
600V/15A 3-PHASE FULL-BRIDGE DRIVER (INTELLIGENT POWER MODULE)

DESCRIPTION

SD15M60AC is a 3-phase brushless DC motor driver with high integration and high reliability for low power inverter driving such as air condition, dishwasher, and industrial sewing machine. It has embedded six low-loss IGBT and three high-speed half-bridge gate drivers with high voltage.

The under voltage, short circuit and over temperature protections integrated make the circuit work safely in a wide range. The current of each phase can be detected separately because there is one independent negative DC terminal for each phase.

SD15M60AC uses high-insulation design, compact package and carries heat easily, which makes it easy to use especially for compact installation applications.

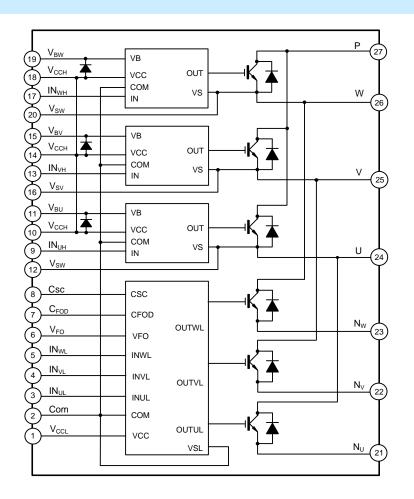
FEATURES

- Built-in low-loss 600V/15A IGBT;
- Built-in high-voltage gate driver;
- Built-in under voltage, over temperature and over current protections;
- Built-in bootstrap diode;
- Compatible with 3.3V, 5V MCU interface, active high;
- Three independent negative DC terminal for inverter current detection;
- Alarm signal: for low-side under voltage and short circuit protections;
- Package in DBC design with low thermal resistance;
- Insulation level: 2500Vrms/min

APPLICATIONS

- Air condition compressor
- Refrigerator compressor
- Low power inverter
- · Industrial sewing machine

ORDERING INFORMATION


Part No.	Package	Marking	Hazardous Substance Control	Packing Type
SD15M60AC	DIP-27H	SD15M60AC	Halogen free	Tube

HANGZHOU SILAN MICROELECTRONICS CO.,LTD

http://www.silan.com.cn

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

Characteristics	Symbol	Rating	Unit
Inverter section			
Voltage on the DC bus between PN	V_{PN}	450	V
Surge voltage on the DC bus between PN	V _{PN(Surge)}	500	V
Voltage between collector and emitter	V _{CES}	600	V
Continuous current of the single IGBT collector, T_C =25°C	Ic	15	А
Peak current of the single IGBT collector, T_C =25°C, Pulse width less than 1ms	I _{CP}	30	А
Max. power dissipation of the collector of each module, $T_{\text{\scriptsize C}}\text{=}25^{\circ}\text{\scriptsize C}$	Pc	55	W
Control section			
Control supply voltage	Vcc	20	V
High-side control voltage	V_{BS}	20	V
Input signal voltage	V _{IN}	-0.3~17	V
Fault output supply voltage	V_{FO}	-0.3~V _{CC} +0.3	V

Characteristics	Symbol	Rating	Unit
Fault output current Sink current at V _{FO} pin	I _{FO}	5	mA
Input voltage at current detect pin	V _{SC}	-0.3~V _{CC} +0.3	V
Whole system			
Voltage limit of short circuit protection V _{CC} =V _{BS} =13.5~16.5V, T _J =150°C, single and less than 2µs	V _{PN(PROT)}	400	V
Operating temperature of module case Limit condition: -40°C≤TJ≤150°C	T _C	-40~125	°C
Storage temperature range	T _{STG}	-40~150	°C
Junction-to-case thermal resistance of each IGBT	R _{0JCQ}	2.27	°C/W
Junction-to-case thermal resistance of each FRD	Rejcf	3.0	°C/W
Insulation voltage 60Hz, Sine, 1 minute Connect the pin to heatsink	V _{ISO}	2500	V_{rms}
Mounting torque Mounting screws: -M3, 0.62N.m recommended	Т	0.5~0.8	N.m
Bootstrap Diode Forward Current, T _C =25°C	I _F	0.5	А
Bootstrap Diode Forward Current(Peak), T _C =25°C, Under 1ms Pulse Width	I _{FP}	2.0	А

