MSKSEMI 美森科

ESD

TVS

TSS

MOV

GDT

PLED

L293DN(MS)

Product specification

DESCRIPTION

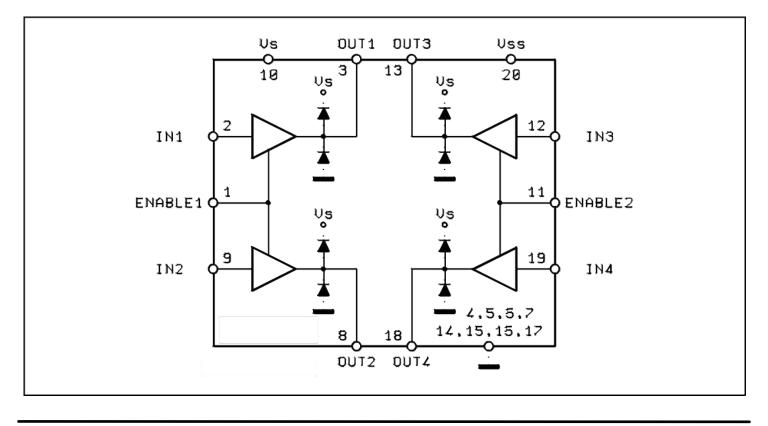
The Device is a monolithic integrated high volt-age, high current four channel driver designed to accept standard DTL or TTL logic levels and drive inductive loads (such as relays solenoides, DC and stepping motors) and switching power tran- sistors. To simplify use as two bridges each pair of chan-nels is equipped with an enable input. A separate supply input is provided for the logic, allowing op-eration at a lower voltage and internal clamp di-odes are included.

This device is suitable for use in switching appli-cations at frequencies up to 5 kHz.

The L293DN(MS) is assembled in a 16 lead plastic packaage which has 4 center pins connected to- gether and used for heatsinking.

- 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (non repeti- tive) PER CHANNEL
- ENABLE FACILITY
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)
- INTERNAL CLAMP DIODES

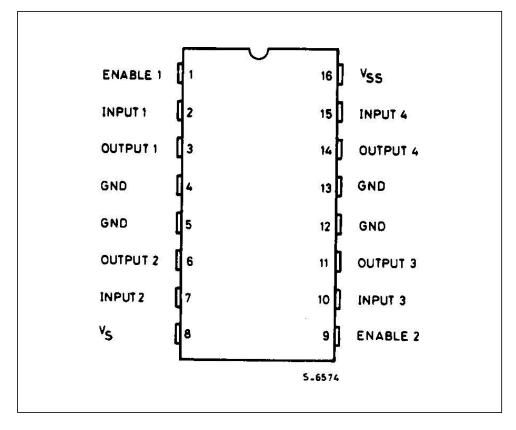
Reference News


PACKAGE OUTLINE	Marking
S S S S S S S S S S S S S S S S S S S	MSKSEMI L293D MS****
DIP-16	

ordering information

P/N	PKG	QTY
L293DN(MS)	DIP-16	25/One tube 1000/a box of

BLOCK DIAGRAM



ABSOLUTEMAXIMUMRATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	36	V
V _{SS}	Logic Supply Voltage	36	V
Vi	Input Voltage	7	V
Ven	Enable Voltage	7	V
lo	Peak Output Current (100 µs non repetitive)	1.2	А
Ptot	Total Power Dissipation at T_{pins} = 90 $^\circ C$	4	W
Tstg,Tj	Storage and Junction Temperature	– 40 to 150	°C

PIN CONNECTIONS (Top view)

THERMAL DATA

Symbol	Decription	DIP	Unit
Rth j-pins	Thermal Resistance Junction-pins max.	_	°C /W
Rth j-amb	Thermal Resistance junction-ambient max.	80	°C/W
Rth j-case	Thermal Resistance Junction-case max.	14	

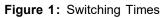
(*) With 6sq. cm on board heatsink.

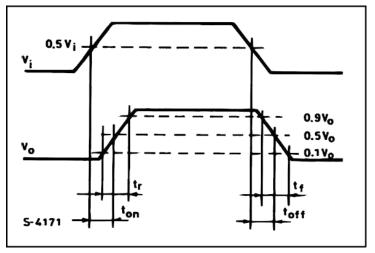
ELECTRICAL CHARACTERISTICS (for each channel, VS =24V, VSS =5 V, Tamb = 25°C, unless

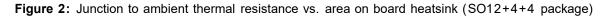
otherwise specified)

