

DATA SHEET

ANTI-SULFURATED ARRAY CHIP RESISTORS AUTOMOTIVE GRADE

AF122 (4Pin/2R) / AF124 (8Pin/4R) / AF162 (4Pin/2R)/ AF164 (8Pin/4R) 5%, 1%

sizes 2 × 0402, 4 × 0402, 2 × 0603, 4 × 0603 RoHS compliant

YAGEO

8

SCOPE

YAGEO

This specification describes AF122/AF124/AF162/AF164 (convex)series chip resistor arrays with lead-free terminations made by thick film process.

APPLICATIONS

- Terminal for SDRAM and DDRAM
- High-end Computer & Multimedia Electronics in high sulfur environment
- Consume electronic equipments: PDAs, PNDs
- Mobile phone, telecom...

FEATURES

- AEC-Q200 qualified
- RoHS compliant
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Saving of PCB space
- None forbidden-materials used in products/production
- Halogen Free Epoxy
- Moisture sensitivity level: MSL I

ORDERING INFORMATION - GLOBAL PART NUMBER & 12NC

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

AF XX X - X X X XX XXXX L

(1) (2) (3) (4) (5) (6)

(I) SIZE

 $12 = 0402 \times 2 (0404)$

 $12 = 0402 \times 4 (0408)$

 $16 = 0603 \times 2 (0606)$

 $16 = 0603 \times 4 (0612)$

(2) NUMBER OF RESISTORS

2 = 2 resistors

4 = 4 resistors

(3) TOLERANCE

 $F = \pm 1\%$

 $| = \pm 5\%$ (for jumper ordering, use code of j)

(4) PACKAGING TYPE

R = Paper taping reel

(5) TEMPERATURE COEFFICIENT OF RESISTANCE

- = Base on spec

(6) TAPING REEL

07 = 7 inch dia. Reel

13 = 13 inch dia, Reel

(7) RESISTANCE VALUE

There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g. I K2, not I K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

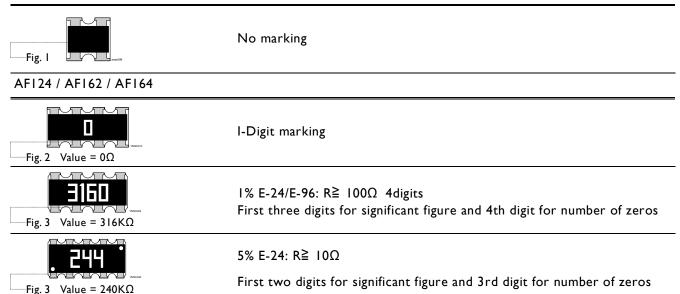
Resistance rule of global part number

Resistance code rule	Example		
OR	0R = Jumper		
XRXX (1 to 9.76 Ω)	IR = I Ω IR5 = I.5 Ω 9R76 = 9.76 Ω		
XXRX (10 to 97.6 Ω)	IOR = IO Ω 97R6 = 97.6 Ω		
XXXR (100 to 976 Ω)	100R = 100 Ω		
XKXX (1 to 9.76 KΩ)	IK = 1,000 Ω 9K76 = 9760 Ω		
	IM = 1,000,000 Ω		

ORDERING EXAMPLE

The ordering code of a AFI22 convex chip resistor array, value $1,000\Omega$ with ±5% tolerance, supplied in 7-inch tape reel is: AFI22-JR-071KL.

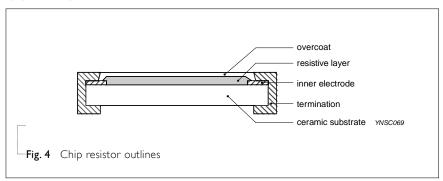
NOTE


- I. All our R-Chip products meet RoHS compliant. "LFP" of the internal 2D reel label mentions "Lead Free Process"
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of GLOBAL PART NUMBER

<u>MARKING</u>

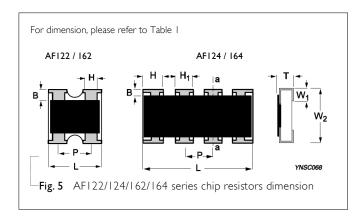
YAGEO

AFI22



For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION


The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal embedded into a glass and covered by a glass. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the external terminations (matte tin on Nibarrier) are added as shown in Fig.4.

