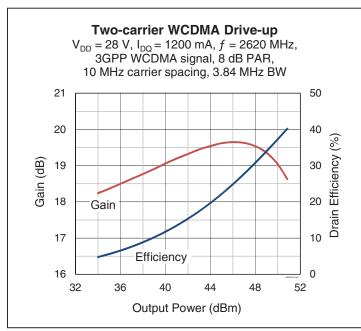


Thermally-Enhanced High Power RF LDMOS FET 200 W, 28 V, 2620 – 2690 MHz

Description


The PTFC262157SH LDMOS FET is designed for use in Doherty cellular power applications in the 2620 MHz to 2690 MHz frequency band. Input and output matching have been optimized for maximum performance as the peak side transistor in a Doherty amplifier. Other features include a thermally-enhanced package with surface-mount flange. Manufactured with Infineon's advanced LDMOS process, this device provides excellent thermal performance and superior reliability.

PTFC262157SH Package H-34288G-4/2 (formed leads)

Features

- Broadband internal matching, optimized for Doherty peak side
- · Wide video bandwidth
- Typical single-carrier WCDMA performance, 2690 MHz, 28 V, 10 dB PAR @ 0.01% CCDR
 - Output power at P_{1dB} = 50 W
 - Efficiency = 29%
 - Gain = 19.5 dB
 - ACPR = -31.5 dBc at 2690 MHz
- Capable of handling 10:1 VSWR @ 28 V, 180 W (CW) output power
- Integrated ESD protection: Human Body Model, Class 1C (per JESD22-A114)
- · Low thermal resistance
- · Pb-free and RoHS compliant

RF Characteristics

Single-carrier WCDMA Specifications (device with flat leads tested in Infineon production test fixture)

 V_{DD} = 28 V, I_{DQ} = 1150 mA, P_{OUT} = 50 W average, f = 2690 MHz, 3GPP WCDMA signal, 3.84 MHz bandwidth,10 dB PAR @0.01% CCDF

Characteristic	Symbol	Min	Тур	Max	Unit
Gain	Gps	18.0	19.5	_	dB
Drain Efficiency	η_{D}	27	29	_	%
Adjacent Channel Power Ratio	ACPR	_	-31.5	-30	dBc

All published data at T_{CASE} = 25°C unless otherwise indicated

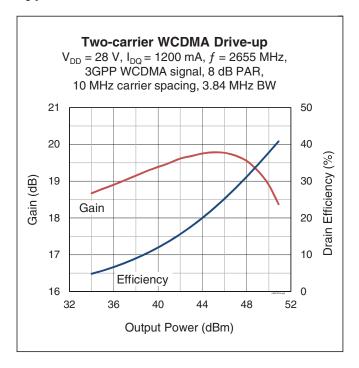
ESD: Electrostatic discharge sensitive device—observe handling precautions!

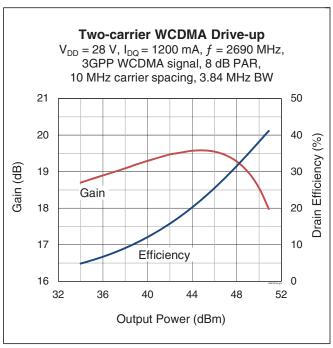
DC Characteristics

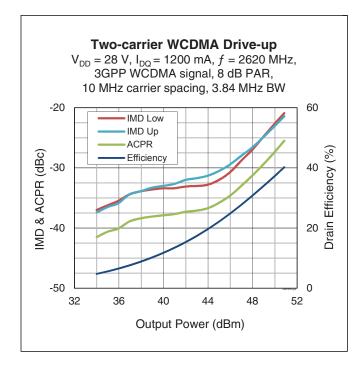
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-source Breakdown Voltage	V_{GS} = 0 V, I_{DS} = 10 mA	V _{(BR)DSS}	65	_	_	V
Drain Leakage Current	$V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	1.0	μΑ
	$V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	10.0	μΑ
Gate Leakage Current	$V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	_	_	1.0	μΑ
On-state Resistance	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.05	_	Ω
Operating Gate Voltage	V _{DS} = 28 V, I _{DQ} = 1.1 A	V _{GS}	_	2.65	_	V

