Nisshinbo Micro Devices Inc.

NC2600 series

2A Low Quiescent Current PWM/PFM Step-down Switching Regulator

FEATURES

- Input Voltage Range (Maximum Rating):
2.3 V to $5.5 \mathrm{~V}(6.5 \mathrm{~V})$
- Operating Temperature Range: $\quad-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Output Voltage Range:

Fixed Output Voltage Type: $\quad 0.6 \mathrm{~V}$ to 3.3 V
Adjustable Output Voltage Type: 0.6 V to 5.5 V

- Output Voltage Accuracy: $\quad \pm 1.5 \%\left(V_{\text {SET }} \geq 1.2 \mathrm{~V}\right)$
$\pm 18 \mathrm{mV}\left(\mathrm{V}_{\text {SET }}<1.2 \mathrm{~V}\right)$ $\pm 9 \mathrm{mV}$
- Feedback Voltage Accuracy:

Typ. $17 \mu \mathrm{~A}$

- Quiescent Current:
- Switching Frequency: Typ.4.0 MHz (VSET $=1.8 \mathrm{~V})$
- UVLO Detection Voltage:

Typ.2.0 V

- Soft-Start Time: Typ. 0.15 ms When CSS is open
- Thermal Shutdown Function:

Detection Temperature Typ. $150^{\circ} \mathrm{C}$ Release Temperature Typ. $120^{\circ} \mathrm{C}$

- Auto Discharge Function
- Latch Protection Function

APPLICATIONS

- Portable Communication Devices: Mobile Phones / Smartphones
- Digital Cameras and Note-PCs
- Li-ion Battery-used Equipment

GENERAL DESCRIPTION

The NC2600 is a low quiescent current PWM / PFM 2A step-down switching regulator IC using CMOSbased.
The NC2600 is available in WLCSP-8-P11 and DFN2020-8-GT, and it is suitable for use in wearable and loT devices that require miniaturization and longlifetime of battery.

WLCSP-8-P11
$1.62 \times 0.98 \times 0.4(\mathrm{~mm})$

DFN2020-8-GT $2.0 \times 2.0 \times 0.6(\mathrm{~mm})$

TYPICAL APPLICATIONS

EFFICIENCY TYPICAL CHARACTERISTICS

Adjustable Output Voltage Type ($\mathrm{V}_{\text {SET }}=1.8 \mathrm{~V}$)

PRODUCT NAME INFORMATION
NC2600 aa bbb c dd e

Description of configuration

Composition	Item	Description
aa	Package Code	Indicates the package. Refer to the order information.
bbb	Output Voltage	Set Output Voltage (VSET) Adjustable Output Voltage Type (000) The internal fixed output voltage type has a lineup of main voltages in the range of $0.6 \mathrm{~V}(060)$ to 3.3 $\mathrm{V}(330)$.
c	Version	Indicates the selection of auto discharge function and latch protection function.
dd	Packing	Refer to the packing specifications.
e	Grade	Indicates the quality grade.

Version

c	Latch Protection Function	Auto Discharge Function
A	Yes	Yes
B	Yes	No
C	No	Yes
D	No	No

Grade

e	Applications	Operating Temperature Range	Test Temperature
S	Consumer	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$

ORDER INFORMATION

PRODUCT NAME	PACKAGE	RoHS	HALOGEN- FREE	PLATING COMPOSITION	MARKING	WEIGH $T(\mathrm{mg})$	Quantity per Reel(pcs)
NC2600ZA bbbc E2S	WLCSP-8-P11	Yes	Yes	Sn3Ag0.5Cu	Reference	1.1	5000
NC2600GT bbbc E4S	DFN2020-8-GT	Yes	Yes	Sn	Reference	7.0	3000

Refer to the marking specifications for a detailed lineup of set output voltage and versions.

PIN DESCRIPTIONS (NC2600ZA)

WLCSP-8-P11 Pin Configuration

NC2600ZA (WLCSP-8-P11) Pin Descriptions

Pin No.	Pin Name	I/O	Description
A1	VIN	Power	Power Supply Input Pin
B1	SW	O	Switching Output Pin Internal MOSFET Drain Connect the inductor between the VOUT node and the SW pin.
C1	EN	I	Enable Pin Can set the active state with the "High" input and the shutdown state with the "Low" input.
D1	PG	O	Power-good Output Pin NMOS open drain output. In normal operation, "High" (pull-up voltage) is output.
A2	GND	-	Ground Pin
B2	CSS	I	Soft-Start Adjustment Pin Soft-Start time can be adjusted by connecting a capacitor between the CSS pin and GND.
C2	MODE	I	Mode Control Pin High: Forced PWM Control, Low: PWM/PFM Auto Switching Control.
D2	FB	I	Feedback Pin When using NC2600xx000x (adjustable output voltage type), connect an external resistor as the feedback input pin for the error amplifier and set the output voltage. When using the internal fixed output voltage type, connect it to the VOUT node as an output voltage feedback pin.

For details, refer to "Typical Application Circuit " and " THEORY OF OPERATION ".

