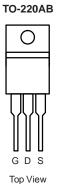
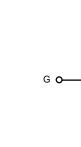


N-Channel 100-V (D-S) MOSFET

PRODUCT	SUMMARY	
V _{(BR)DSS} (V)	r _{DS(on)} (Ω)	I _D (A)
100	0.017 at V _{GS} = 10 V	70 ^a

FEATURES


- TrenchFET[®] Power MOSFET
- 175 °C Junction Temperature
- Low Thermal Resistance Package
- 100 % R_g Tested


APPLICATIONS

D

• Isolated DC/DC Converters

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS $T_{C} = 25 \text{ °C}$, unless otherwise noted					
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	100	V	
Gate-Source Voltage		V _{GS}	± 20	V	
Continuous Drain Current (T _J = 175 °C)	T _C = 25 °C	I	70 ^a		
Continuous Drain Current $(1) = 173^{\circ}$ C)	T _C = 125 °C	D ID	35 ^a	A	
Pulsed Drain Current		I _{DM}	145	A	
Avalanche Current	L = 0.1 mH	I _{AS}	31		
Single Pulse Avalanche Energy ^b	L = 0.11111	E _{AS}	60	mJ	
Maximum Drawn Diasia atia ab	T _C = 25 °C	P _D	355 ^c	W	
Maximum Power Dissipation ^b	T _A = 25 °C ^d	r'D	3.35	V	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C	

TINGS			
	Symbol	Limit	Unit
PCB Mount	R _{thJA}	40	°C/W
	R _{thJC}	0.4	C/W
	PCB Mount	PCB Mount R _{thJA}	Symbol Limit PCB Mount R _{thJA} 40

Notes:

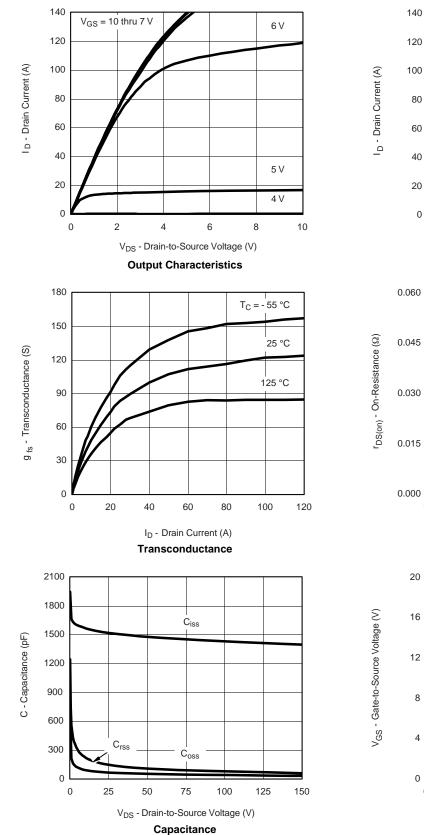
- a. Package limited.
- b. Duty cycle \leq 1 %.
- c. See SOA curve for voltage derating.

d. When Mounted on 1" square PCB (FR-4 material).

