

650V Cascode GaN FET in TO-247 (source tab)

Not Recommended for New Design **See TP65H035G4WS** for Replacement

Description

The TP65H035WS 650V, $35m\Omega$ Gallium Nitride (GaN) FET is a normally-off device. It combines state-of-the-art high voltage GaN HEMT and low voltage silicon MOSFET technologies—offering superior reliability and performance.

Transphorm GaN offers improved efficiency over silicon, through lower gate charge, lower crossover loss, and smaller reverse recovery charge.

Related Literature

- ANOOOO: Recommended External Circuitry for GaN FETs
- ANOOO3: Printed Circuit Board Layout and Probing
- ANOO10: Paralleling GaN FETs

Ordering Information

Part Number	Package	Package Configuration
TP65H035WS	3 lead TO-247	Source

TP65H035WS TO-247 (top view)

Cascode Schematic Symbol

Cascode Device Structure

Features

- JEDEC qualified GaN technology
- Dynamic R_{DS(on)eff} production tested
- · Robust design, defined by
 - Intrinsic lifetime tests
 - Wide gate safety margin
 - Transient over-voltage capability
- Very low Q_{RR}
- Reduced crossover loss
- · RoHS compliant and Halogen-free packaging

Benefits

- Improves efficiency/operation frequencies over Si
- Enables AC-DC bridgeless totem-pole PFC designs
 - Increased power density
 - Reduced system size and weight
 - Overall lower system cost
- Easy to drive with commonly-used gate drivers
- · GSD pin layout improves high speed design

Applications

- Datacom
- Broad industrial
- PV inverter
- · Servo motor

Key Specifications		
V _{DSS} (V)	650	
V _{DSS(TR)} (V)	800	
$R_{DS(on)eff}(m\Omega)\;max^*$	41	
Q _{RR} (nC) typ	178	
Q _G (nC) typ	24	

^{*} Dynamic on-resistance; see Figures 17 and 18

Common Topology Power Recommendations			
CCM bridgeless totem-pole* 3770W max			
Hard-switched inverter**	4600W max		

Conditions: F_{SW}=45kHz; T_J=115°C; T_{HEATSINK}=90°C; insulator between device and heatsink (6 mil Sil-Pad® K-10); power de-rates at lower voltages with constant current

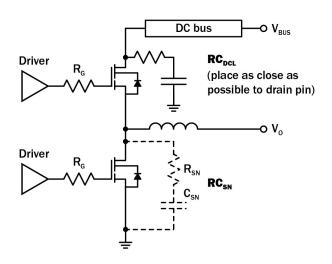
- VIN=230VAC; VOUT=390VDC
- V_{IN} =380 V_{DC} ; V_{OUT} =240 V_{AC}

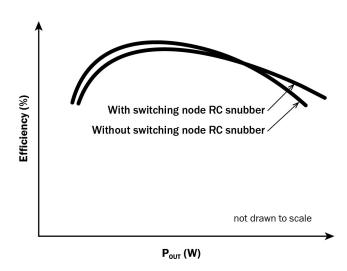
Absolute Maximum Ratings (T_c=25 °C unless otherwise stated.)

Symbol	Parameter		Limit Value	Unit		
V_{DSS}	Drain to source voltage (T _J = -5	5°C to 150°C)	650			
V _{DSS(TR)}	Transient drain to source voltage	ge ^a	800	V		
V_{GSS}	Gate to source voltage		Gate to source voltage		±20	
P _D	Maximum power dissipation @	T _C =25°C	156	W		
	Continuous drain current @T _C =	25°C b	46.5	А		
I _D	Continuous drain current @T _C =	Continuous drain current @T _C =100°C b		А		
I _{DM}	Pulsed drain current (pulse width: 10µs)		240	А		
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive °		1800	A/µs		
(di/dt) _{RDMT}	Reverse diode di/dt, transient	Reverse diode di/dt, transient d		A/µs		
Tc	Operating to magazine	Case		°C		
TJ	Operating temperature	Junction	-55 to +150	°C		
Ts	Storage temperature		-55 to +150	°C		
T _{SOLD}	Soldering peak temperature ^e		260	°C		
-	Mounting Torque		80	N cm		