PIN DESCRIPTIONS (NC2600GT)

* The tab on the bottom of the package is the silicon substrate level. It is recomended to connect to GND level on the board.

NC2600GT (DFN2020-8-GT) Pin Descriptions

Pin No.	Pin Name	I/O	Description
1	GND	-	Ground pin
2	CSS	I	Soft-Start Adjustment Pin Soft-Start time can be adjusted by connecting a capacitor between the CSS pin and GND.
3	MODE	I	Mode Control Pin High: Forced PWM Control, Low: PWM/PFM Auto Switching Control.
4	FB	I	Feedback Pin When using NC2600xx000x (adjustable output voltage type), connect an external resistor as the feedback input pin for the error amplifier and set the output voltage. When using the internal fixed output voltage type, connect it to the VOUT node as an output voltage feedback pin.
5	PG	O	Power-good Output Pin NMOS open drain output. In normal operation, "High" (pull-up voltage) is output.
6	EN	I	Enable Pin Can set the active state with the "High" input and the shutdown state with the "Low" input.
7	SW	O	Switching Output Pin Internal MOSFET Drain Connect the inductor between the VOUT node and the SW pin.
8	VIN	Power	Power Supply Input Pin

For details, refer to "Typical Application Circuit " and " THEORY OF OPERATION ".

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ratings	Unit
Input Voltage	$\mathrm{V}_{\text {IN }}$	-0.3 to 6.5	V
SW pin voltage	$\mathrm{V}_{\text {SW }}$	-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
EN pin voltage	$\mathrm{V}_{\text {EN }}$	-0.3 to 6.5	V
CSS pin voltage	$\mathrm{V}_{\mathrm{CSS}}$	-0.3 to 6.5	V
PG pin voltage	$\mathrm{V}_{\text {PG }}$	-0.3 to 6.5	V
MODE pin voltage	$\mathrm{V}_{\text {MODE }}$	-0.3 to 6.5	V
FB pin voltage	$\mathrm{V}_{\text {FB }}$	-0.3 to 6.5	V
Junction Temperature Range ${ }^{* 1}$	$\mathrm{~T}_{\mathrm{j}}$	-40 to 125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to 125	${ }^{\circ} \mathrm{C}$

\square
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.
${ }^{* 1}$ Calculate the power consumption of the IC from the operating conditions, and calculate the junction temperature with the thermal resistance.
Please refer to "THERMAL CHARACTERISTICS" for the thermal resistance under our measurement board conditions

THERMAL CHARACTERISTICS

Package	Parameter	Measurement Result	Unit
WLCSP-8-P11	Thermal Resistance ($\theta \mathrm{ja}$)	131	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	Thermal Characterization Parameter ($\psi \mathrm{j} \mathrm{t}$)	38	
DFN2020-8-GT	Thermal Resistance ($\theta \mathrm{ja}$)	71	
	Thermal Characterization Parameter ($\psi \mathrm{j} \mathrm{t}$)	33	

日ja : Junction-to-Ambient Thermal Resistance
чjt : Junction-to-Top Thermal Characterization Parameter
The above values are reference data under measurement conditions based on JEDEC STD. 51 .

ELECTROSTATIC DISCHARGE RATINGS

Parameter	Conditions	Protection Voltage
HBM	$\mathrm{C}=100 \mathrm{pF}, \mathrm{R}=1.5 \mathrm{k} \Omega$	$\pm 2000 \mathrm{~V}$
CDM		$\pm 1000 \mathrm{~V}$

ELECTROSTATIC DISCHARGE RATINGS

The electrostatic discharge test is done based on JESD47.
In the HBM method, ESD is applied using the power supply pin and GND pin as reference pins.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Ratings	Unit
Input Voltage	V_{IN}	2.3 to 5.5	V
Operating Temperature Range	T_{a}	-40 to 85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

Nisshinbo Micro Devices Inc.

ELECTRICAL CHARACTERISTICS

NC2600xx060x to 330x (Internal Fixed Output Voltage Type)

$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }} \leq 2.6 \mathrm{~V}\right)$ or $\mathrm{V}_{\text {SET }}+1 \mathrm{~V}\left(\mathrm{~V}_{\text {SET }}>2.6 \mathrm{~V}\right)$ unless otherwise specified.
For parameter that do not describe the temperature condition, the MIN / MAX value under the condition of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{a}} \leq 85^{\circ} \mathrm{C}$ is described.