RECOMMENDED OPERATING CONDITIONS

Ob an atamiatica	Councile of		Ratings	l lmit	
Characteristics	Symbol	Min.	Тур.	Max.	Unit
Voltage on the bus between PN	V _{PN}		300	400	V
Control supply voltage	V _{cc}	13.5	15	16.5	V
High-side control voltage	V _{BS}	13.5	15	16.5	V
Control voltage variation	dVcc/dt dV _{BS} /dt	-1		1	V/µs
On threshold voltage	V _{IN(ON)}	3.0		Vcc	V
Off threshold voltage	V _{IN(OFF)}	0		0.6	V
Blanking time for preventing arm- short $V_{CC} = V_{BS} = 13.5 \sim 16.5 \text{V}$, $T_J \leq 25^{\circ}\text{C}$	T _{dead}	2.0			μѕ
PWM input signal	f _{PWM}			20	KHz
Voltage on current detecting pin	V _{SEN}	-4		4	V

Rev.:1.2

http://www.silan.com.cn

ELECTRICAL CHARACTERISTICS(UNLESS OTHERWISE SPECIFIED, Tamb=25°C, VCC=VBS=15V)

Inverter

Characteris	Characteristics		Conditions	Min.	Тур.	Max.	Unit
Saturation voltage collector and emitter	9		V _{CC} =V _{BS} =15V, V _{IN} =5V I _C =15A, T _J = 25°C			2.3	V
FRD forward voltage)	V _F	V _{IN} =0V, I _F =15A, T _J = 25°C			2.3	V
		ton			0.85		μs
		t _{C(ON)}			0.20		μs
	High side	t _{OFF}	$V_{PN} = 300V$, $V_{CC} = V_{BS} = 15V$, $I_C = 15A$, $V_{IN} = 0V \longleftrightarrow 5V$, Inductive load Refer to fig. 1		0.63		μs
		t _{C(OFF)}			0.15		μs
Cuitabing times		t _{rr}			0.06		μs
Switching times		t _{ON}			0.50		μs
		t _{C(ON)}			0.20		μs
	Low side	t _{OFF}			0.25		μs
		t _{C(OFF)}				0.15	
		t _{rr}			0.06		μs
Leakage current between collector and emitter		I _{CES}	V _{CE} =V _{CES}			1	mA

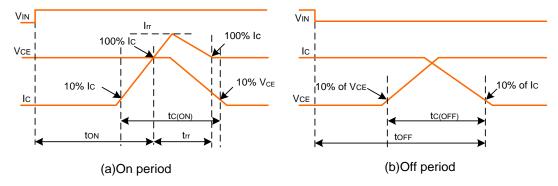


Fig.1Switching definition

Control section

Characteristics	Symbol	Conditions		Min.	Тур.	Max.	Unit
V _{CC} Quiescent current	IQCCL	V _{CC} =15V, V _{INL} =0V	Between V _{CCL} and COM		1	28	mA
	Ідссн	V _{CC} =15V, V _{INH} =0V	Between V _{CCH} and COM		1	600	μA
V _{BS} Quiescent current	I_{QBS}	V _{BS} =15V, V _{INH} =0V	V_{BU} - V_{SU} , V_{BV} - V_{SV} , V_{BW} - V_{SW}		1	500	μΑ
Fault output voltage	V _{FOH}	V _{SC} =0V,V _{FO} puresistor to 5V	ıll up 4.7KΩ	4.5	1		V
rauit output voitage	V _{FOL}	V _{SC} =1V,V _{FO} puresistor to 5V	ıll up 4.7KΩ			0.8	V
Fault output pulse width	t _{FO}	C _{FO} =33nF	(note1)	1.0	1.8		ms

http://www.silan.com.cn Page 4 of 13

Characteristics		Symbol	Co	onditions	Min.	Тур.	Max.	Unit
Trip voltage of short circu	it	V _{SC(ref)}	V _{CC} =15V	(note2)	0.45	0.5	0.55	V
Over-temperature protect	ion	TSD	LVIC temperature			160		°C
Over-temperature protection hysteresis		ΔTSD	LVIC temperature			10		°C
Low-side under voltage		UV _{CCD}	V _{CC} detect vol	tage	10.4	11.4	12.4	V
protection	(fig.4)	UV _{CCR}	V _{CC} reset volta	age	10.9	11.9	12.9	V
High-side under voltage		UV _{BSD}	V _{BS} detect volt	tage	10.0	11.0	12.0	V
protection	(fig.5)	UV _{BSR}	V _{BS} reset volta	ige	10.5	11.5	12.5	V
On threshold voltage		V _{IH}	Logic High Between input and		2.8			V
Off threshold voltage		V _{IL}	Logic Low	COM .			0.9	V