Notes:

- a. In off-state, spike duty cycle D<0.01, spike duration $<1\mu$ s
- b. For increased stability at high current operation, see Circuit Implementation on page 3
- c. Continuous switching operation
- d. ≤300 pulses per second for a total duration ≤20 minutes
- e. For 10 sec., 1.6mm from the case


Thermal Resistance


Symbol	Parameter	Maximum	Unit
R _{OJC}	Junction-to-case	0.8	°C/W
R _{OJA}	Junction-to-ambient	40	°C/W

transphormusa.com

2

Circuit Implementation

Simplified Half-bridge Schematic

Efficiency vs Output Power

Recommended gate drive: (0V, 12V) with $R_G = 30\Omega$

Required DC Link RC Snubber (RC _{DCL}) ^a	Recommended Switching Node RC Snubber (RC _{SN}) b, c				
[10nF + 8Ω] x 2	200pF + 5Ω				

Notes:

- a. RCDCL should be placed as close as possible to the drain pin
- b. A switching node RC snubber (C, R) is recommended for high switching currents (>70% of IRDMC1 or IRDMC2; see page 5 for IRDMC1 and IRDMC2)
- c. $\mbox{$I_{RDM}$ values can be increased by increasing R_{G} and C_{SN}}$

Layout Recommendations: (See also AN0009) Gate Loop:

- Gate Driver: SiLab Si823x/Si827x
- Keep gate loop compact
- Minimize coupling with power loop

Power loop:

- Minimize power loop path inductance
- Minimize switching node coupling with high and low power plane
- Add DC bus snubber to reduce to voltage ringing
- Add Switching node snubber for high current operation

Electrical Parameters (T_J=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
Forward Device Characteristics							
V _{DSS(BL)}	Drain-source voltage	650	_	_	V	V _{GS} =0V	
V _{GS(th)}	Gate threshold voltage	3.3	4	4.8	V	V _{DS} =V _{GS} , I _D =1mA	
$\Delta V_{GS(th)}/T_J$	Gate threshold voltage temperature coefficient	_	-6.5	_	mV/°C		
Page 1 st	Drain-source on-resistance a	_	35	41	mΩ	V _{GS} =10V, I _D =30A	
R _{DS(on)eff}	Drain-Source on-resistance	_	72	_	11122	V _{GS} =10V, I _D =30A, T _J =150°C	
lana	Drain-to-source leakage current	_	2.5	25	μΑ	V _{DS} =650V, V _{GS} =0V	
I _{DSS}	Dialit-to-source leakage current	_	15	_	μΑ	V _{DS} =650V, V _{GS} =0V, T _J =150°C	
	Gate-to-source forward leakage current	_	_	400	4	V _{GS} =20V	
I _{GSS}	Gate-to-source reverse leakage current	_	_	-400	nA	V _{GS} =-20V	
C _{ISS}	Input capacitance	_	1500	_		V _{GS} =0V, V _{DS} =400V, <i>f</i> =1MHz	
Coss	Output capacitance	_	190	_	pF		
C _{RSS}	Reverse transfer capacitance	_	10	_			
C _{O(er)}	Output capacitance, energy related b	_	290	_	ъг	V _{GS} =0V, V _{DS} =0V to 400V	
C _{O(tr)}	Output capacitance, time related °	_	440	_	pF		
Q _G	Total gate charge	_	24	36		V_{DS} =400V, V_{GS} =0V to 10V, I_{D} =32A	
Q _{GS}	Gate-source charge	_	10	_	nC		
Q _{GD}	Gate-drain charge	_	6	_			
Qoss	Output charge	_	178	_	nC	V _{GS} =0V, V _{DS} =0V to 400V	
t _{D(on)}	Turn-on delay	_	69	_	ns	$V_{DS}{=}400V, V_{GS}{=}0V \text{ to } 12V,$ $I_{D}{=}32A, R_{G}=30\Omega$	
t _R	Rise time	_	13.5	_			
t _{D(off)}	Turn-off delay	_	98.5	_	113		
t _F	Fall time	_	11.5	_			

