

ESD

TVS

TSS

MOV

GDT

PLED

SP3232EE

Product specification

DESCRIPTION

SP3232EE is a 3.3V-power-supply, dual-channel,high ESD-protected, low-power RS-232 transceiver that fully meets the requirements of the TIA/EIA-232 standard.

SP3232EE includes two drives and two receivers,with enhanced ESD protection function, reaching the protection capacity of HBM ESD above 15kV and 8kV IEC-4100-4-2 contact discharge.

Powered by 3.3V power supply, The charge pump requires only four 1µF external capacitance to work at a rate of at least 120Kbps error-free data transmission, both of which can be independently enabled and closed. Each driver and receiver can be used independently.

FEATURES

- Supply voltages from 3 V to 5.5V
- Dual-channel
- 120kbps Data Rates
- 15kV HBM ESD-Protected
- 8kV IEC-4100-4-2 Contact Dischar

Reference News

PACKAGE OUTLINE	PIN CONFIGURATION	Marking
A CONTRACTOR	C1+ 1 18 VCC V+ 2 15 GND C1- 3 14 T10UT C2+ 4 SP3232EE 13 R1IN C2- 5 12 R10UT V- 6 11 T1IN T20UT 7 10 T2IN R2IN 8 9 R20UT	MSKSEMI SP3232*** MS * * *
SOP-16		

PINNING

PIN	SYMBOL	DESCRIPTION	
1	C1+	Positive Terminal for the first Charge Pump Capacitor	
2	V+	Doubled Voltage Terminal	
3	C1-	Negative Terminal for the first Charge Pump Capacitor	
4	C2+	Positive Terminal for the second Charge Pump Capacitor	
5	C2-	Negative Terminal for the second Charge Pump Capacitor	
6	V_	Inverted Voltage Terminal	
7	T2OUT	Second Transmitter Output Voltage	
8	R2IN	Second Receiver Input Voltage	
9	R2OUT	Second Receiver Output Voltage	
10	T2IN	Second Transmitter Input Voltage	
11	T1IN	First Transmitter Input Voltage	
12	R10UT	First Receiver Output Voltage	
13	R1IN	First Receiver Input Voltage	
14	T10UT	First Transmitter Output Voltage	
15	GND	Ground	
16	VCC	Supply Voltage	

LIMITING VALUES

PARAMETER	SYMBOL	VALUE	UNIT
Supply voltage	VCC	-0.3~+6	V
Doubled Voltage Terminal	V+	VCC-0.3~+7	V
Inverted Voltage Terminal	V-	+0.3~-7	V
V+ + V-		+13	V
Transmitter Input Voltage Range	T1IN,T2IN	-0.3~+6	V
Receiver Input Voltage Range	R1IN,R2IN	±25	v
Transmitter Output Voltage Range	T1OUT,T2OUT	±13.2	v
Receiver Output Voltage Range	R1OUT,R2OUT	-0.3~VCC+0.3	V
Operating Temerature		-40~85	°C
Storage Temperature		-60~150	°C
Soldering Temperature		300	°C
Continuous Power		760	mW

The maximum limit parameters mean that exceeding these values may cause irreversible damage to the device. Under these conditions, it is not conducive to the normal operation of the device. The continuous operation of the device at the maximum allowable rating may affect the reliability of the device. The reference point for all voltages is ground.

Supply Current

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
SupplyCurrentwith no Load	Isup			2		mA

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25°C, C1-C4=IµF).