Parameter	Symbol		ns	MIN	TYP	MAX	Unit
		$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {SET }} \geq 1.2 \mathrm{~V}$	$\times 0.985$	-	$\times 1.015$	
Output Voltage	Vout	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {SET }}<1.2 \mathrm{~V}$	-0.018	-	+0.018	V
Switching Frequency	fosc	$\mathrm{V}_{\text {mode }}=3.6 \mathrm{~V}$		-	4.0	-	MHz
Quiescent Current	lQ	$\begin{aligned} & \mathrm{V}_{\text {FB }}=\mathrm{V}_{\text {SET }} \times \\ & \mathrm{V}_{\mathrm{MODE}}=0 \mathrm{~V}, \\ & \hline \end{aligned}$	ching	-	17	25	$\mu \mathrm{A}$
Shutdown current	ISD	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}$		-	0	5	$\mu \mathrm{A}$
EN "H" Input Current	IENH	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=5.5$		-1	0	1	$\mu \mathrm{A}$
EN "L" Input Current	Ienl	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
MODE "H" Input Current	Імоden	$\mathrm{V}_{\text {II }}=\mathrm{V}_{\text {MODE }}=$		-1	0	1	$\mu \mathrm{A}$
MODE "L" Input Current	Imodel	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}$	0 V	-1	0	1	$\mu \mathrm{A}$
VFB "H" Input Current	IfBH	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{FB}}=5.5$	En $=0 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
VFB "L" Input Current	IfbL	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, V	$\mathrm{FbB}=0 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
On-resistance for Discharger	Rondis	NC2600xxxxx		-	60	-	Ω
EN pin "H" Input Voltage	Venh	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		1.0	-	-	V
EN pin "L" Input Voltage	$V_{\text {ENL }}$	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$		-	-	0.4	V
MODE "H" Input Voltage	Vmodeh	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		1.0	-	-	V
MODE "L" Input Voltage	Vmodel	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$		-	-	0.4	V
On-resistance of High Side		Isw	NC2600ZA	-	0.13	-	Ω
MOSFET	Ronh	$\mathrm{Isw}=100 \mathrm{~mA}$	NC2600GT	-	0.15	-	Ω
On-resistance of Low Side	Row	Isw $=100 \mathrm{~mA}$	NC2600ZA	-	0.09	-	Ω
MOSFET	RonL	Isw $=100 \mathrm{~mA}$	NC2600GT	-	0.12	-	Ω
Soft-Start Time 1	tstart1	CSS = OPEN		-	150	300	$\mu \mathrm{s}$
Soft-Start Time 2	tstart2	CSS $=0.1 \mu \mathrm{~F}$		15	30	45	ms
SW Current Limit	IswLim			2.3	-	4.7	A
Protection Delay Time	tprot	NC2600xxxxx		10	20	40	$\mu \mathrm{s}$
UVLO Detection Voltage ${ }^{* 1}$	Vuvlodet	$\mathrm{V}_{\text {IN }}=$ Falling		1.85	2.00	2.20	V
UVLO Release Voltage ${ }^{\text {* }}$	Vuvlorel	$\mathrm{V}_{\text {IN }}=$ Rising		1.90	2.05	2.25	V
On resistance at PG "L" Output	Ronpg	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$		-	45	-	Ω
OV Detection Voltage	Vovd	$\mathrm{V}_{\mathrm{FB}}=$ Rising		$V_{\text {SEt }} X$ 1.1	$\begin{gathered} \hline \text { VSET } X \\ 1.2 \\ \hline \end{gathered}$	-	V
UV Detection Voltage	Vuvd	$\mathrm{V}_{\mathrm{FB}}=$ Falling		-	$\begin{gathered} \mathrm{V}_{\text {SET }} \mathrm{X} \\ 0.8 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V}_{\text {SET }} \mathrm{X} \\ 0.9 \end{gathered}$	V
Thermal Shutdown Detection Temperature	Tsddet	$\mathrm{T}_{\mathrm{j}}=$ Rising		-	150	-	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Release Temperature	Tsdrel	$\mathrm{T}_{\mathrm{j}}=$ Falling		-	120	-	${ }^{\circ} \mathrm{C}$

All electrical characteristic parameters that specify the minimum and maximum specifications are tested under the condition of $\mathrm{T}_{\mathrm{j}} \approx \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
${ }^{*}$ Due to the circuit configuration, Vuvlodet \geq Vuvlorel does not hold. The hysteresis is Typ.0.05 V.

NC2600xx000x (Adjustable Output Voltage Type)

$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ unless otherwise specified.
For parameter that do not describe the temperature condition, the MIN / MAX value under the condition of $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{a}} \leq 85^{\circ} \mathrm{C}$ is described.

Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit
Feedback voltage	$V_{\text {FB }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.591	0.600	0.609	V
Switching Frequency	fosc	$\mathrm{V}_{\text {MOde }}=3.6 \mathrm{~V}$		-	4.0	-	MHz
Quiescent Current	le	$\mathrm{V}_{\mathrm{FB}}=0.63 \mathrm{~V}, \mathrm{~V}_{\text {MOdE }}=0 \mathrm{~V}$, no switching		-	17	25	$\mu \mathrm{A}$
Shutdown current	IsD	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		-	0	5	$\mu \mathrm{A}$
EN "H" Input Current	lenh	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=5.5 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
EN "L" Input Current	Ienl	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
MODE "H" Input Current	Імоден	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {MODE }}=5.5 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
MODE "L" Input Current	Imodel	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {MODE }}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
FB "H" Input Current	$\mathrm{I}_{\text {FBH }}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{FB}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
FB "L" Input Current	IfBL	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$		-1	0	1	$\mu \mathrm{A}$
On-resistance for Discharger	Rondis	NC2600xx000A/C		-	60	-	Ω
EN pin "H" Input Voltage	Venh	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$		1.0	-	-	V
EN pin "L" Input Voltage	$\mathrm{V}_{\text {ENL }}$	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$		-	-	0.4	V
MODE "H" Input Voltage	Vmoder	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$		1.0	-	-	V
MODE "L" Input Voltage	Vmodel	$\mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}$		-	-	0.4	V
On-resistance of High Side MOSFET	Ronh	Isw $=100 \mathrm{~mA}$	NC2600ZA	-	0.13	-	Ω
			NC2600GT	-	0.15	-	Ω
On-resistance of Low Side MOSFET	Ronl	Isw $=100 \mathrm{~mA}$	NC2600ZA	-	0.09	-	Ω
			NC2600GT	-	0.12	-	Ω
Soft-Start Time 1	tstart1	CSS = OPEN		-	150	300	$\mu \mathrm{s}$
Soft-Start Time 2	tstart2	CSS $=0.1 \mu \mathrm{~F}$		15	30	45	ms
SW Current Limit	Iswlim			2.3	-	4.7	A
Protection Delay Time	tprot	NC2600xx000A/B		10	20	40	$\mu \mathrm{s}$
UVLO Detection Voltage ${ }^{* 1}$	Vuvlodet	$\mathrm{V}_{\mathrm{IN}}=$ Falling		1.85	2.00	2.20	V
UVLO Release Voltage ${ }^{\text {*1 }}$	Vuvlorel	$\mathrm{V}_{\text {IN }}=$ Rising		1.90	2.05	2.25	V
On resistance at PG "L" Output	Ronpg	$\mathrm{V}_{\mathrm{FB}}=0 \mathrm{~V}$		-	45	-	Ω
OV Detection Voltage	Vovd	$\mathrm{V}_{\mathrm{FB}}=$ Rising		0.66	0.72	-	V
UV Detection Voltage	Vuvd	$\mathrm{V}_{\mathrm{FB}}=$ Falling		-	0.48	0.54	V
Thermal Shutdown Detection Temperature Temperature	Tsddet	$\mathrm{T}_{\mathrm{j}}=$ Rising		-	150	-	${ }^{\circ} \mathrm{C}$
Thermal Shutdown Release Temperature	Tsdrel	$\mathrm{T}_{\mathrm{j}}=$ Falling		-	120	-	${ }^{\circ} \mathrm{C}$

All electrical characteristic parameters that specify the minimum and maximum specifications are tested under the condition of $\mathrm{T}_{\mathrm{j}} \approx \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$
${ }^{* 1}$ Due to the circuit configuration, Vuvlodet \geq Vuvlorel does not hold. The hysteresis is Typ. 0.05 V .

PRODUCT-SPECIFIC ELECTRICAL CHARACTERISTICS

PRODUCT NAME	$\operatorname{Vout~}\left(\mathrm{T}_{\mathrm{a}}=25{ }^{\circ} \mathrm{C}\right)$			Unit
	MIN	TYP	MAX	
NC2600xx060xxxx	0.582	0.6	0.618	V
NC2600xx070xxxx	0.682	0.7	0.718	
NC2600xx080xxxx	0.782	0.8	0.818	
NC2600xx090xxxx	0.882	0.9	0.918	
NC2600xx100xxxx	0.982	1.0	1.018	
NC2600xx110xxxx	1.082	1.1	1.118	
NC2600xx120xxxx	1.182	1.2	1.218	
NC2600xx130xxxx	1.280	1.3	1.320	
NC2600xx140xxxx	1.379	1.4	1.421	
NC2600xx150xxxx	1.477	1.5	1.523	
NC2600xx160xxxx	1.576	1.6	1.624	
NC2600xx170xxxx	1.674	1.7	1.726	
NC2600xx180xxxx	1.773	1.8	1.827	
NC2600xx190xxxx	1.871	1.9	1.929	
NC2600xx200xxxx	1.970	2.0	2.030	
NC2600xx210xxxx	2.068	2.1	2.132	
NC2600xx220xxxx	2.167	2.2	2.233	
NC2600xx230xxxx	2.265	2.3	2.335	
NC2600xx240xxxx	2.364	2.4	2.436	
NC2600xx250xxxx	2.462	2.5	2.538	
NC2600xx260xxxx	2.561	2.6	2.639	
NC2600xx270xxxx	2.659	2.7	2.741	
NC2600xx280xxxx	2.758	2.8	2.842	
NC2600xx290xxxx	2.856	2.9	2.944	
NC2600xx300xxxx	2.955	3.0	3.045	
NC2600xx310xxxx	3.053	3.1	3.147	
NC2600xx320xxxx	3.152	3.2	3.248	
NC2600xx330xxxx	3.250	3.3	3.350	

Above parameters are all tested under the following conditions:
$\mathrm{T}_{\mathrm{j}} \approx \mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