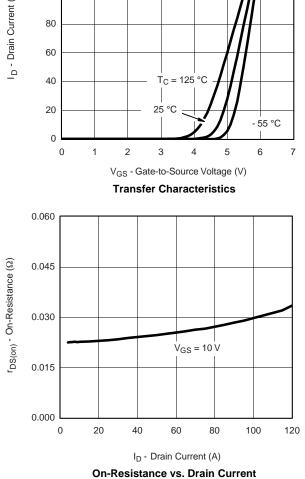
$\begin{array}{ c c c c c c } \hline Parameter & Symbol & Test Conditions & Min. & Typ. & Max. & Unit \\ \hline Static & & & & & & & & & & & & & & & & & & &$	SPECIFICATIONS T _J = 25 $^{\circ}$	C, unless o	therwise noted				
$\begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage & V_{(BR)DSS} & V_{DS} = 0 \ V, \ V_{DS} = V_{GS}, \ V_{DS} = V_{GS}, \ V_{DS} = V_{GS}, \ V_{DS} = 0 \ V, \ V_{QS} = 250 \ \mu\text{A} & 2 & 4 & V & \\ \hline Cate-Body Leakage & I_{QSS} & V_{DS} = 0 \ V, \ V_{QS} = 20 \ V & 4 & 100 & nA & \\ \hline V_{DS} = 100 \ V, \ V_{QS} = 0 \ V, \ V_{QS} = 0 \ V & 1 & V & \\ \hline V_{DS} = 100 \ V, \ V_{QS} = 0 \ V, \ V_{DS} = 0 \ V, \ $	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static						
$ \begin{array}{ c c c c } \hline \mbox{Gate-Threshold Voltage} & V_{GS(th)} & V_{DS} = 250 \ \mu A & 2 & 4 & -1 \\ \hline \mbox{Gate-Day Leakage} & l_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = 20 \ V & -1 & 1 & 1 \\ \hline \mbox{VD} = 100 \ V, \ V_{GS} = 0 \ V, \ T_{J} = 125 \ ^{\circ}C & -5 & 50 & -5 \\ \hline \mbox{VD} = 100 \ V, \ V_{GS} = 0 \ V, \ T_{J} = 125 \ ^{\circ}C & -5 & -5 & -5 & -5 & -5 & -5 & -5 & -$	Drain-Source Breakdown Voltage	V _{(BR)DSS}	$V_{DS} = 0 V, I_{D} = 250 \mu A$	100			V
$ \begin{array}{ c c c c c } \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V, \ U_{J} = 125 \ ^{\circ}C \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V, \ U_{J} = 125 \ ^{\circ}C \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V, \ U_{J} = 175 \ ^{\circ}C \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V, \ U_{J} = 175 \ ^{\circ}C \\ \hline V_{DS} = 100 \ V, \ V_{GS} = 0 \ V, \ U_{J} = 175 \ ^{\circ}C \\ \hline V_{DS} = 100 \ V, \ V_{DS} = 10 \ V, \ U_{DS} = 10 \ V, \ U_{D$	Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2		4	v
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V			± 100	nA
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			$V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 125 ^{\circ}\text{C}$			50	μA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$V_{DS} = 100 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ T}_{J} = 175 ^{\circ}\text{C}$			250	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 V$, $V_{GS} = 10 V$	120			А
$\begin{tabular}{ c c c c c c } \hline $V_{GS} = 10 \ V, \ I_D = 30 \ A, \ T_J = 175 \ ^{\circ}\ C & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0.037 & 0 & 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& 0& $			V _{GS} = 10 V, I _D = 30 A		0.017		Ω
$ \begin{array}{c c c c c c c c } \hline Forward Transconductance^a & g_{fs} & V_{DS} = 15 \ V, \ I_{D} = 30 \ A & 25 & & & S \\ \hline \mbox{Dynamic}^b & & & & & & & & & & & & & & & & & & &$	Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 30 A, T _J = 125 °C		0.023		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V _{GS} = 10 V, I _D = 30 A, T _J = 175 °C		0.037		
$ \begin{array}{c c c c c c c } \hline \mbox{Input Capacitance} & C_{1SS} & & & & & & & & & & & & & & & & & & $	Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 30 A	25			S
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic ^b						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			1800		
$ \begin{array}{c c c c c c c c } \hline Total Gate Charge^{c} & Q_{g} & & & & & & & & & & & & & & & & & & &$	Output Capacitance	C _{oss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz		210		pF
