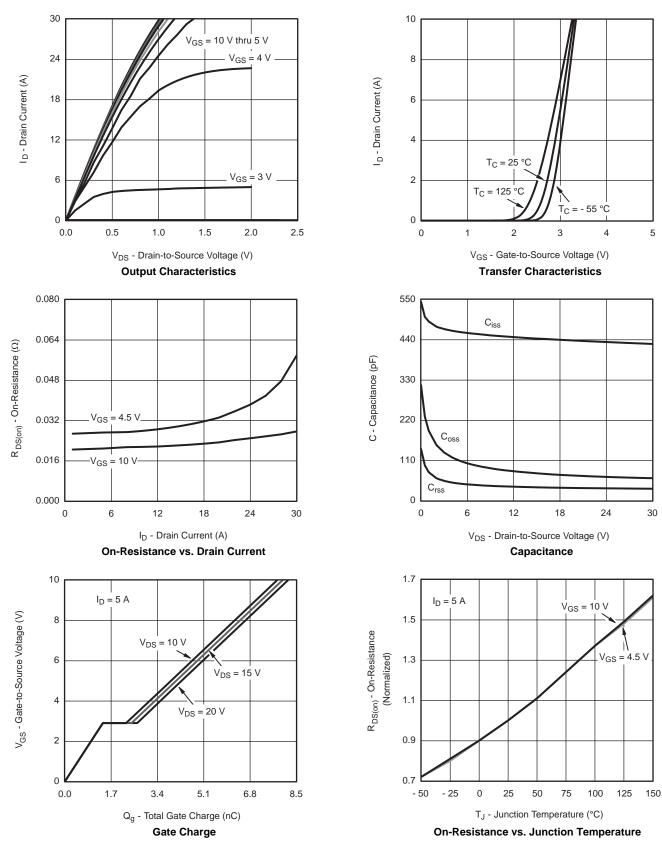
FREE

$\begin{array}{ $								
	SPECIFICATIONS T _J = 25 °C, unless otherwise noted							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				1	Т	1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V _{GS} = 0 V, I _D = 250 μA	30			V	
$ \begin{array}{ c c c c c } \hline \mbox{V} \mbox{G} \$			I _D = 250 μA		32			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{GS(th)} Temperature Coefficient	. ,	- ·		- 5.0		mv/°C	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Threshold Voltage	V _{GS(th)}		1.0		2.5	V	
$ \begin{array}{ c c c c c } \hline \mbox{Zero Gate Voltage Drain Current} & I_{DSS} & V_{VSS} = 30 V, V_{QS} = 0 V, T_J = 55 °C & I & I & I & I \\ \hline V_{DS} = 30 V, V_{QS} = 0 V, T_J = 55 °C & I & I & I & I \\ \hline V_{DS} = 5 V, V_{QS} = 10 V & I & I & V_{QS} = 0 & V_{QS} = 10 V & I & I & I \\ \hline V_{DS} = 5 V, V_{QS} = 10 V, I_D = 5 A & 0.022 & V_{QS} = 10 V, I_D = 5 A & I & I & I \\ \hline V_{DS} = 10 V, I_D = 5 A & I & I & I & I \\ \hline V_{DS} = 10 V, I_D = 5 A & I & I & I & I \\ \hline V_{DS} = 10 V, I_D = 5 A & I & I & I & I \\ \hline V_{DS} = 10 V, I_D = 5 A & I & I & I & I \\ \hline U_{DU1 Capacitance} & C_{GS} & V_{DS} = 10 V, I_D = 5 A & I & I & I \\ \hline U_{DU1 Capacitance} & C_{GS} & V_{DS} = 15 V, V_{GS} = 0 V, f = 1 & MHz & 556 & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 0 V, f = 1 & MHz & 556 & I & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 10 V, I_D = 5 A & I & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 10 V, I_D = 5 A & I & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 10 V, I_D = 5 A & I & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 4.5 V, I_D = 5 A & I & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 4.5 V, I_D = 5 A & I & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 4.5 V, I_D = 5 A & I & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 4.5 V, I_D = 5 A & I & I & I \\ \hline U_{DS} = 15 V, V_{GS} = 4.5 V, I_D = 5 A & I & I & I \\ \hline U_{DD} = 15 V, V_{GS} = 4.5 V, I_D = 5 A & I & I & I \\ \hline U_{D} = 5 A, V_{GEN} = 10 V, I_D = 1 & I & I & 22 \\ \hline U_{DD} = 15 V, V_{GS} = 10 V, I_D = 1 & I & I & 22 \\ \hline U_{DD} = 15 V, V_{GS} = 10 V, I_D = 1 & I & I \\ \hline U_{D} = 5 A, V_{GEN} = 10 V, R_g = 1 & I & I & 1 & 22 \\ \hline U_{DD} = 15 V, V_{GS} = 10 V, R_g = 1 & I & 1 & 20 \\ \hline U_{D} = 5 A, V_{GEN} = 10 V, R_g = 1 & I & I & 0 \\ \hline U_{D} = 2 & V_{DD} = 15 V, R_L = 3 & \Omega \\ \hline U_{DD} = 15 V, V_{GS} = 1 & V_{CS} = 1 & I & I & 20 \\ \hline U_{DD} = 15 V, R_L = 3 & \Omega \\ \hline U_{DD} = 15 V, R_L = 3 & \Omega \\ \hline U_{DD} = 15 V, R_L = 3 & \Omega \\ \hline U_{DD} = 15 V, R_L = 1 & 0 & V_{CS} = 1 \\ \hline U_{DD} = 1 & V_{DD} = 1 & V_{CS} = 1 \\ \hline U_{DD} = 1 & V_{DD} = 1 & V_{CS} = 1 \\ \hline U_{DD} = 1 & V_{CS} = 1 & U_{CS} & V_{CS} \\ \hline U_{DD} = 1 & V_{CS} = 1 & U_{CS} & V_{CS} \\ \hline U_{DD} = 1 & V_{CS} = 1 & U_{CS$	Gate-Source Leakage	I _{GSS}				± 100	nA	
