
LINEAR INTEGRATED CIRCUIT DUAL OPERATIONAL AMPLIFIER

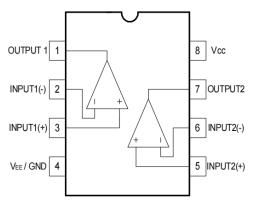
FEATURES

- Internally frequency compensated for unity gain.
- Wide power supply range 3V 36V.
- Input common-mode voltage range include ground.
- Large DC voltage gain.

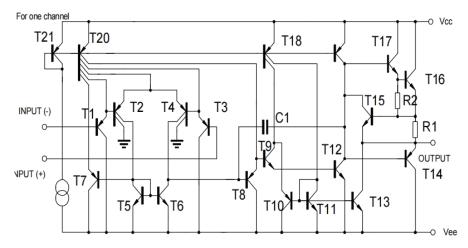
APPLICATIONS

- General purpose amplifier.
- Transducer amplifier.

ORDERING INFORMATION


DEVICE	Package Type	MARKING	Packing	Packing Qty
LPV358CPG	DIP-8	LPV358C	TUBE	2000/box
LPV358CDRG	SOP-8	LPV358C	REEL	2500/reel
LPV358CDGKRG	MSOP-8	LPV358	REEL	3000/reel

DESCRIPTION


The LPV358 consists of two independent high gain, internally frequency compensated operational amplifier. It can be operated from a single power supply and also split power supplies.

PIN CONFIGURATIONS

DIP-8/SOP-8/MSOP-8

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	Vcc	±18 or 36	V
Differential Input Voltage	VI(DIFF)	32	V
Input Voltage	VI	-0.3 ~ +36	V
Output Short to Ground		Continuous	
Operating TemperatureRange	TOPR	0 ~ +70	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C
Lead Temperature	т	045	°C
(Soldering, 10 seconds)	ΤL	245	C

Note: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured.

ELECTRICAL CHARACTERISTICS (Vcc=5.0V, VEE=GND, TA=25°C, unless otherwise specified

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Input Offset Voltage	VIO	VCM=0V toVCC-1.5V VO(P)=1.4V,RS=0		2.9	7.0	mV
Input Offset Current	lio			5	50	nA
Input Bias Current	IBIAS			45	250	nA
Input Common Mode Voltage	VI(R)	VCC=30V	0		VCC-1.5	V
Power Supply Current	ICC	RL=∞,VCC=30V		0.8	2.0	mA
Power Supply Current		RL=∞,Full TemperatureRange		0.5	1.2	mA
Large Signal Voltage Gain	GV	VCC=15V,RL>=2K VO(P)=1V to 11V	25	100		V/mV
		VCC=30V,RL=2K	26			V
Output Voltage Swing	VO(H)	VCC=30V,RL=10K	27	28		V
	VO(L)	VCC=5V,RL>=10K		5	20	mV
Common Mode RejectionRatio	CMRR		65	80		dB
Power Supply Rejection Ratio	PSRR		65	100		dB
Channel Separation	CS	f=1KHZ to 20KHZ		120		dB
Short Circuit Current toGround	ISC			40	60	mA
Output Current	ISOURCE	VI(+)=1V,VI(-)=0V VCC=15V,VO(P)=2V	20	30		mA
	ISINK	VI(+)=0V,VI(-)=1V VCC=15V,VO(P)=2V	10	15		mA
		VI(+)=0V,VI(-)=1V VCC=15V,VO(P)=200mV	12	100		mA
Differential Input Voltage	VI(DIFF)				VCC	V

TYPICAL PERFORMANCE CHARACTERISTICS

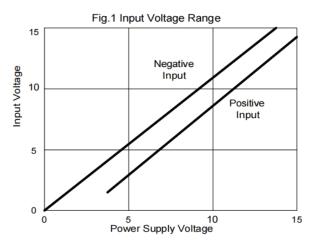
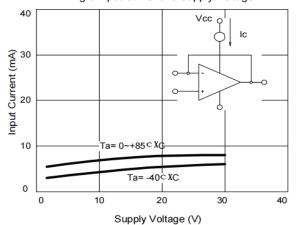
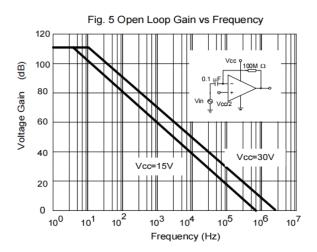
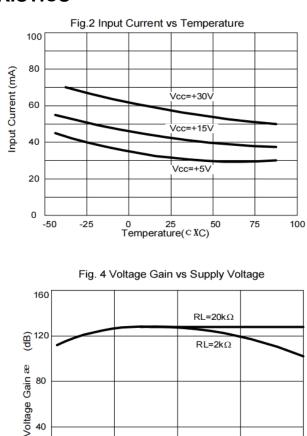
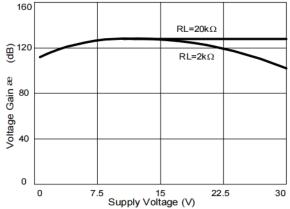
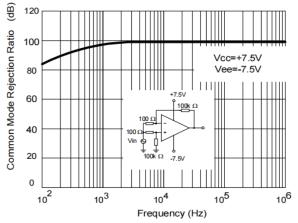
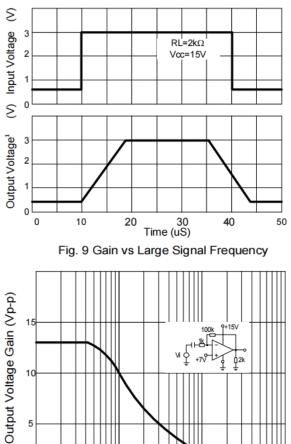
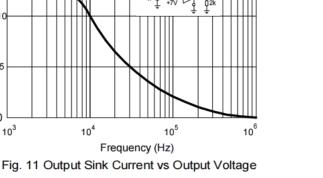
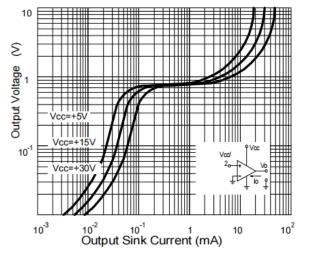