Notes:

a. Dynamic on-resistance; see Figures 17 and 18 for test circuit and conditions

b. Equivalent capacitance to give same stored energy as V_{DS} rises from 0V to 400V

c. Equivalent capacitance to give same charging time as V_{DS} rises from 0V to 400V

Electrical Parameters (T_J=25 °C unless otherwise stated)

Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
Reverse Devi	Reverse Device Characteristics					
ls	Reverse current	_	_	29.5	А	V _{GS} =0V, T _C =100°C ≤20% duty cycle
V_{SD}	Reverse voltage a	_	1.8	_	V	V _{GS} =0V, I _S =32A
VSD	Neverse voltage	_	1.3	_	v	V _{GS} =0V, I _S =15A
t _{RR}	Reverse recovery time	_	65	_	ns	I _S =30A, V _{DD} =400V,
Q_{RR}	Reverse recovery charge	_	178	_	nC	di/dt=1000A/μs
(di/dt) _{RDMC}	Reverse diode di/dt, repetitive b	_	_	1800	A/µs	
I _{RDMC1}	Reverse diode switching current, repetitive (dc) ^{c, e}	_	_	28	А	Circuit implementation and parameters on page 3
I _{RDMC2}	Reverse diode switching current, repetitive (ac) c, e	_	_	35	А	Circuit implementation and parameters on page 3
(di/dt) _{RDMT}	Reverse diode di/dt, transient d	_	_	3800	A/µs	
I _{RDMT}	Reverse diode switching current, transient d,e	_	_	45	А	Circuit implementation and parameters on page 3

Notes:

- Includes dynamic R_{DS(on)} effect a.
- Continuous switching operation
- c. Definitions: dc = dc-to-dc converter topologies; ac = inverter and PFC topologies, 50-60Hz line frequency
- ≤300 pulses per second for a total duration ≤20 minutes d.
- I_{RDM} values can be increased by increasing R_{G} and C_{SN} on page 3

Typical Characteristics (T_C=25 °C unless otherwise stated)

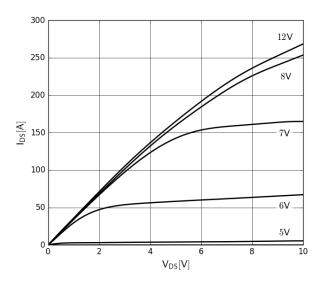


Figure 1. Typical Output Characteristics T_J=25 °C

Parameter: V_{GS}

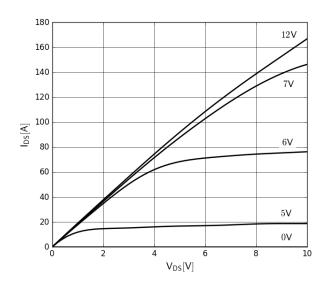


Figure 2. Typical Output Characteristics T_J=150 °C

Parameter: V_{GS}

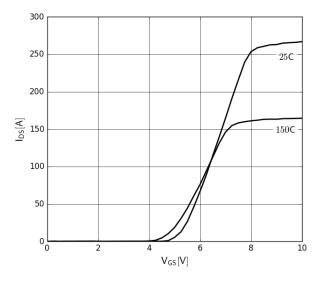


Figure 3. Typical Transfer Characteristics V_{DS} =10V, parameter: T_J

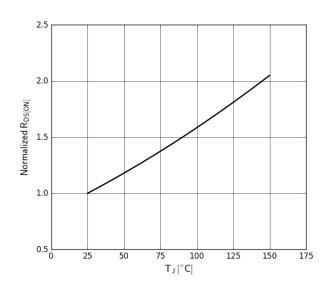


Figure 4. Normalized On-resistance $$I_D\!\!=\!\!30A,\,V_{GS}\!\!=\!\!10V$

Typical Characteristics (T_C=25 °C unless otherwise stated)