OUTLINES

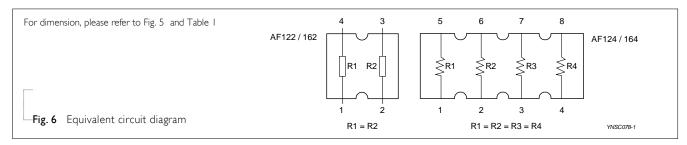

DIMENSIONS

Table I				
TYPE	AFI22	AFI24	AFI62	AF164
B (mm)	0.24±0.10	0.25±0.15	0.35±0.10	0.35±0.15
H (mm)	0.30+0.10/-0.05	0.45±0.05	0.30±0.10	0.65±0.05
H_1 (mm)		0.30±0.05		0.50±0.15
P (mm)	0.67±0.05	0.50±0.05	0.80 ± 0.05	0.80±0.05
L (mm)	1.00±0.10	2.00±0.10	1.60 ± 0.10	3.20±0.15
T (mm)	0.30±0.10	0.45±0.10	0.40 ± 0.10	0.60±0.10
W_1 (mm)	0.25±0.10	0.30±0.15	0.30 ± 0.10	0.30±0.15
W ₂ (mm)	1.00±0.10	1.00±0.10	1.60±0.10	1.60±0.15

SCHEMATIC

YAGEO

ELECTRICAL CHARACTERISTICS

Table 2

CHARACTERISTICS		AFI22		AFI24		AF162	Α	F164
Operating Temperature	−55 °C to	+155 °C	−55 °C to −	+155 °C	−55 °C to	+155 °C	-55 °C to +1	55 °C
Rated Power		1/16 W		1/16 W		1/16W	I	/16W
Maximum Working Voltage		50 V		50 V		50V		50V
Maximum Overload Voltage		100 V		100 V		100V		100V
Dielectric Withstanding		100 V		100 V		100V		100V
Resistance Range	5% (E24) Ι Ω τ Ι% (E24/E96) ΙΟ Ω τ Jumper <	to I M Ω	5% (E24) Ω t % (E24/E96) Ω t Jumper <	ο Ι ΜΩ	,		5% (E24) I Ω to % (E24/E96) I Ω to Jumper < 5	Ι ΜΩ
Temperature Coefficient $\begin{array}{cccc} & & & & & & & & & & & & & & & & & $								
Jumper Criteria	Rated Current	0.5 A	Rated Current	1.0 A	Rated Current	1.0 A	Rated Current	1.0A
jumper Criteria	Maximum Current	1.0 A	Maximum Current	2.0 A	Maximum Current	2.0 A	Maximum Current	$2 \cap \Lambda$

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	AFI22	AFI24	AF162	AFI64
Paper Taping Reel (R)	7" (178 mm)	10,000 units	10,000 units	5,000 units	5,000 units
	13" (330 mm)	50,000 units	40,000 units		20,000 units

NOTE

1. For paper tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

YAGEO

8

FUNCTIONAL DESCRIPTION

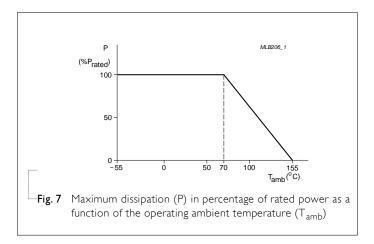
POWER RATING

AFI22 / AFI24 / AFI62 / AFI64 rated power at 70 °C is I/16 W

RATED VOLTAGE

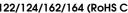
The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$


or max. working voltage whichever is less

Where

V=Continuous rated DC or AC (rms) working voltage (V)


P=Rated power (W)

R=Resistance value (Ω)

122/124/162/164 (RoH\$ Compliant)