Logic Input Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Logic Control Low Level	VTTIN_L	T1IN,T2IN			0.8	V
Logic Control High Level	VTTIN_H	T1IN,T2IN	2			V
Logic Control Hysteresis		T1IN,T2IN		0.3		V
Input Logic Current	ITIN	T1IN,T2IN			±1	μA

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4=IµF)

Receiver Output Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver Output Logic-Low Voltage	Vrol	IOUT=1.6mA, VCC=5V or 3.3V			0.4	V
Receiver Output Logic-High Voltage	V _{ROL}	IOUT=-0.5mA, VCC=5V or 3.3V	VCC-0.6	VCC-0.1		V

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4=l μ F)

Receiver Input Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Receiver Input Range	VRIN		-25		+25	V
Receiver Input		VCC=3.3V	0.6	1.1		V
Low Threshold	VRIL	VCC=5V	0.8	1.5		V
Receiver Input		VCC=3.3V		1.5	2.4	V
High Threshold	VRIH	VCC=5V		1.9	2.4	V
Receiver Input Hysteresis				0.4		V
Receiver Input Impedance	RRIN		3	5	7	kΩ
(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4=lµF)						

Transmitter Output Electrical Characteristics

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Transmitter Output Swing	Vтоит	All output ports of transmitter connect 3kΩ load to ground	±4		±5	V
Transmitter Output Impedance	Rtout	VCC=0V, Transmitter Input=±2V	300			Ω
ransmitter Short-Circuit Current	ltsc				60	mA

(If there is no additional explanation,typical value is tested when VCC=+3.3V,Temp=25C,C1-C4=IµF)

ESD protection

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
		HBM		±15		KV
R1IN、R2IN T1OUT 、T2OUT		Air Discharge		±15		KV
		Contact Discharge		± 8		KV

Switching Characteristics Parameter

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Rate	Speed	RL=3kΩ,		120		kbps
	opeed	CL=1000pF		120		Kop3
Receiver Propagation	tRPHL			300		ns
delay	tRPLH	CL=150pF		300		ns
tRPHL-tRPLH				150		ns
tTPHL- tTPLH				150		ns
		RL=3kΩ~7kΩ,				
Transmitter Slew Rate		CL=150pF~1000F				
	SR	from-3.0V~3.0V	4		30	V/µs
		or from3.0V~-3.0V				
		See figures 2 and 3				

(If there is no additional explanation, typical value is tested when VCC=+3.3V, Temp=25C, C1-C4=l μ F)

TEST CIRCUIT

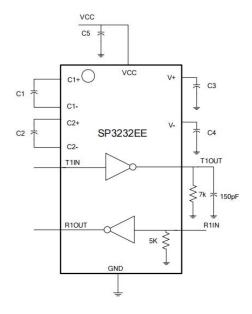


Figure 2 minimum swing rate test circuit

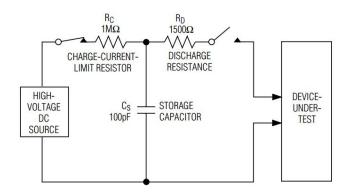


Figure 4 ESD test model of human body mode

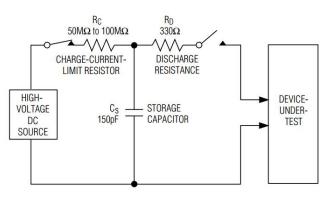
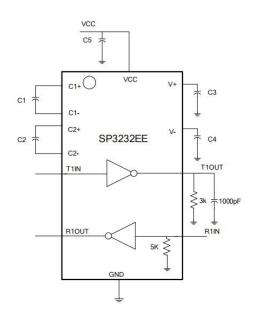



Figure 6 ESD test model of IEC 1000-4-2

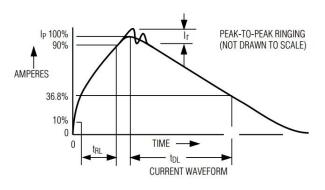


Figure 5 human body mode current waveform

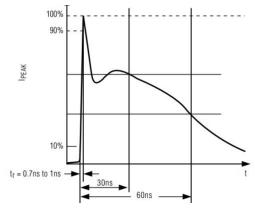


Figure 7 current waveform of IEC 1000-4-2 ESD

ADDITIONAL DESCRIPTION

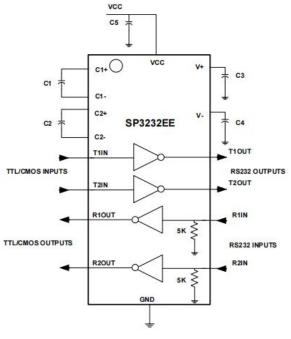
1 Dual Charge-Pump Operation

SP3232EE has a two-way charge pump inside to support the chip's voltage conversion work. Dual-electric pump provides +5.5V and -5.5V output voltage in the range of $3.0 \sim 5.5V$, Each charge pump requires a capacitor(C1,C2) and an energy storage capacitor(C3,C4) to generate V+ and V-power supplies, as shown in Fig 8.