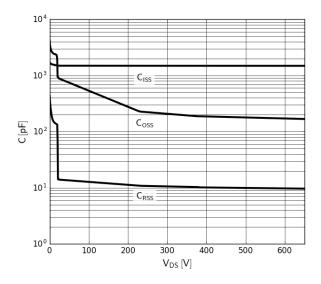


Figure 5. Typical Capacitance V_{GS} =0V, f=1MHz

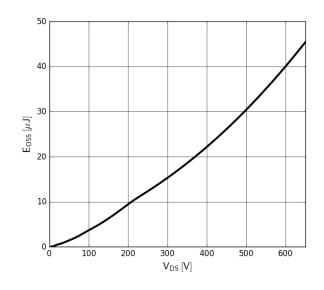


Figure 6. Typical Coss Stored Energy

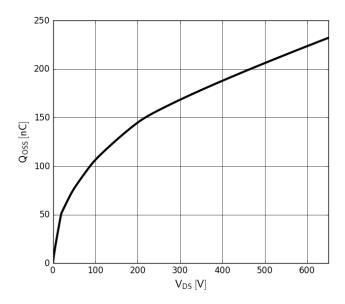


Figure 7. Typical Qoss

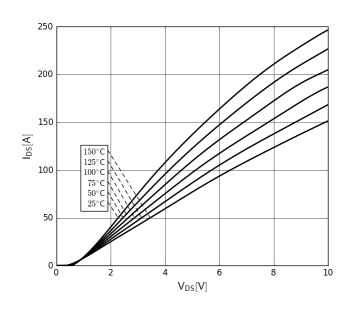


Figure 8. Forward Characteristics of Rev. Diode $I_S {=} f(V_{SD}), \ parameter {:}\ T_J$

Typical Characteristics (T_C=25 °C unless otherwise stated)

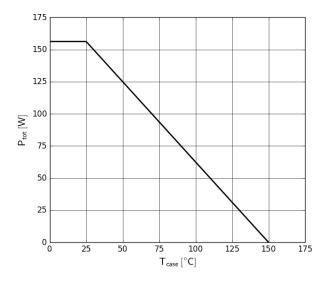


Figure 9. Power Dissipation

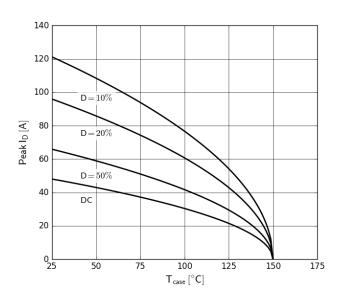


Figure 10. Current Derating Pulse width \leq 10µs, $V_{GS} \geq$ 10V

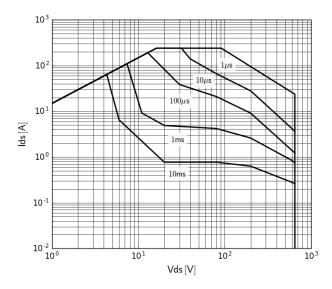


Figure 11. Safe Operating Area $T_C=25$ °C

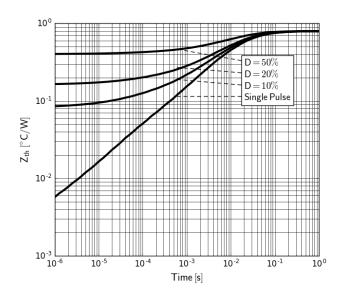
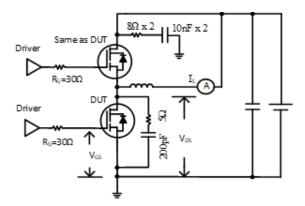



Figure 12. Transient Thermal Resistance

Test Circuits and Waveforms

Figure 13. Switching Time Test Circuit (see circuit implementation on page 3 for methods to ensure clean switching)