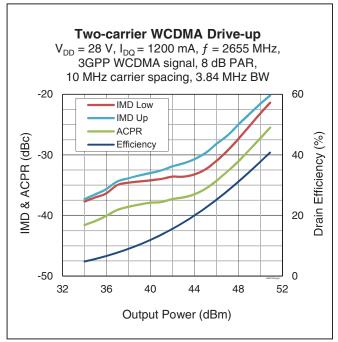
Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source Voltage	V _{DSS}	65	V
Gate-source Voltage	V_{GS}	-6 to +10	V
Operating Voltage	V_{DD}	0 to +32	V
Junction Temperature	TJ	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C
Thermal Resistance (T _{CASE} = 70°C, 150 W CW)	$R_{ hetaJC}$	0.34	°C/W

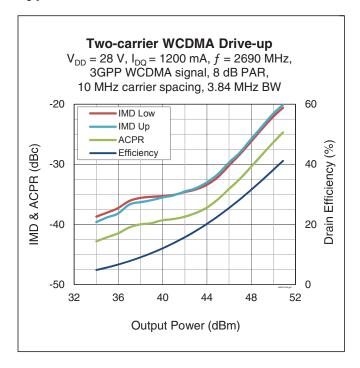

Ordering Information

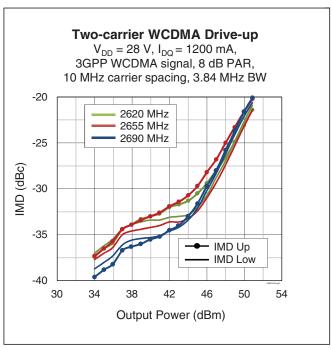

Type and Version	Order Code	Package and Description	Shipping
PTFC 262157SH V1 R250	PTFC262157SHV1R250XTMA1	H-34288G-4/2, ceramic open-cavity, earless surface	Tape & Reel, 250 pcs
		mount	

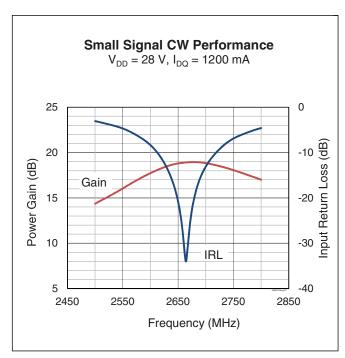

Data Sheet 2 of 10 Rev. 03, 2014-04-14

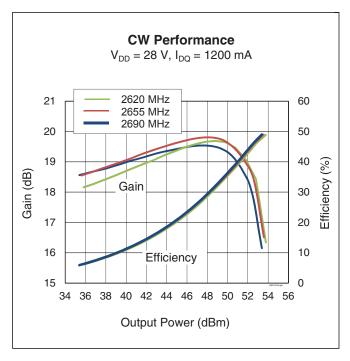


Typical Performance (data taken in an Infineon gull-wing applications circuit)

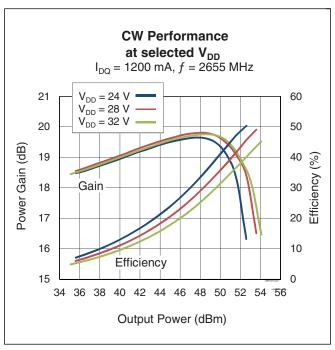


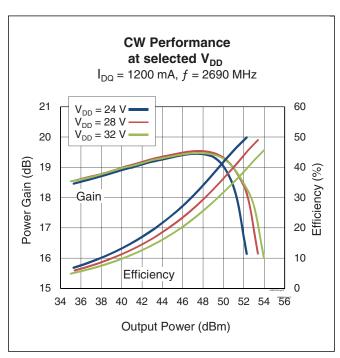




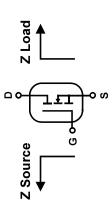


Typical Performance (cont.)





Typical Performance (cont.)



Broadband Circuit Impedance

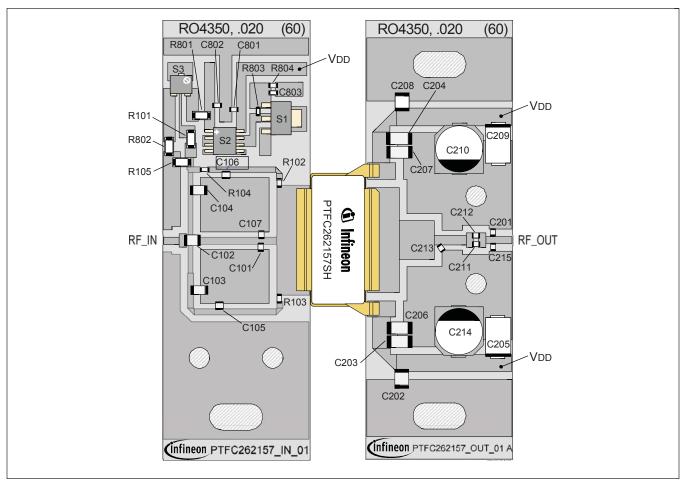
Z Load [Ω]	4.41 – 3.07	4.43 – 3.13	4.44 – 3.18	4.43 - 3.25	4.41 - 3.31
Z Source $[\Omega]$	2.23 – 4.85	2.18 – 4.70	2.13 – 4.56	2.08 – 4.42	2.04 – 4.28
Frequency [MHz]	2585	2620	2655	2690	2725