$\begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$			1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gale Voltage Dialit Guitent		V_{DS} = 30 V, V_{GS} = 0 V, T_{J} = 55 °C			10	μA	
$\begin{array}{ c c c c c } \hline Prain-Source On-State Resistance^a & P_{DS(on)} & V_{GS} = 4.5 \ V, \ I_{D} = 4 \ A & 0.026 & I \\ \hline V_{GS} = 4.5 \ V, \ I_{D} = 4 \ A & 0.026 & I \\ \hline V_{GS} = 10 \ V, \ I_{D} = 5 \ A & 16 & S \\ \hline Dynamic^b & & & & & & & & & & & & & & & & & & &$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5$ V, V_{GS} = 10 V	10			А	
$ \begin{array}{ c c c c c } \hline V_{CS} = 4.5 \ V, \ V_D = 4.4 & 0.026 & 0.$	Durin Course On Ctate Desistance	Р	$V_{GS} = 10$ V, $I_D = 5$ A		0.022		Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance	NDS(on)	$V_{GS} = 4.5 \text{ V}, I_D = 4 \text{ A}$		0.026			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 5 \text{ A}$		16		S	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b			•				
$ \begin{array}{ c c c c c c } \hline Reverse Transfer Capacitance & C_{rss} & & & & & & & & & & & & & & & & & & $	Input Capacitance	C _{iss}			586		pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz		117			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reverse Transfer Capacitance	C _{rss}			55			
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Tatal Cata Charge	0			15		nC	
$ \begin{array}{ c c c c c c } \hline Gate-Source Charge & Q_{gs} & V_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 5 \ A & 1.4 & \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Total Gate Charge	Qg			3.7	5.6		
$ \begin{array}{c c c c c c c c c c } \hline Gate Resistance & R_g & f = 1 \ \mbox{MHz} & 0.8 & 4.3 & 8.6 & \Omega \\ \hline Turn-On Delay Time & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge	Q _{gs}			1.4			
$ \begin{array}{c c c c c c c c c } \hline Turn-On Delay Time & t_{d(on)} \\ \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 3 \ \Omega \\ I_D \cong 5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 11 & 22 \\ \hline Rise Time & t_r & Rise Time & t_r & & & & & & & & & & & & & & & & & & &$	Gate-Drain Charge	Q _{gd}			1.05			
$ \begin{array}{ c c c c c } \hline Rise Time & t_r & V_{DD} = 15 \ V, \ R_L = 3 \ \Omega & 11 & 22 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 11 & 22 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 11 & 22 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 4.5 \ V, \ R_g = 1 \ \Omega & 11 & 22 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 10 \ V, \ R_g = 1 \ \Omega & 11 & 20 \\ \hline I_D \cong 5 \ A, \ V_{GEN} = 0 \ V & 0.8 \ 1.2 \ V \\ \hline I_D \cong 0 \ O \ O \ O \ O \ O \ O \ O \ O \ O \$	Gate Resistance	Rg	f = 1 MHz	0.8	4.3	8.6	Ω	