TESTS AND REQUIREMENTS

Table 4 Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature	AEC-Q200 Test 3	1,000 hours at $T_A = 155$ °C, unpowered	±(2.0%+0.05Ω)
Exposure	MIL-STD-202 Method 108		$<$ 50 m Ω for Jumper
Moisture	AEC-Q200 Test 6	Each temperature / humidity cycle is defined at	±(2.0%+0.05Ω)
Resistance	MIL-STD-202 Method 106	8 hours (method 106F), 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$<$ 100 m Ω for Jumper
Biased	AEC-Q200 Test 7	I,000 hours; 85 °C / 85% RH	±(3.0%+0.05Ω)
Humidity	MIL-STD-202 Method 103	10% of operating power	<100 mΩ for Jumper
		Measurement at 24±4 hours after test conclusion	
Operational Life	AEC-Q200 Test 8	1,000 hours at 125 °C, derated voltage applied for	±(3.0%+0.05Ω)
•	MIL-STD-202 Method 108	1.5 hours on, 0.5 hour off, still-air required	$<$ 100 m Ω for Jumper
Resistance to	AEC-Q200 Test 15	Condition B, no pre-heat of samples	±(1.0%+0.05Ω)
Soldering Heat	MIL-STD-202 Method 210	Lead-free solder, 260±5 °C, 10±1 seconds immersion time	<50 m Ω for Jumper No visible damage
		Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	TWO VISIDIE GAITIAGE
Thermal Shock	AEC-Q200 Test 16	-55/+125 °C	±(1.0%+0.05Ω)
	MIL-STD-202 Method 107	Number of cycles is 300. Devices mounted	$<$ 50 m Ω for Jumper
		Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	
ESD	AEC-Q200 Test 17	Human Body Model,	±(3.0%+0.05 Ω)
	AEC-Q200-002	I pos. + I neg. discharges	<50 mΩ for Jumper
		122/124: 500V	
		162/164: IKV	

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS	
Solderability	AEC-Q200 Test 18	Electrical Test not required Magnification 50X	Well tinned (≥95% covered)	
- Wetting	J-STD-002	SMD conditions:	No visible damage	
		(a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds.		
		(b) Method B, steam aging 8 hours, dipping at 215 ± 3 °C for 5 ± 0.5 seconds.		
		(c) Method D, steam aging 8 hours, dipping at 260±3 °C for 30±0.5 seconds.		
Board Flex	AEC-Q200 Test 21	Chips mounted on a 90mm glass epoxy resin	±(1.0%+0.05Ω)	
Board Flex	AEC-Q200-005	PCB (FR4)	$<50 \text{ m}\Omega$ for Jumper	
	•	3mm	00 m <u>az</u> 101 jampo.	
		Holding time: minimum 60 seconds		
Temperature Coefficient of	MIL-STD-202 Method 304	At +25/–55 °C and +25/+125 °C	Refer to table 2	
Resistance (T.C.R.)		Formula:		
		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$		
		Where t_1 =+25 °C or specified room temperature		
		t_2 =–55 °C or +125 °C test temperature		
		R ₁ =resistance at reference temperature in ohms		
		R ₂ =resistance at test temperature in ohms		
Short Time Overload	IEC60115-1 4.13	2.5 times of rated voltage or maximum	±(2.0%+0.05Ω)	
		overload voltage whichever is less for 5 sec at room temperature	$<$ 50 m Ω for Jumper	
FOS	ASTM-B-809-95*	Sulfur 750 hours, 105°C, unpowered	±(4.0%+0.05Ω)	
	*Modified		$<$ 100m Ω for Jumper	

Chin Resistor Surface Mount

ΑF

RIFS

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 6	Apr. 21, 2021	-	- Upgrade to Automotive Grade and voltage of AF124 updated, TCR of AF164 updated.
Version 5	Mar. 20, 2017	-	- Modify AF124/164 Equivalent Circuit Diagram
Version 4	Jun. 23, 2016	-	- AEC-Q200 qualified
Version 3	Nov. 17, 2015	-	- Add in AF162
Version 2	May 29,2015	-	- Add in AF164
Version I	Aug. 15, 2014	-	- Update AFI24 dimensions
Version 0	Oct. 02, 2013	-	- First issue of this specification

[&]quot;Yageo reserves all the rights for revising the content of this datasheet without further notification, as long as the products itself are unchanged. Any product change will be announced by PCN."

Chip Resistor Surface Mount

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.