BLOCK DIAGRAMS

NC2600xxxxxA/C Block Diagram

NC2600xxxxxB/D Block Diagram

THEORY OF OPERATION

Enable Function

Forcing above designated "High" voltage to EN pin, the NC2600 becomes active. Forcing below designated "Low" voltage to EN pin shuts down the NC2600. In shutdown condition, all functions are disabled except auto discharge function. With auto discharge option, the MOSFET to discharge the output capacitor turns on and the output is pulled down to GND. Without auto discharge option, the output becomes "Hi-Z". EN pin can accept input range voltage regardless of the input of VIN pin.
Do not open the EN pin because it is not pulled up or down inside the IC.
If Enable function is not necessary, tie EN pin to VIN pin or other designated "High" voltage node at start-up.

Auto Discharge Function

When turned off, the Vout voltage drops rapidly to near OV by discharging the charge stored in the output capacitor through the MOSFET connected between the SW pin and GND pins. The auto discharge function is enabled when the EN pin = "low" ,UVLO detection or the thermal shutdown detection. On-resistance of MOSFET is Typ. 60Ω.

Soft-Start

When the input voltage (V IN) exceeds the UVLO release voltage (VuvLorel) and the EN pin is input with a voltage higher than the EN "High" input voltage ($\mathrm{V}_{\mathrm{ENH}}$), the Soft-Start circuit starts operation. After the Soft-Start circuit starts operating and the delay time (tstartup_delay) Typ. $45 \mu \mathrm{sec}$, the IC internal reference voltage ($\mathrm{V}_{\mathrm{ref}}$) starts rising, and after the Soft-Start time (tstart) ${ }^{\star 1}$, the $V_{\text {REF }}$ reaches the specified value.
The output of the PG pin (V_{PG}) confirms that the output voltage ($\mathrm{V}_{\mathrm{out}}$) is between the UV detection voltage ($\mathrm{V}_{\mathrm{UvD}}$) and the OV detection voltage (Vovd), and becomes "High" after the PG delay time (tpg_delay=Typ.10 sec).

Timing Chart when Starting-up with EN pin

Timing Chart when Starting-up with VIN $=$ EN
The current limiting function, latch type protection function (NC2600xxxxxA/B), UVLO function, and thermal shutdown function are effective even during the Soft-Start time. When the thermal shutdown is released, the Soft-Start function is effective.
When starting with a large load current or when a large capacitance is used in the Cout, the above protection functions may be activated. In such a case, adjust the Css and increase the Soft-Start time in order to avoid such an abnormal situation.

[^0]
Soft-Start Time Adjustment

Soft-Start time tstart can be adjusted as shown in the figure below by connecting a capacitor Css to the CSS pin. When $\mathrm{C}_{\text {ss }}$ is $0.1 \mu \mathrm{~F}$, the Soft-Start time is Typ. 30 ms . If you do not need to adjust the Soft-Start time, open the CSS pin to start up with the built-in Soft-Start time (Typ. 0.15 ms). Soft-Start time can be calculated using the following equation.
There is no limit to the capacitance value of the Css.
Css $[\mu \mathrm{F}]=$ tstart $[\mathrm{ms}] \times 0.0033$

Under Voltage Lockout (UVLO) Circuit

When $\mathrm{V}_{\text {IN }}$ becomes lower than $\mathrm{V}_{\text {SET }}$, the step-down switching regulator stops its switching operation and ON duty becomes 100%, then Vout gradually falls according to Vin.
When the $\mathrm{V}_{\text {In }}$ drops below the UVLO detection voltage (VuvLodet), the UVLO operates, $\mathrm{V}_{\text {ref }}$ stops, and high side MOSFET and low side MOSFET turn "OFF".
As a result, the output voltage decreases according to the capacitance value of Cout, load current, and discharge FET onresistance (NC2600xxxxxA/C).
To restart the operation, $\mathrm{V}_{\text {IN }}$ needs to exceed Vuvlorel. The timing chart below shows the Vout voltage waveforms when the VIN value is changed Falling edge (detecting) and rising edge (releasing) waveforms of Vout could be affected by the initial voltage of Cout and the output current of Vout.

Timing Chart with Variations in Input Voltage (Vin)

Thermal Shutdown

When the junction temperature exceeds the thermal shutdown detection temperature (Typ. $150^{\circ} \mathrm{C}$), switching stops and self-heating is suppressed.
This IC will restart when the junction temperature drops below the thermal shutdown release temperature (Typ. $120^{\circ} \mathrm{C}$). Then, the Soft-Start function is activated.

Current Limit Circuit, Latch Type Protection Circuit

Current limit circuit supervises the peak current flowing through the inductor in each switching cycle. If the current exceeds the SW current limit (Typ.3.4 A), High Side MOSFET is turned off and the upper limit of the inductor peak current is imposed.
The latch-type protection circuit latches the built-in driver off and shuts down the switching regulator if this overcurrent condition lasts for the protection delay time (tprot). To release the latch type protection state, restart the device by inputting "Low" signal to the EN pin or making the Input Voltage lower than UVLO detection voltage (VuvLODET).