$\begin{tabular}{ c c c c c } \hline Turn-Off Delay Time & t_d(off) & I_D \cong 5 \mbox{ A, } V_{GEN} = 4.5 \mbox{ V, } R_g = 1 \mbox{ \Omega} & 11 & 22 & 8 & 16 & 16$	Turn-On Delay Time	t _{d(on)}			12	24		
$\begin{tabular}{ c c c c c c } \hline Fall Time & t_f & & & & & & & & & & & & & & & & & & &$	Rise Time	t _r	V_{DD} = 15 V, R_L = 3 Ω		55	100	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D} \cong$ 5 A, V_GEN = 4.5 V, R_g = 1 Ω		11	22		
$\begin{array}{ c c c c }\hline \mbox{Turn-On Delay Time} & \mbox{t}_{d(on)} & \mbox{t}_{d(on)} & \mbox{t}_{r} & \mbox{V}_{DD} = 15 \ V, \ R_L = 3 \ \Omega & \mbox{D} & $	Fall Time	t _f			8	16		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			4	8	- ns -	
Fall Time t_f 612Drain-Source Body Diode Characteristics612Drain-Source Body Diode Characteristics $T_C = 25 ^{\circ}C$ 2.25Continuous Source-Drain Diode Current I_S $T_C = 25 ^{\circ}C$ 2.25Pulse Diode Forward Current I_SM 24 Body Diode Voltage V_{SD} $I_S = 2 ^{\circ}A, V_{GS} = 0 ^{\circ}V$ 0.81.2Body Diode Reverse Recovery Time t_{rr} 1120nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 5 ^{\circ}A, dl/dt = 100 ^{\circ}A/\mus, T_J = 25 ^{\circ}C$ 48nCReverse Recovery Fall Time t_a T_a T_a T_a T_a T_a T_a	Rise Time		V_{DD} = 15 V, R_L = 3 Ω		9	18		
$ \begin{array}{c c c c c c c c } \hline Fall Time & t_f & & & & & & & & & & & & & & & & & & &$	Turn-Off Delay Time	t _{d(off)}	$\text{I}_\text{D}\cong \text{5}$ A, V_GEN = 10 V, R_g = 1 Ω		10	20		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time				6	12		
Pulse Diode Forward CurrentI SMI SM24ABody Diode Voltage V_{SD} $I_S = 2 \text{ A}, V_{GS} = 0 \text{ V}$ 0.81.2VBody Diode Reverse Recovery Time t_{rr} 1120nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 5 \text{ A}, dl/dt = 100 \text{ A/µs}, T_J = 25 ^{\circ}\text{C}$ 48nCReverse Recovery Fall Time t_a T T T T T T	Drain-Source Body Diode Characteristics							
Pulse Diode Forward CurrentI SMI SM24Body Diode Voltage V_{SD} $I_S = 2 \text{ A}, V_{GS} = 0 \text{ V}$ 0.81.2VBody Diode Reverse Recovery Time t_{rr} 1120nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 5 \text{ A}, dI/dt = 100 \text{ A/µs}, T_J = 25 ^{\circ}\text{C}$ 48nCReverse Recovery Fall Time t_a 7 7 ns	Continuous Source-Drain Diode Current	۱ _S	T _C = 25 °C			2.25	٨	
Body Diode Reverse Recovery Time t_{rr} 1120nsBody Diode Reverse Recovery Charge Q_{rr} Reverse Recovery Fall Time t_a	Pulse Diode Forward Current	I _{SM}				24] ^	
	Body Diode Voltage	V _{SD}	$I_{S} = 2 A, V_{GS} = 0 V$		0.8	1.2	V	
Reverse Recovery Fall Time t_a IF = 5 Å, dl/dt = 100 Å/µs, $I_J = 25 °C$ 7	Body Diode Reverse Recovery Time	-			11	20	ns	
Reverse Recovery Fall Time t _a	Body Diode Reverse Recovery Charge	Q _{rr}			4	8	nC	
Reverse Recovery Rise Time t _b ns	Reverse Recovery Fall Time	ta	$r_F = 5 \text{ A}, \text{ al/al} = 100 \text{ A/}\mu\text{s}, 1_J = 25 \text{ °C}$		7			
	Reverse Recovery Rise Time				4		ns	