Load Pull Performance

Pulsed CW signal: 16 µsec, 10% duty cycle; 28 V, 1100 mA

					,											
						P _{1dB}	dB									
Class AB	В		Max Ou	Output Power	wer			Me	Max PAE				Z 0	Z Optimum		
Freq [MHz]	2s [Ω]	Z [Ω]	Gain [dB]	PAE [%]	P _{OUT} [dBm]	Pout [W]	Zl [Ω]	Gain [dB]	PAE [%]	Pout [dBm]	Pout [W]	Z Ω]	Gain [dB]	PAE [%]	Pout [dBm]	Pout [W]
2620	2620 4.52 – j5.08 5.5 – j2 18.4	5.5 – j2	18.4	48.1	54.30	269	3.6 – 14.9	19.8	55.8	53.30	214	214 4.2 – j4.2	19.5	55.3	53.90	245
2655	7.5 – j6.07 5.5 – j1.8 18.5	5.5 – j1.8	18.5	48.5	54.30	269	4.2 – j4.9	19.9	56.6	53.50	224	4.4 – j4.3	19.7	56.2	53.80	240
2690	2690 7.6 – j6.5 5.7 – j2	5.7 – j2	19.2	48.2	48.2 53.90	245	4.4 – j4.9 20.3	20.3	54.5	53.00	200	54.5 53.00 200 4.7 – j4	20.0	53.8 53.50	53.50	224

Pulsed CW signal: 16 µsec, 10% duty cycle; 28 V, 50 mA


			Pour	[w]	257	257	251			
				Pour	[map]	54.10	54.10	54.00		
		Z Optimum	PAE	[%]	61.1 54.10	60.8	60.2			
		2 C	Gain	[qp]	18.3	18.5	18.4			
			ΙΖ	[22]	4.1 – j4.4 18.3	234 4.3 – j4.1 18.5	4.6 – j4 18.4 60.2			
			Pout	[^\	245		229			
		Max PAE	Pout	[db[n]	61.2 53.90	53.70	60.5 53.60			
			Max PAE	PAE	[%]	61.2	61.1	9.09		
				Ma	Ma	Ma	M	Gain	[ap]	18.4
	dB		ΙΖ	[25]	4 – j4.7 18.4	4 – j4.6	4.4 – j4.6 18.6			
	P _{1dB}		Pour	[w]	295	288	282			
		Max Output Power	Max Output Power	Pour	[demi]	54.0 54.70	54.60	54.2 54.50		
				Max Output Po	Max Output Pc	PAE	[%]	54.0	54.2	54.2
						Max O	Max Ou	Max O	Gain	[qp]
			ΙΖ	[25]	5.9 – j2.3	5.7 – j2.1	5.6 – j1.8			
,			SZ	[25]	2620 3.82 – j6.78 5.9 – j2.3	4.79 – j6.8 5.7 – j2.1	2690 6.28 – j6.24 5.6 – j1.8			
		Class B	Fred	[MINZ]	2620	2655	2690			