Forced PWM Mode and PWM / PFM Auto Switching Mode

Output voltage controlling method is selectable between a forced PWM mode type and PWM/PFM Auto Switching mode. The operation mode can be set by the MODE pin. The forced PWM mode operates with fixed switching frequency to reduce noise in low output current. The PWM/PFM Auto Switching mode automatically enters PFM control to achieve high efficiency at light load current.
The above control types operate differently depending on the relationship between the load current (lout) and the current ripple ($\Delta \mathrm{I}_{\mathrm{L}}$) calculated by the following equation.

$$
\Delta \mathrm{I}_{\mathrm{L}}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{tON} / \mathrm{L}
$$

ton : ON time of high side MOSFET
Do not open the MODE pin because it is not pulled up or down inside the IC.

MODE = "High" (Forced PWM Mode)

When a "High" signal is input to the MODE pin, the device enters a forced PWM mode in which the high side MOSFET and low side MOSFET are turned on alternately. During this operation, it operates with fixed switching frequency regardless of the load current. This reduces output voltage ripple and responds quickly to load current transitions.

If lout < $\Delta \mathrm{IL} / 2$, Illow becomes 0 A or less, and the charge stored in Cout flows back to the IC side.
Refer to the figure below.

MODE = "Low" (PWM/PFM Auto Switching Mode)

When a "Low" signal is input to the MODE pin, when IL = 0 A under a light load condition, the operation mode is set to toFFofF which turns off the high side MOSFET and the low side MOSFET at the same time. Such an operation in which toffoff exists in one cycle is called PFM operation.
toff-off during PFM operation reduces power consumption by minimizing the operating circuits inside the IC.
This realizes highly efficient operation at light loads conditions.
The cycle during PFM operation is defined by the following equation.

$$
\begin{equation*}
\text { tPERIOD }=\text { ton }+ \text { toff }+ \text { toff-OFF }=1 / \text { fosc } . \tag{1}
\end{equation*}
$$

At light load conditions (lout < $\mathrm{I}_{\mathrm{L}} / 2$), ILLow $=0 \mathrm{~A}$ and the I_{L} waveform is as shown on the left in the figure. During PFM operation, if the load current is increases from a light load, toff-off becomes shorter.
When toff-off becomes $0 \sec ($ lout $=\Delta \mathrm{LL} / 2$), the IC enters PWM operation, and when the load current increases further, Illow> 0 A.
Refer to the figure below.
In this way, when the MODE pin is fixed to "Low", PWM operation and PFM operation are automatically switched according to the load current.

PWM/PFM Auto Switching Mode

Switching Frequency

The minimum on-time / the minimum off-time for this product is determined by the circuit. If the on-time / the off-time calculated under the input/output voltage conditions at 4 MHz are less than the minimum on-time / minimum off-time determined by the circuit, the switching frequency falls below 4 MHz .
The on-time under no load is calculated by the following equation according to the input / output voltage conditions.
ton $=250$ ns \times Vout $/ V_{\text {IN }}$

Example 1: Switching frequency with minimum on-time (60 ns) under the following input / output conditions.

```
condition1: V VIN = 3.6 V, Vout = 1.2 V
    1/4 MHz * 1.2 V/3.6 V = 83 ns > minimum on-time (60 ns)
    Operates with 4 MHz.
condition2: VIN =5.5 V, Vout = 1.0 V
    1/4 MHz * 1.0 V/5.5 V = 55 ns < minimum on-time (60 ns)
    Switching frequency falls below 4 MHz
```

Example 2: Switching frequency with minimum off-time (50 ns) under the following input / output conditions.

```
condition1: VIN =5.0 V, Vout = 3.3 V
    1/4 MHz }\times(1-3.3\textrm{V}/5.0 V)=77 ns > minimum off-time (50 ns
    Operates with 4 MHz.
condition2: VIN =4.0 V, Vout = 3.3 V
    1/4 MHz \times (1-3.3 V/4.0 V) = 44 ns < minimum off-time (50 ns)
    Switching frequency falls below 4 MHz
```


Power Good Function

This product has a power good (PG) function, and the output type is NMOS FET open drain. When EN = "Low" is detected, the NMOS FET turns on and sets the power good output to "Low".
Figure: Refer to PG Output When EN = "Low".
Also, when the IC detects Over Voltage (OV) or Under Voltage (UV), the power good output is set to "Low" as well.
Figure: Refer to PG Output When OV or UV is Detected.
When the IC is released from these conditions, the NMOS FET is turned off and the power good output is set to "High".
The pull-up resistor (R_{PG}) of the PG pin should be between $10 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$. The PG pin must be open or connected to GND if the power good function is not used.