Fig.3 Input Current vs Supply Voltage









LPV358

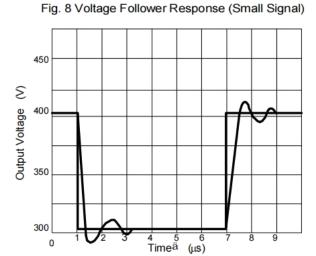
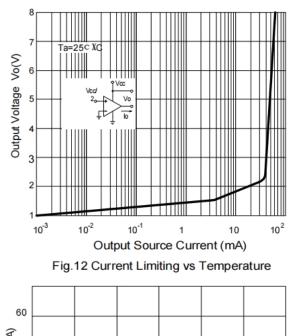
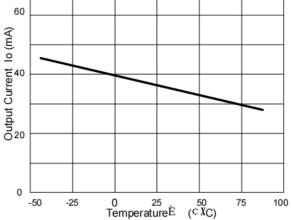
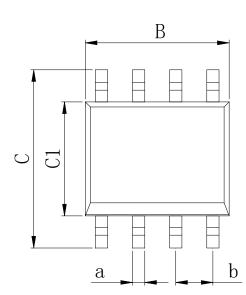
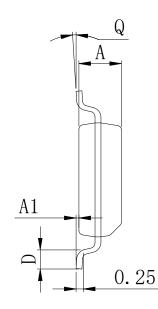
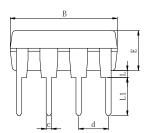




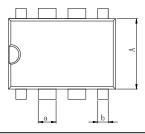
Fig. 10 Output Current Sinking vs Output Voltage


0


10³

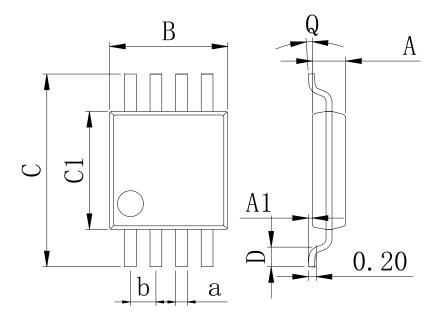
PHYSICAL DIMENSIONS


SOP-8



Dimensions In Millimeters(SOP-8)									
Symbol:	А	A1	В	С	C1	D	Q	а	b
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 030

DIP-8



Dimensions In Millimeters(DIP-8)											
Symbol:	A	В	D	D1	Е	L	L1	а	b	с	d
Min:	6.10	9.00	8.10	7.42	3.10	0.50	3.00	1.50	0.85	0.40	2.54 BSC
Max:	6.68	9.50	10.9	7.82	3.55	0.70	3.60	1.55	0.90	0.50	

PHYSICAL DIMENSIONS

MSOP-8

Dimensions In Millimeters(MSOP-8)									
Symbol:	A	A1	В	С	C1	D	Q	а	b
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.00 030

REVISION HISTORY

DATE	REVISION	PAGE			
2014-3-12	New	1-9			
2023-9-14	Update encapsulation type 、 Update Lead Temperature 、 Updated DIP-8	1, 3, 6			
2023-9-14	dimension、Add annotation for Maximum Ratings.				

IMPORTANT STATEMENT:

Hanschip Semiconductor reserves the right to change its products and services without notice. Before ordering, the customer shall obtain the latest relevant information and verify whether the information is up to date and complete. Hanschip Semiconductor does not assume any responsibility or obligation for the altered documents.

Customers are responsible for complying with safety standards and taking safety measures when using Hanschip Semiconductor products for system design and machine manufacturing. You will bear all the following responsibilities: select the appropriate Hanschip Semiconductor products for your application; Design, validate and test your application; Ensure that your application meets the appropriate standards and any other safety, security or other requirements. To avoid the occurrence of potential risks that may lead to personal injury or property loss.

Hanschip Semiconductor products have not been approved for applications in life support, military, aerospace and other fields, and Hanschip Semiconductor will not bear the consequences caused by the application of products in these fields. All problems, responsibilities and losses arising from the user's use beyond the applicable area of the product shall be borne by the user and have nothing to do with Hanschip Semiconductor, and the user shall not claim any compensation liability against Hanschip Semiconductor by the terms of this Agreement.

The technical and reliability data (including data sheets), design resources (including reference designs), application or other design suggestions, network tools, safety information and other resources provided for the performance of semiconductor products produced by Hanschip Semiconductor are not guaranteed to be free from defects and no warranty, express or implied, is made. The use of testing and other quality control technologies is limited to the quality assurance scope of Hanschip Semiconductor. Not all parameters of each device need to be tested.

The documentation of Hanschip Semiconductor authorizes you to use these resources only for developing the application of the product described in this document. You have no right to use any other Hanschip Semiconductor intellectual property rights or any third party intellectual property rights. It is strictly forbidden to make other copies or displays of these resources. You should fully compensate Hanschip Semiconductor and its agents for any claims, damages, costs, losses and debts caused by the use of these resources. Hanschip Semiconductor accepts no liability for any loss or damage caused by infringement.