2 RS232 Transmitter

Convert the TTL/CMOS logic voltage to a voltage compatible with the EIA/TIA-232 standard. SP3232EE Transmitter can guarantee 120kbps data rate under the worst operating conditions (Parallel load of $3k\Omega$ resistor and 1000pf capacitor). Transmitter can drive multiple receivers in parallel. There is no pull-up resistance inside the input terminals T1IN and T2IN of SP3232EE transmitter. If the transmitter is not used, the unused input terminals T1IN and T2IN can be connected to GND or VCC.

3 RS232 Receiver

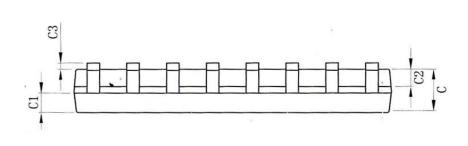

The SP3232EE has two separate receivers that convert the RS-232 signal to the CMOS logic output level.

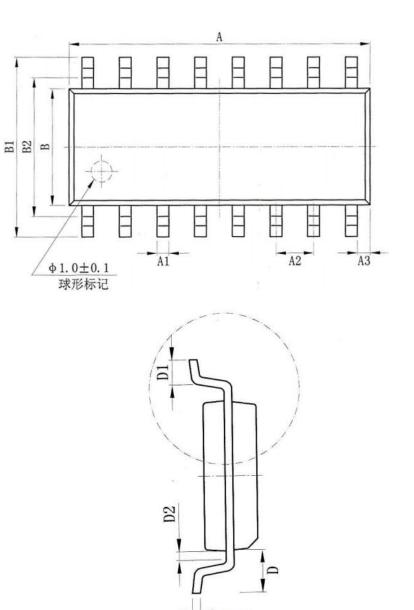
4 ESD Protection

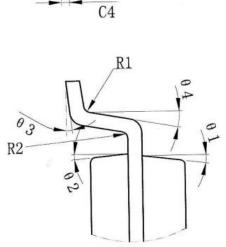
All pins of SP3232EE adopt ESD protection structure, and all driver outputs and receiver inputs have additional electrostatic protection capability. It can withstand ± 15 kV ESD (HBM) discharge, contact discharge above ± 8 KV and air gap discharge above ± 15 kV. The ESD protection structure can withstand the impact of high voltage ESD under all conditions, including standard working mode and power-off mode.

5 Typical Application

Typical dual-Path application scenarios are shown in Figure 8, where the C1-C5 typical capacitance value is 0.1µF.