Notes:

a. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %

b. Guaranteed by design, not subject to production testing.


Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Bsemi

ww.VBsemi.com

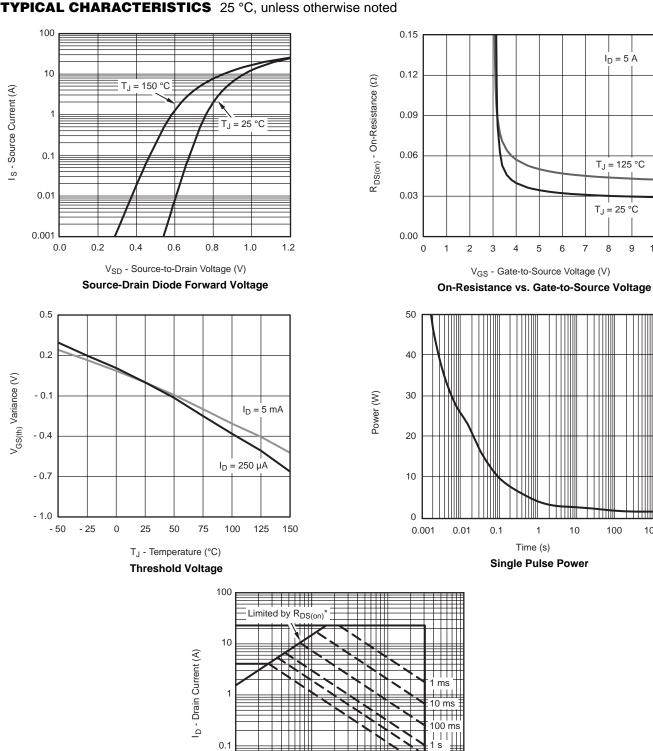
 $I_D = 5 A$

T_J = 125 °C

T_J = 25 °C

8 9 10

6 7


5

1

10

100

1000

T_A = 25 °C Single Pulse

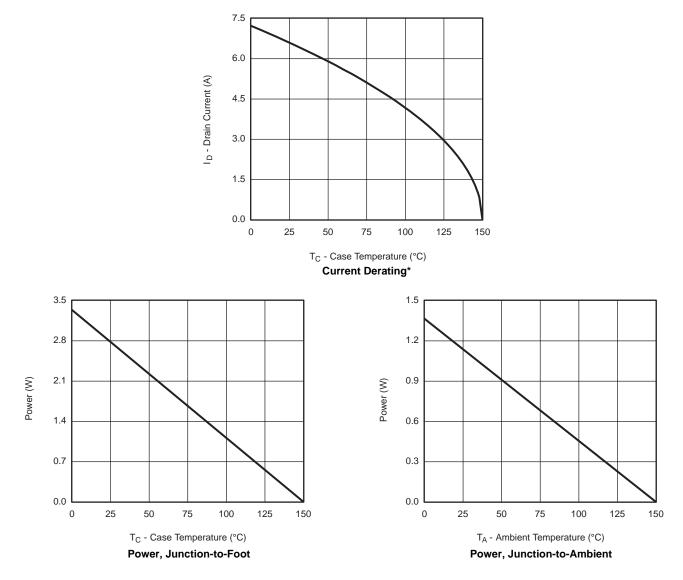
0.01 0.1 111

1

BVDSS Limited

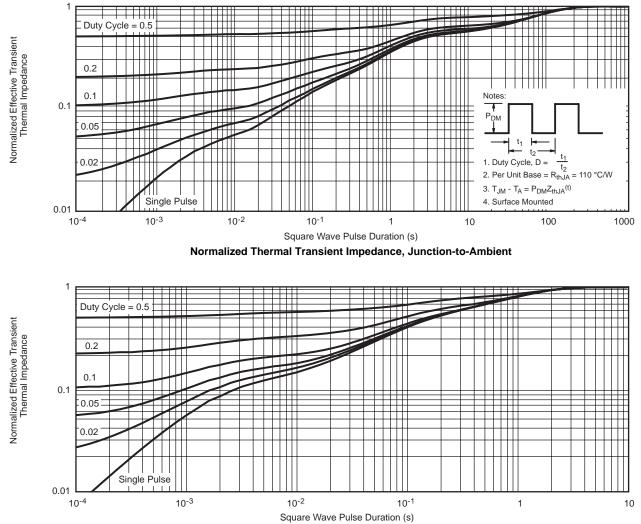
V_{DS} - Drain-to-Source Voltage (V) * V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified Safe Operating Area, Junction-to-Ambient

11111


10

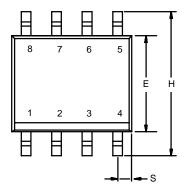
100

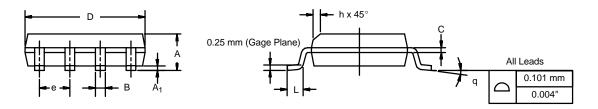
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

* The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

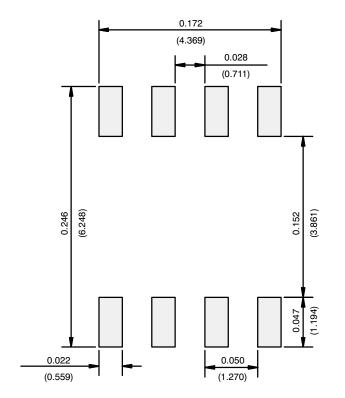
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted




Normalized Thermal Transient Impedance, Junction-to-Foot

SOIC (NARROW): 8-LEAD

JEDEC Part Number: MS-012



MILLIMETERS		IETERS	INCHES			
DIM	Min	Max	Min	Max		
A	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
E	3.80	4.00	0.150	0.157		
е	1.27 BSC		0.050	0.050 BSC		
н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498						

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.