PG Output When EN = "Low"

PG Output When OV or UV is Detected

Pass-Through Mode

This product enters pass-through mode when the input / output voltage difference drops. In this operating state, the high side MOSFET is always on and the low side MOSFET is always off. This function helps to hold output voltage and to lengthen operation time of application longest even when battery voltage drops. In this operating state, the output voltage is calculated by the following equation using the on-resistance of the high side MOSFET(RONP) and the DC resistance of the inductor (R_{L}).

$$
V_{\text {OUT }}=V_{\text {IN }}-\left(R_{\text {ONP }}+R_{\mathrm{L}}\right) \times \text { IOUT }
$$

THERMAL CHARACTERISTICS (WLCSP-8-P11)

Thermal characteristics depend on the mounting conditions.
The following measurement conditions are based on JEDEC STD. 51.

Measurement Conditions

Parameter	Measurement Conditions
Measurement status	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board size	$101.5 \mathrm{~mm} \times 114.5 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
Copper Ratio	Outer Layers (First and Fourth Layers): 60% Inner Layers (Second and Third Layers): 100%

Measurement Result

Parameter	Measurement Result	Unit
Thermal Resistance $(\theta \mathrm{ja})$	131	C / W
Thermal Characterization Parameter ($\psi \mathrm{j} t)$	38	

日ja: Junction-to-Ambient Thermal Resistance
ψj : Junction-to-Top Thermal Characterization Parameter

CALCULATION METHOD OF JUNCTION TEMPERATURE

The junction temperature (T_{j}) can be calculated from the following equation.

$$
\begin{aligned}
& T_{j}=T_{a}+\theta j a \times P \\
& T_{j}=T c(t o p)+\psi j t \times P
\end{aligned}
$$

T_{a} : Ambient temperature
Tc (top) : Package mark side center temperature
P : Power consumption under user's conditions

$$
P=(100 / \eta-1) \times(\text { VOUT } \times \text { lout })-\text { DCR } \times \text { Iout }^{2}
$$

η : Efficiency under user's conditions [\%]
Vout : Output Voltage [V]
lout : Output Current [A]
DCR : DC resistance of external inductor [Ω]

Measurement Board Pattern (WLCSP-8-P11)

THERMAL CHARACTERISTICS (DFN2020-8-GT)

Thermal characteristics depend on the mounting conditions.
The following measurement conditions are based on JEDEC STD. 51.

Measurement Conditions

Parameter	Measurement Conditions
Measurement status	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board size	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through hole	$\phi 0.3 \mathrm{~mm} \times 23 \mathrm{pcs}$.

Measurement Result

Parameter	Measurement Result	Unit
Thermal Resistance $(\theta j \mathrm{ja)}$	71	C / W
Thermal Characterization Parameter ((jj)	33	

日ja: Junction-to-Ambient Thermal Resistance
$\psi j \mathrm{j}$: Junction-to-Top Thermal Characterization Parameter

Measurement Board Pattern (DFN2020-8-GT)

CALCULATION METHOD OF JUNCTION TEMPERATURE

The junction temperature (Tj) can be calculated from the following equation.

$$
\begin{aligned}
& T_{j}=T_{a}+\theta j a \times P \\
& T_{j}=T c(t o p)+\psi j t \times P
\end{aligned}
$$

T_{a} : Ambient temperature
Tc (top) : Package mark side center temperature
P : Power consumption under user's conditions
$P=(100 / \eta-1) \times($ Vout \times lout $)-$ DCR \times IoUT 2
η : Efficiency under user's conditions [\%]
Vout : Output Voltage [V]
Iout : Output Current [A]
DCR : DC resistance of external inductor [Ω]

MARKING SPECIFICATION (NC2600ZA)

(1) (2): Product Code
(3) (4): Lot No. \cdots Alphanumerical Serial Number

WLCSP-8-P11 Marking

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or distributor before attempting to use AOI.