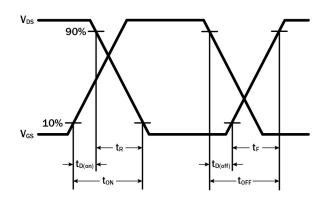


Figure 14. Switching Time Waveform

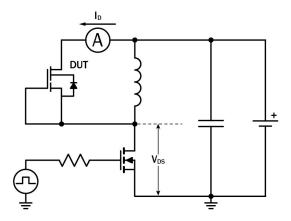


Figure 15. Diode Characteristics Test Circuit

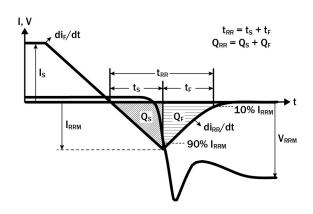


Figure 16. Diode Recovery Waveform

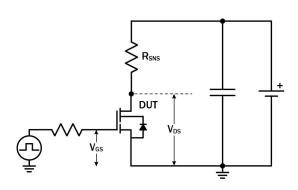


Figure 17. Dynamic R_{DS(on)eff} Test Circuit

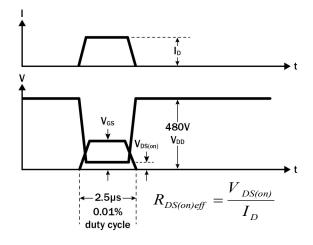


Figure 18. Dynamic R_{DS(on)eff} Waveform

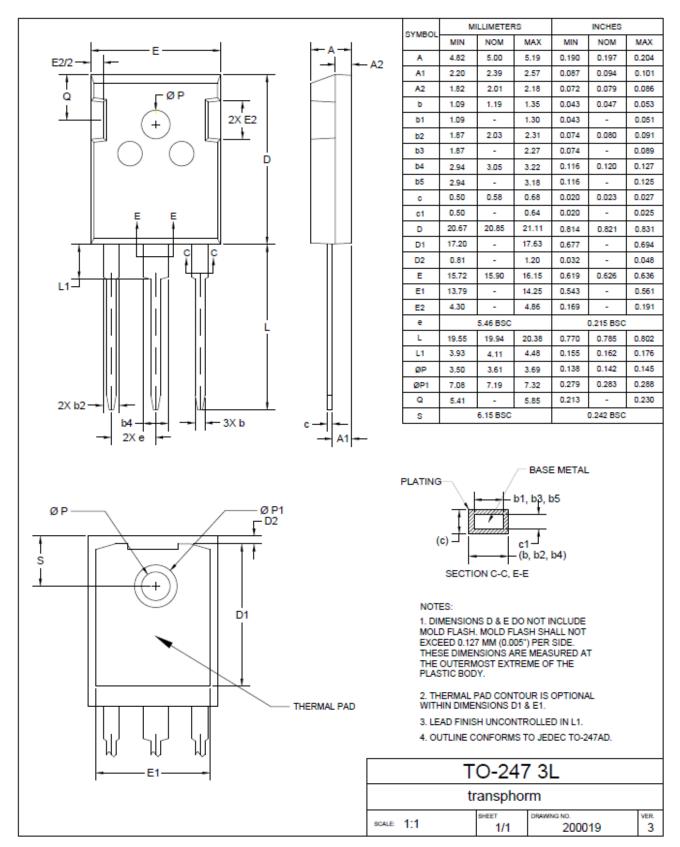
Design Considerations

The fast switching of GaN devices reduces current-voltage crossover losses and enables high frequency operation while simultaneously achieving high efficiency. However, taking full advantage of the fast switching characteristics of GaN switches requires adherence to specific PCB layout guidelines and probing techniques.

Before evaluating Transphorm GaN devices, see application note <u>Printed Circuit Board Layout and Probing for GaN Power Switches</u>. The table below provides some practical rules that should be followed during the evaluation.

When Evaluating Transphorm GaN Devices:

DO	DO NOT
Minimize circuit inductance by keeping traces short, both in the drive and power loop	Twist the pins of T0-220 or T0-247 to accommodate GDS board layout
Minimize lead length of TO-220 and TO-247 package when mounting to the PCB	Use long traces in drive circuit, long lead length of the devices
Use shortest sense loop for probing; attach the probe and its ground connection directly to the test points	Use differential mode probe or probe ground clip with long wire
See AN0003: Printed Circuit Board Layout and Probing	


GaN Design Resources

The complete technical library of GaN design tools can be found at transphormusa.com/design:

- Evaluation kits
- Application notes
- · Design guides
- · Simulation models
- Technical papers and presentations

Mechanical

3 Lead TO-247 Package