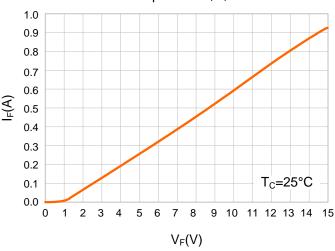
Note1: Fault output pulse width t_{FO} is decided by C_{FOD} and C_{FO} =18.3 \times 10⁻⁶ \times t_{FO}[F]

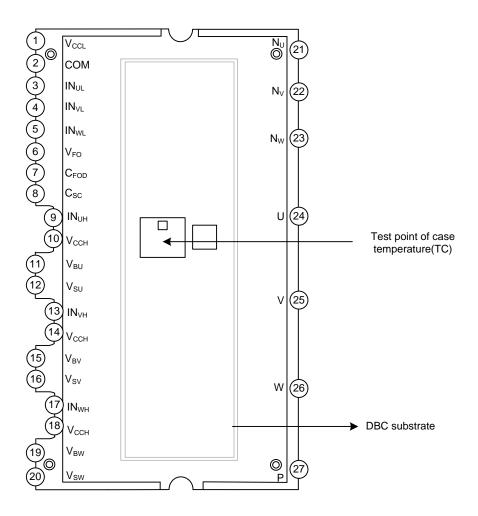
Note2: Short circuit protection is functioning only at the low-sides.

Bootstrap Diode Part(Each Bootstrap diode, Unless Otherwise Specified)

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Forward Voltage	V _F	I _F =0.1A, T _C =25°C		2.5		V
Reverse Recovery Time	t _{rr}	I _F =0.1A, T _C =25°C		80		ns

Built in Bootstrap Diode V_F-I_F Characteristic




Fig.2 Built in Bootstrap Diode V_F-I_F Characteristic

Note: Resistive characteristic: equivalent resistor: $\sim 15\Omega$.

Rev.:1.2 Page 5 of 13

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Pin Name	Pin Descriptions
1	V _{CCL}	Supply voltage for low-side gate driver
2	СОМ	Common ground for the module
3	IN _{UL}	U-phase low-side signal input
4	IN _{VL}	V-phase low-side signal input
5	IN _{WL}	W-phase low-side signal input
6	V _{FO}	Fault output
7	C _{FOD}	Connect to the capacitor to adjust the duration time of fault output
8	C _{SC}	Connect to the capacitor for short circuit current detection input and low-pass filter
9	IN _{UH}	U-phase high-side signal input
10	V _{CCH}	Supply voltage for high-side gate driver
11	V _{BU}	Floating supply voltage for U-phase high-side IGBT driving
12	V _{SU}	Floating ground for U-phase high-side IGBT driving
13	IN _{VH}	V-phase high-side signal input
14	V _{CCH}	Supply voltage for high-side gate driver
15	V_{BV}	Floating supply voltage for V-phase high-side IGBT driving
16	V _{SV}	Floating ground for V-phase high-side IGBT driving
17	IN _{WH}	W-phase high-side signal input
18	V _{CCH}	Supply voltage for high-side gate driver
19	V _{BW}	Floating supply voltage for W-phase high-side IGBT driving
20	V _{SW}	Floating ground for W-phase high-side IGBT driving
21	Nu	U-phase DC negative terminal
22	N _V	V-phase DC negative terminal
23	Nw	W-phase DC negative terminal
24	U	U-phase output
25	V	V-phase output
26	W	W-phase output
27	Р	DC positive terminal

Rev.:1.2 http://www.silan.com.cn Page 7 of 13

CONTROL TIMING SEQUENCE DESCRIPTION

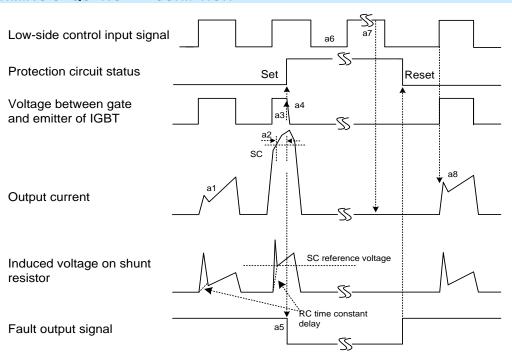


Fig.3 Timing sequence for short circuit current protection (only for low-side)

(Including the external shunt resistor and RC connection)

- Normal operation: IGBT turn on and carrying current.
- Short circuit current detect (SC trigger). a2:
- IGBT gate hard interrupt. a3:
- a4: IGBT turns off.
- a5: Fault output timer starts working: the pulse width of fault output signal is decided by external capacitor CFO.
- Input "L": IGBT off state. a6:
- a7: Input "H": IGBT on state, but during the active period of fault output, the IGBT doesn't turn ON.
- Normal operation: IGBT turn on and carrying current.