Reference Circuit, tuned for 2620 - 2690 MHz

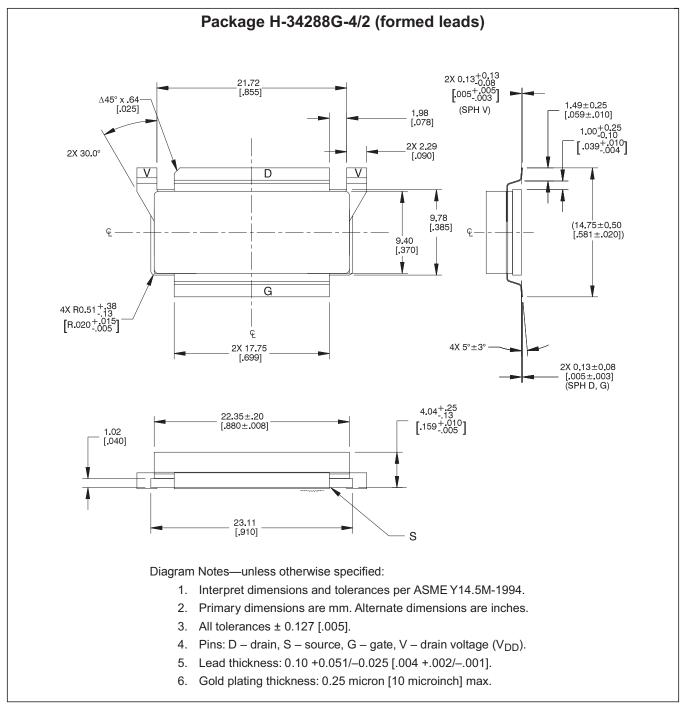
DUT	PTFC262157SH
Reference Fixture Part No.	LTN/PTFC262157SH V1
PCB	Rogers 4350, 0.508 mm [.020"] thick, 2 oz. copper, $\varepsilon_{\rm r}$ = 3.66

Find Gerber files for this reference fixture on the Infineon Web site at (http://www.infineon.com/rfpower)

Reference circuit assembly diagram (not to scale)

Con	non	ont l	nforr	nation
COII	IDUII			пансн

Component	Description	Suggested Manufacturer	P/N
Input			•
C101	Chip capacitor, 1.3 pF	ATC100A1R3CW150XB	ATC
C102	Chip capacitor, 10 pF	ATC100B100JW500XB	ATC
C103, C104	Chip capacitor, 4.7 µF	Nichicon	F931C475MAA
C105, C106	Chip capacitor, 10 pF	ATC	ATC100A100JW500XB
C107	Chip capacitor, 0.1 pF	ATC	ATC100A0R1AW150XB
C801, C802, C803	Capacitor, 1k pF	Panasonic Electronic Components	ECJ-1VB1H102K



Reference Circuit (cont.)

Component Inform	mation (cont.)		
Component	Description	Suggested Manufacturer	P/N
Input (cont.)			
R101, R802	Resistor, 10 Ω	Panasonic Electronic Components	ERJ-8GEYJ100V
R102, R103, R104	Resistor, 10 Ω	Panasonic Electronic Components	ERJ-3GEYJ100V
R105	Resistor, 5.1k Ω	Panasonic Electronic Components	ERJ-8GEYJ512V
R801	Resistor, 100 Ω	Panasonic Electronic Components	ERJ-8GEYJ101V
R803	Resistor, 1.2k Ω	Panasonic Electronic Components	ERJ-3GEYJ122V
R804	Resistor, 1.3k Ω	Panasonic Electronic Components	ERJ-3GEYJ132V
S1	Transistor,	Infineon Technoligies	BCP56-10
S2	Voltage regulator	Fairchild Semiconductor	LM7805
S3	Potentiometer, 2k Ω	Bourns Inc.	3224W-1-202E
Output			
C201, C215	Chip capacitor, 0.3 pF	ATC	ATC100A0R3CW150XB
C202, C208	Capacitor, 10 µF	Taiyo Yuden	UMK325C7106MM-T
C203, C204	Chip capacitor, 1 µF	TDK Corporation	C4532X7R2A105M230KA
C205, C209	Capacitor, 10 µF	Garrett	281M5002106K
C206, C207	Chip capacitor, 2.2 μF, 50 V	TDK Corporation	C4532X7R1H225M160KA
C210, C214	Capacitor, 220 µF, 35 V	Panasonic Electronic Components	EEE-FP1V221AP
C211, C212	Chip capacitor, 12 pF	ATC	ATC100A120JW150XB
C213	Chip capacitor, 1.2 pF	ATC	ATC100A1R2CW150XB

Package Outline Specifications

Find the latest and most complete information tabout products and packaging at the Infineon Internet page (www.infineon.com/rfpower)

PTFC262157SH V1

Revision History

Revision	Date	Data Sheet	Page	Subjects (major changes since last revision)
01	2012-08-07	Advance	all	Proposed specification for new product development
02	2013-08-08	Production	all	Product released to production, information complete and current.
03	2014-04-14	Production	2	Maximum junction temperature raised to 225 °C.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

(highpowerRF@infineon.com)

To request other information, contact us at: +1 877 465 3667 (1-877-GO-LDMOS) USA or +1 408 776 0600 International

Edition 2014-04-14
Published by
Infineon Technologies AG
85579 Neubiberg, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.