$ \begin{array}{c c c c c c c } \hline Gate-Source Charge^{C} & Q_{gd} & $V_{DS} = 100 \ V, \ V_{GS} = 10 \ V, \ V_{DS} = 58 \ A & 23 & $100 \ V, \ V_{DS} = 58 \ A & 34 & $100 \ V, \ V_{DS} = 58 \ A & 34 & $100 \ V, \ V_{DS} = 58 \ A & 34 & $100 \ V, \ V_{DS} = 58 \ A & 34 & $100 \ V, \ V_{DS} = 58 \ A & 0.5 & 1.3 & 3.1 & Ω \\ \hline Gate Resistance & R_{g} & 0.5 & 1.3 & 3.1 & Ω \\ \hline Turn-On Delay Time^{C} & $t_{d(on)}$ & $V_{DD} = 100 \ V, \ R_{L} = 1.5 \ \Omega & 220 & 330 & $100 \ V, \ R_{D} = 58 \ A, \ V_{GEN} = 10 \ V, \ R_{g} = 2.5 & $100 \ V, \ R_{g} = 2.5$ & $115 \ V$ & $115 \ V$ & $115 \ V$ & $100 \ R_{g} = 1.5$ & $115 \ V$ & $100 \ R_{g} = 1.5$ & 100	Reverse Transfer Capacitance	C _{rss}			110		
$ \begin{array}{c c c c c c } \hline Gate-Drain Charge^{C} & Q_{gd} & & & & & & & & & & & & & & & & & & &$	Total Gate Charge ^c	Qg			90		
$ \begin{array}{c c c c c c c } \hline Gate Resistance & R_g & 0.5 & 1.3 & 3.1 & \Omega \\ \hline Turn-On Delay Time^{C} & t_{d(on)} & & & & & & & & & & & & & & & & & & &$	Gate-Source Charge ^c	Q _{gs}	V_{DS} = 100 V, V_{GS} = 10 V, I_{D} = 58 A		23		nC
$\begin{tabular}{ c c c c c c } \hline Turn-On Delay Time^{C} & t_{d(on)} \\ \hline Rise Time^{C} & t_{r} \\ \hline Turn-Off Delay Time^{C} & t_{d(off)} \\ \hline Turn-Off Delay Time^{C} & t_{d(off)} \\ \hline Fall Time^{C} & t_{f} \\ \hline $	Gate-Drain Charge ^c	Q _{gd}			34		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	R _g		0.5	1.3	3.1	Ω
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time ^c	t _{d(on)}			24	35	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time ^c	t _r			220	330	ns
Fail Time* I_{f} I_{c} 200 300 Source-Drain Diode Ratings and Characteristics $T_{C} = 25 \ ^{\circ}C^{b}$ Continuous Current I_{S} 70 70 Pulsed Current I_{SM} 115 70 Forward Voltage ^a V_{SD} $I_{F} = 58 \ A, V_{GS} = 0 \ V$ 1.0 1.5 V Reverse Recovery Time t_{rr} $I_{F} = 30 \ A, di/dt = 100 \ A/\mus$ 8 12 A	Turn-Off Delay Time ^c	t _{d(off)}	- 5		45	70	
$\begin{tabular}{ c c c c c c } \hline Continuous Current & I_S & & & & & & & & & & & & & & & & & & &$	Fall Time ^c	t _f	Ω		200	300	
Pulsed Current I I A Forward Voltage ^a V _{SD} I _F = 58 A, V _{GS} = 0 V 1.0 1.5 V Reverse Recovery Time t_{rr} 130 200 ns Peak Reverse Recovery Current I _{RM(REC)} I _F = 30 A, di/dt = 100 A/µs 8 12 A	Source-Drain Diode Ratings and Cha	aracteristics 7	$\Gamma_{\rm C} = 25 \ {}^{\circ}{\rm C}^{\rm b}$				
Pulsed CurrentI I SM115115Forward Voltage ^a V_{SD} $I_F = 58 \text{ A}, V_{GS} = 0 \text{ V}$ 1.01.5VReverse Recovery Time t_{rr} 130200nsPeak Reverse Recovery Current $I_{RM(REC)}$ $I_F = 30 \text{ A}, di/dt = 100 \text{ A/µs}$ 812A	Continuous Current	۱ _S				70	^
Reverse Recovery Time t_{rr} 130200nsPeak Reverse Recovery Current $I_{RM(REC)}$ $I_F = 30 \text{ A}$, di/dt = 100 A/µs812A	Pulsed Current	I _{SM}			115		А
Reverse Recovery Time t_{rr} 130200nsPeak Reverse Recovery Current $I_{RM(REC)}$ $I_F = 30 \text{ A}$, di/dt = 100 A/µs812A	Forward Voltage ^a	V _{SD}	$I_{F} = 58 \text{ A}, V_{GS} = 0 \text{ V}$		1.0	1.5	V
	Reverse Recovery Time	t _{rr}			130	200	ns
Reverse Recovery Charge Q _{rr} 0.52 1.2 μC	Peak Reverse Recovery Current	I _{RM(REC)}	I _F = 30 A, di/dt = 100 A/µs		8	12	А
	Reverse Recovery Charge	Q _{rr}			0.52	1.2	μC