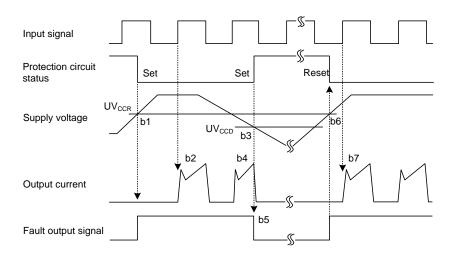


Fig.4 Timing sequence for under voltage protection(low-side)

- b1: Supply voltage rises to UV_{CCR}, the circuit start to operate when next input waveform arrives.
- b2: Normal operation: IGBT turn on and carrying current.
- b3: Under voltage detect point (UV_{CCD}).
- b4: IGBT is off no matter what signal is input.
- b5: Fault output operation starts.
- b6: Under voltage reset (UV_{CCR}).
- b7: Normal operation: IGBT turn on and carrying current.

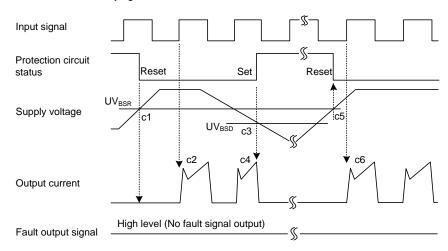


Fig.5 Timing sequence for under voltage protection (high-side)

- c1: Supply voltage rises to UV_{BSR}, the circuit start to operate when next input signal arrives.
- c2: Normal operation: IGBT turn on and carrying current.
- c3: Under voltage detect (UV_{BSD}).
- c4: IGBT turn off in spite of control input condition, but there is no fault signal output.
- c5: Under voltage reset (UV_{BSR}).
- c6: Normal operation: IGBT turn on and carrying current.

HANGZHOU SILAN MICROELECTRONICS CO.,LTD http://www.silan.com.cn

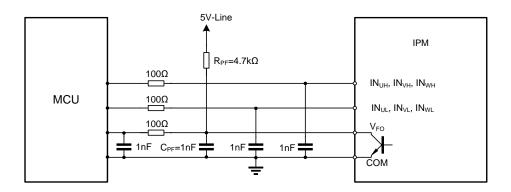


Fig.6 MCU input/output connection circuit recommended

Note:

The RC coupling of each input should change following the PWM control solution and the PCB connection impedance. There is a 5K pull-down resistor connected to IPM input, and attention should be paid to the voltage drop at the input when the external filter resistor is used.

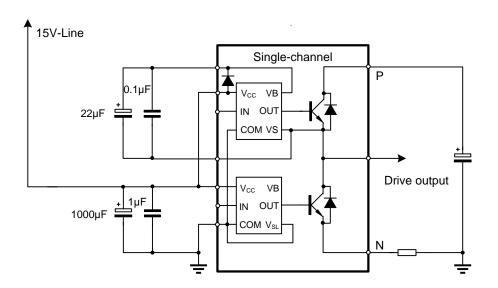
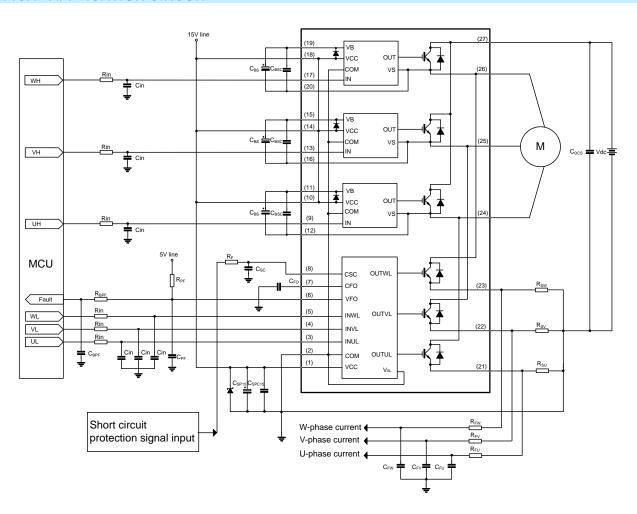