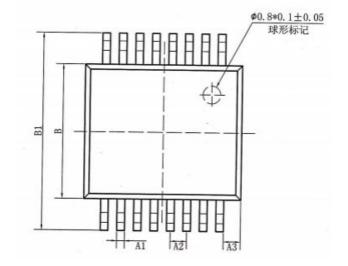


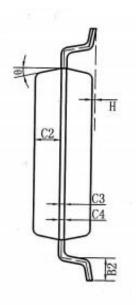

Figure 8 Typical dual-Path application scenarios

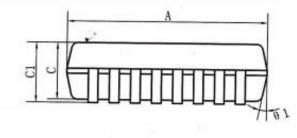


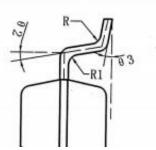
SOP16 DIMENSIONS

SIZE SYMBOL	MIN./mm	MAX./mm	
А	9.80	10.00	
A1	0.356	0.456	
A2	1.	27ТҮР	
A3	0.3	302TYP	
В	3.85	3.95	
B1	5.84	6.24	
B2	5.0	00 TYP	
С	1.40	1.60	
C1	0.61	0.71	
C2	0.54	0.64	
C3	0.05	0.25	
C4	0.203	0.233	
D	1.	05 TYP	
D1	0.40	0.70	
D2	0.15	0.25	
R1	0.	20TYP	
R2	0.	20TYP	
θ1	8°~12°TYP4		
θ2	8°~12°TYP4		
θ3	()°~8°	
θ4	4	°~12°	

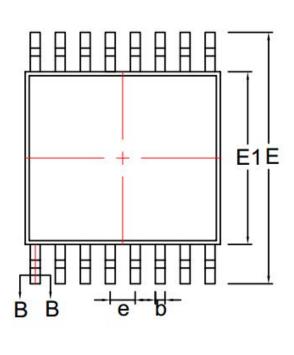


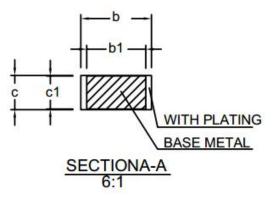


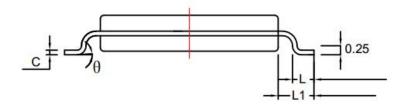


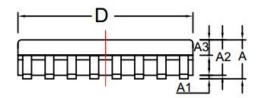

SSOP16(0.65) DIMENSIONS

SIZE SYMBOL	MIN/mm	MAX/mm	
А	6.15	6.25	
A1	0.	ЗОТҮР	
A2	0.	.65TYP	
A3	0.6	675ТҮР	
В	5.25	5.35	
B1	7.65	7.95	
B2	0.60	0.80	
С	1.70	1.80	
C1	1.75	1.95	
C2	(0.799	
C3	(0.152	
C4	(0.172	
н	0.05	0.15	
θ	12	° TYP4	
θ1	12° TYP4		
θ2	10° TYP		
θ3	0°~8°		
R	0.20° TYP		
R	0.1	L5° TYP	