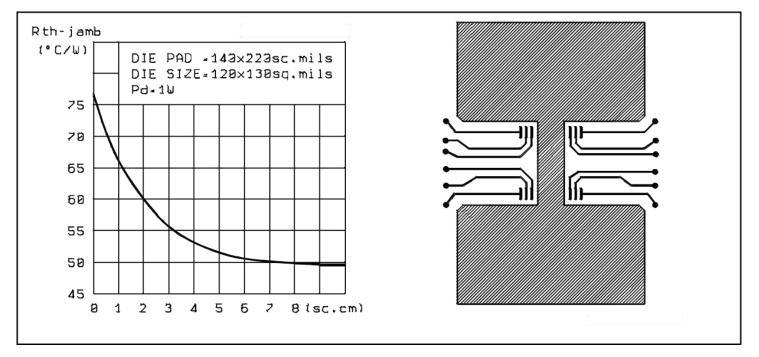
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (pin 10)		Vss		36	V
Vss	Logic Supply Voltage (pin 20)		4.5		36	V
		$V_i = L$; $I_0 = 0$; $V_{en} = H$		2	6	mA
ls	Total Quiescent Supply Current (pin 10)	$V_i = H ; I_0 = 0 ; V_{en} = H$		16	24	mA
		V _{en} = L			4	mA
	T () O () O ()	$V_i = L$; $I_0 = 0$; $V_{en} = H$		44	60	mA
lss	Total Quiescent Logic Supply Current (pin 20)	$V_i = H$; $I_0 = 0$; $V_{en} = H$		16	22	mA
		Ven = L		16	24	mA
VIL	Input Low Voltage (pin 2, 9, 12, 19)		- 0.3		1.5	V
	Input High Voltage (pin 2, 9,	V _{SS} < 7 V	2.3		V _{SS}	V
VIH	12, 19)	V _{SS} > 7 V	2.3		7	V
IIL	Low Voltage Input Current (pin 2, 9, 12, 19)	V _{IL} = 1.5 V			- 10	μA
I _{IH}	High Voltage Input Current (pin 2, 9, 12, 19)	2.3 V < V _{IH} < V _{SS} – 0.6 V		30	100	μA
Ven L	Enable Low Voltage (pin 1, 11)		- 0.3		1.5	V
	Enable High Voltage	V _{SS} < 7 V	2.3		Vss	V
Ven H	(pin 1, 11)	V _{SS} > 7 V	2.3		7	V
len L	Low Voltage Enable Current (pin 1, 11)	V _{en L} = 1.5 V		- 30	- 100	μA
I _{en H}	High Voltage Enable Current (pin 1, 11)	$2.3 V < V_{en H} < V_{SS} - 0.6 V$			± 10	μA
V _{CE(sat)} H	Source Output Saturation Voltage (pins 3, 8, 13, 18)	Io = - 0.6 A		1.4	1.8	V
VCE(sat)L	Sink Output Saturation Voltage (pins 3, 8, 13, 18)	I ₀ = + 0.6 A		1.2	1.8	V
VF	Clamp Diode Forward Voltage	I ₀ = 600nA		1.3		V
tr	Rise Time (*)	0.1 to 0.9 V _o		250		ns
t _f	Fall Time (*)	0.9 to 0.1 V _O		250		ns
ton	Turn-on Delay (*)	0.5 V _i to 0.5 V _o		750		ns
toff	Turn-off Delay (*)	0.5 V _i to 0.5 V _o		200		ns

(*) See fig. 1.






TRUTH TABLE (one channel)


Input	Enable (*)	Output	
Н	Н	Н	
L	н	L	
H	L	Z	
L	L	Z	

Z = High output impedance (*) Relative to the considered channel

DIM. mm inch OUTLINE AND								
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MECHANICAL DATA	
a1	0.51			0.020				
В	0.85		1.40	0.033		0.055		
b		0.50			0.020			
b1	0.38		0.50	0.015		0.020	1550 a	
D			20.0			0.787		
Е		8.80			0.346			
е		2.54			0.100			
e3		17.78			0.700			
F			7.10			0.280		
Ι			5.10			0.201		
L		3.30			0.130		DIP-16	
Z			1.27			0.050	DIF-16	
Z			B e			- ()		

5/6

Attention

■ Any and all MSKSEMI Semiconductor products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your MSKSEMI Semiconductor representative nearest you before using any MSKSEMI Semiconductor products described or contained herein in such applications.

MSKSEMI Semiconductor assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any andall MSKSEMI Semiconductor products described orcontained herein.

Specifications of any and all MSKSEMI Semiconductor products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

MSKSEMI Semiconductor. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with someprobability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits anderror prevention circuits for safedesign, redundant design, and structural design.

■ In the event that any or all MSKSEMI Semiconductor products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from theauthorities concerned in accordance with the above law.

■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of MSKSEMI Semiconductor.

Information (including circuit diagrams and circuit parameters) herein is for example only ; it is not guaranteed for volume production. MSKSEMI Semiconductor believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements intellectual property rights or other rights of third parties.

Any and all information described or contained herein are subject to change without notice due to

product/technology improvement, etc. Whendesigning equipment, referto the "Delivery Specification" for the MSKSEMI Semiconductor productthat you intend to use.