Fig.7 Bootstrap circuit and parameter setting recommended

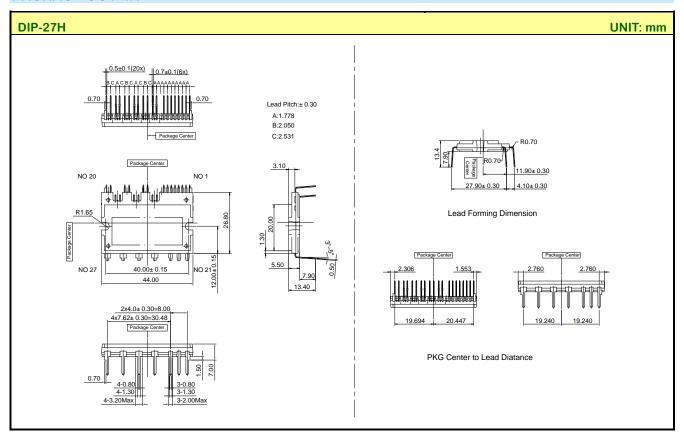
Note:


- 1. The bootstrap capacitance should change following the PWM control solution;
- 2. Ceramic capacitor between V_{CC} and COM must be more than $1\mu F$ and should be close to the pin of the power module as near as possible.

HANGZHOU SILAN MICROELECTRONICS CO.,LTD

http://www.silan.com.cn Page 10 of 13

TYPICAL APPLICATION CIRCUIT



Note:

- (1) The routing of each input pin should be as short as possible to avoid the possible error action;
- (2) Input signal is high active and there is a $5K\Omega$ pull-down resistor connected to the ground at input of each channel in the HVIC; In addition, RC filter circuit can be added to the input, which will prevent the surge noise caused by the incorrect input. The time constant of Rin Cin is selected between 50 and 150nS with Cin not less than $1nF(R_{in}=100\Omega, C_{in}=1nF)$ are recommended);
- (3) To avoid the surge damage, a flat high-frequency non-inductive capacitor between 0.1μF and 0.22μF should be connected between PN and the routing must be as short as possible;
- (4) The routing between current detect resistor and IPM should be as short as possible to avoid the damage caused by the big surge voltage bringing from the connection inductance.
- (5) A filter capacitor at least 7 times by bootstrap capacitor CBS is better to be added at the 15V power supply input;
- (6) Each external capacitor must be connected to the pins of IPM as near as possible;
- (7) V_{FO} output is open and an external $4.7k\Omega$ resistor pulled up to 5V is needed;
- (8) V_{FO} fault output pulse width t_{FO} is decided by C_{FO}, C_{FO}=18.3×10⁻⁶xt_{FO}[F], if C_{FOD}=33nF, then t_{FO}=1.8ms (typ);
- (9) In short circuit protection circuit, please select the time constant of RF and CSC between 1.5~2 μs, at the same time, the routing around the RF and CSC should be as short as possible.

PACKAGE OUTLINE

Important notice:

- The instructions are subject to change without notice!
- 2. Customers should obtain the latest relevant information before placing orders and should verify that such information is complete and current. Please read the instructions carefully before using our products, including the circuit operation precautions.
- 3. Our products are consumer electronic products or the other civil electronic products.
- When using our products, please do not exceed the maximum rating of the products, otherwise the reliability of the whole machine will be affected. There is a certain possibility of failure or malfunction of any semiconductor product under specific conditions. The buyer is responsible for complying with safety standards and taking safety measures when using our products for system design, sample and whole machine manufacturing, so as to avoid potential failure risk that may cause personal injury or property loss.
- 5. It is strongly recommended to identify the trademark when buying our products. Please contact us if there is any question.
- 6. Product promotion is endless, our company will wholeheartedly provide customers with better products!
- 7. Website: http://www.silan.com.cn

Rev.:1.2 http://www.silan.com.cn Page 12 of 13

SD15M60AC Part No.: Document Type: Datasheet

Copyright: HANGZHOU SILAN MICROELECTRONICS CO.,LTD Website: http://www.silan.com.cn

Rev.: 1.2

Revision History:

Update package outline diagram and important notice

Rev.: Revision History:

Modify Characteristic

Rev.: 1.0 Revision History:

> First release 1.

Rev.:1.2

http://www.silan.com.cn