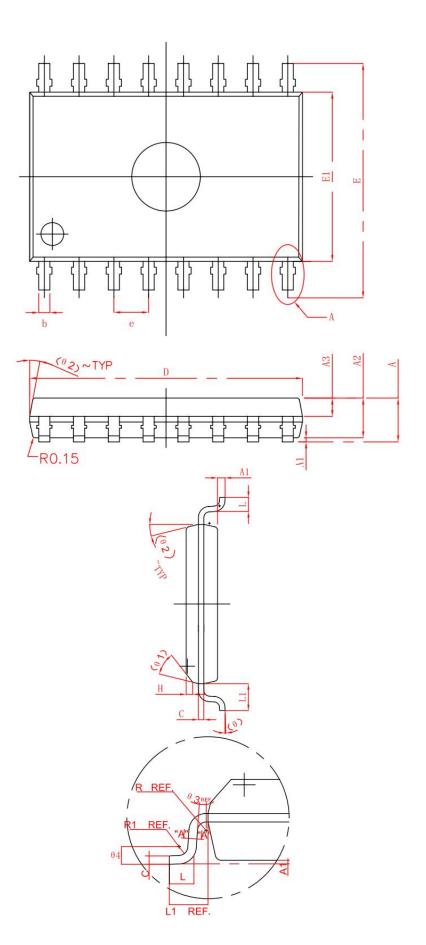


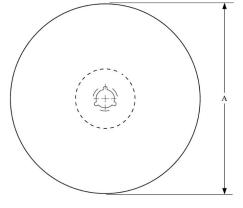




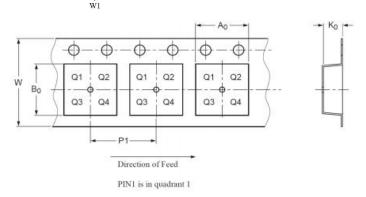

TSSOP16 DIMENSIONS

SIZE SYMBOL	MIN./mm	TYP./mm	MAX. /mm	
А			1.20	
A1	0.05		0.15	
A2	0.90	1.00	1.05	
b	0.20		0.30	
b1	0.19	0.22	0.25	
с	0.110	0.127	0.145	
c1	0.12	0.13	0.14	
D	4.86	4.96	5.06	
Е	6.20	6.40	6.60	
E1	4.30	4.40	4.50	
e	0.65BSC			
L	0.45	0.60	0.75	
L1	1.00BSC			
	0°		8°	




WSOP16 DIMENSIONS

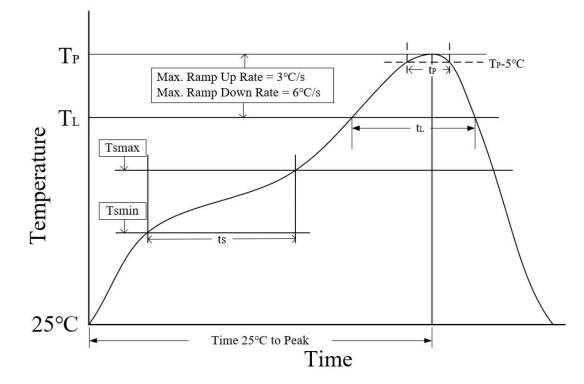
SIZE SYMBOL	MIN./mm	TYP./mm	
A	-	2.65	
A1	0.10	0.30	
A2	2.25	2.35	
A3	0.97	1.07	
D	10.10	10.50	
E	10.26	10.60	
E1	7.30	7.70	
е	1.27BSC		
L	0.55	0.85	
L1	1.4BSC		
Н	0.345	0.365	
R	0.20TYP		
R1	0.30TYP		
θ	0°	8°	
1	45°TYP		
θ2	12°TYP		
θ3	0°	8°	
θ4	0°	10°	



TAPE AND REEL INFORMATION

		+

	Dimension designed to accommodate the
A0	component width
	Dimension designed to accommodate the
B0	component length
	Dimension designed to accommodate the
K0	component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


Package Type	Reel Diameter A (mm)	Tape width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)
SOP16	330	16	6.43±0.10	10.40±0.1	1.85±0.10	8.00±0.1	16.00 +0.30 -0.10
SSOP16	330	16	$8.30^{+0.10}_{-0.10}$	6.60 ^{+0.10}	2.40 +0.10	8.00±0.1	16.00 ^{+0.30}
TSSOP16	330	12	6.80±0.1	5.50±0.1	1.30±0.1	8.00±0.1	12.00±0.30

TAPE AND REEL INFORMATION

TYPE NUMBER	PACKAGE	PACKING
SP3232EEN-MS	SOP16	Tape and reel
SP3232EEA-MS	SSOP16	Tape and reel
SP3232EEY-MS	TSSOP16	Tape and reel
SP3232EET-MS	WSOP16 Wide body	Tube

SOP 16, SSOP16 and TSSOP16 is packed with 2500 pieces/disc in braided packing. WSOP16 is packed with 44 pieces/tube in tubed packaging.

Parameter	Lead-free soldering conditions
Ave ramp up rate $(T_L \text{ to } T_P)$	3 °C/second max
Preheat time ts (T _{smin} =150 °C to T _{smax} =200 °C)	60- 120 seconds
Melting time t _L (T _L =217 °C)	60-150 seconds
Peak temp T _P	260-265 °C
5°C below peak temperature t _P	30 seconds
Ave cooling rate $(T_P \text{ to } T_L)$	6 °C/second max
Normal temperature 25°C to peak temperature T_P time	8 minutes max

Important statement

MSKSEMI reserves the right to change the above-mentioned information without prior notice.

Attention

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all MSKSEMI Semiconductor products described or contained herein.

Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the

performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to

product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.