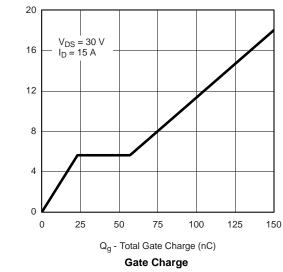
Notes:

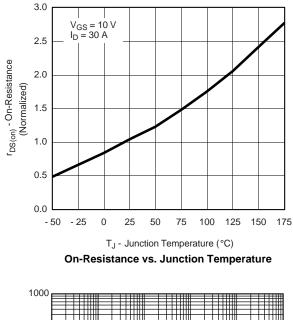
a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2 %.

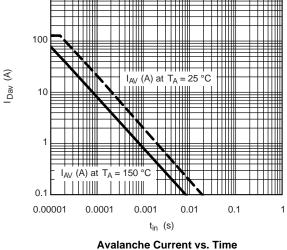

b. Guaranteed by design, not subject to production testing.

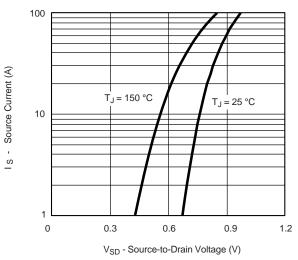
c. Independent of operating temperature.

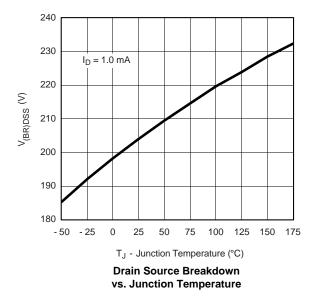

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

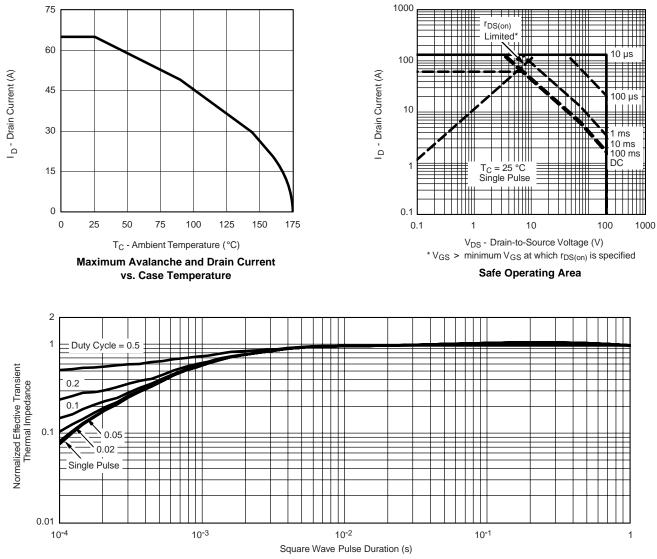

VBsemi Bsemi.com


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

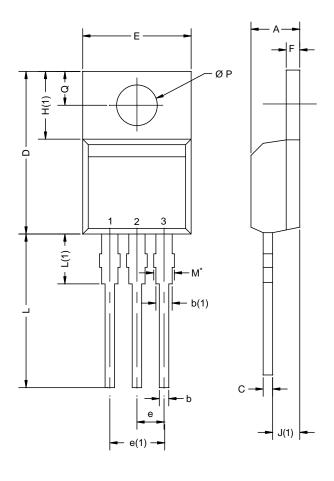





TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted



Source-Drain Diode Forward Voltage


THERMAL RATINGS

Normalized Thermal Transient Impedance, Junction-to-Case

TO-220AB

	MILLIN	IETERS	INC	HES
DIM.	MIN.	MAX.	MIN.	MAX.
А	4.25	4.65	0.167	0.183
b	0.69	1.01	0.027	0.040
b(1)	1.20	1.73	0.047	0.068
С	0.36	0.61	0.014	0.024
D	14.85	15.49	0.585	0.610
Е	10.04	10.51	0.395	0.414
е	2.41	2.67	0.095	0.105
e(1)	4.88	5.28	0.192	0.208
F	1.14	1.40	0.045	0.055
H(1)	6.09	6.48	0.240	0.255
J(1)	2.41	2.92	0.095	0.115
L	13.35	14.02	0.526	0.552
L(1)	3.32	3.82	0.131	0.150
ØΡ	3.54	3.94	0.139	0.155
Q	2.60	3.00	0.102	0.118
ECN: X12- DWG: 547	0208-Rev. N, 1	08-Oct-12		

Notes

* M = 1.32 mm to 1.62 mm (dimension including protrusion) Heatsink hole for HVM

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.