NC2600ZA Marking List

Product Code	(1)	(2)	Product Code	(1)	(2)	Product Code	(1)	(2)
NC2600ZA000A	A	A	NC2600ZA150B	E	P	NC2600ZA250C	H	F
NC2600ZA060A	A	C	NC2600ZA160B	E	R	NC2600ZA260C	H	G
NC2600ZA070A	A	E	NC2600ZA170B	E	T	NC2600ZA270C	H	H
NC2600ZA080A	A	F	NC2600ZA180B	E	U	NC2600ZA280C	H	J
NC2600ZA090A	A	G	NC2600ZA190B	E	V	NC2600ZA290C	H	K
NC2600ZA100A	A	H	NC2600ZA200B	E	X	NC2600ZA300C	H	L
NC2600ZA110A	A	J	NC2600ZA210B	E	Y	NC2600ZA310C	H	N
NC2600ZA120A	A	K	NC2600ZA220B	F	A	NC2600ZA320C	H	P
NC2600ZA130A	A	L	NC2600ZA230B	F	C	NC2600ZA330C	H	R
NC2600ZA140A	A	N	NC2600ZA240B	F	E	NC2600ZA000D	J	A
NC2600ZA150A	A	P	NC2600ZA250B	F	F	NC2600ZA060D	J	C
NC2600ZA160A	A	R	NC2600ZA260B	F	G	NC2600ZA070D	J	E
NC2600ZA170A	A	T	NC2600ZA270B	F	H	NC2600ZA080D	J	F
NC2600ZA180A	A	U	NC2600ZA280B	F	J	NC2600ZA090D	J	G
NC2600ZA190A	A	V	NC2600ZA290B	F	K	NC2600ZA100D	J	H
NC2600ZA200A	A	X	NC2600ZA300B	F	L	NC2600ZA110D	J	J
NC2600ZA210A	A	Y	NC2600ZA310B	F	N	NC2600ZA120D	J	K
NC2600ZA220A	C	A	NC2600ZA320B	F	P	NC2600ZA130D	J	L
NC2600ZA230A	C	C	NC2600ZA330B	F	R	NC2600ZA140D	J	N
NC2600ZA240A	C	E	NC2600ZA000C	G	A	NC2600ZA150D	J	P
NC2600ZA250A	C	F	NC2600ZA060C	G	C	NC2600ZA160D	J	R
NC2600ZA260A	C	G	NC2600ZA070C	G	E	NC2600ZA170D	J	T
NC2600ZA270A	C	H	NC2600ZA080C	G	F	NC2600ZA180D	J	U
NC2600ZA280A	C	J	NC2600ZA090C	G	G	NC2600ZA190D	J	V
NC2600ZA290A	C	K	NC2600ZA100C	G	H	NC2600ZA200D	J	X
NC2600ZA300A	C	L	NC2600ZA110C	G	J	NC2600ZA210D	J	Y
NC2600ZA310A	C	N	NC2600ZA120C	G	K	NC2600ZA220D	K	A
NC2600ZA320A	C	P	NC2600ZA130C	G	L	NC2600ZA230D	K	C
NC2600ZA330A	C	R	NC2600ZA140C	G	N	NC2600ZA240D	K	E
NC2600ZA000B	E	A	NC2600ZA150C	G	P	NC2600ZA250D	K	F
NC2600ZA060B	E	C	NC2600ZA160C	G	R	NC2600ZA260D	K	G
NC2600ZA070B	E	E	NC2600ZA170C	G	T	NC2600ZA270D	K	H
NC2600ZA080B	E	F	NC2600ZA180C	G	U	NC2600ZA280D	K	J
NC2600ZA090B	E	G	NC2600ZA190C	G	V	NC2600ZA290D	K	K
NC2600ZA100B	E	H	NC2600ZA200C	G	X	NC2600ZA300D	K	L
NC2600ZA110B	E	J	NC2600ZA210C	G	Y	NC2600ZA310D	K	N
NC2600ZA120B	E	K	NC2600ZA220C	H	A	NC2600ZA320D	K	P
NC2600ZA130B	E	L	NC2600ZA230C	H	C	NC2600ZA330D	K	R
NC2600ZA140B	E	N	NC2600ZA240C	H	E			

MARKING SPECIFICATION (NC2600GT)

(1) (2) (3) 4): Product Code
(5) (6: Lot No. ... Alphanumerical Serial Number

DFN2020-8-GT Part Markings

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.

Nisshinbo Micro Devices Inc.

NC2600GT Marking List

Product Code	(1) (2) (3) (4)
NC2600GT000A	1 A 00
NC2600GT060A	1 A 01
NC2600GT070A	1 A 02
NC2600GT080A	1 A 03
NC2600GT090A	1 A 04
NC2600GT100A	1 A 05
NC2600GT110A	1 A 06
NC2600GT120A	1 A 07
NC2600GT130A	1 A 08
NC2600GT140A	1 A 09
NC2600GT150A	1 A 10
NC2600GT160A	1 A 11
NC2600GT170A	1 A 12
NC2600GT180A	1 A 13
NC2600GT190A	1 A 14
NC2600GT200A	1 A 15
NC2600GT210A	1 A 16
NC2600GT220A	1 A 17
NC2600GT230A	1 A 18
NC2600GT240A	1 A 19
NC2600GT250A	1 A 20
NC2600GT260A	1 A 21
NC2600GT270A	1 A 22
NC2600GT280A	1 A 23
NC2600GT290A	1 A 24
NC2600GT300A	1 A 25
NC2600GT310A	1 A 26
NC2600GT320A	1 A 27
NC2600GT330A	1 A 28

Product Code	(1) (2) (3) (4)
NC2600GT000B	1 B 00
NC2600GT060B	1 B 01
NC2600GT070B	1 B 02
NC2600GT080B	1 B 03
NC2600GT090B	1 B 04
NC2600GT100B	1 B 05
NC2600GT110B	1 B 06
NC2600GT120B	1 B 07
NC2600GT130B	1 B 08
NC2600GT140B	1 B 09
NC2600GT150B	1 B 10
NC2600GT160B	1 B 11
NC2600GT170B	1 B 12
NC2600GT180B	1 B 13
NC2600GT190B	1 B 14
NC2600GT200B	1 B 15
NC2600GT210B	1 B 16
NC2600GT220B	1 B 17
NC2600GT230B	1 B 18
NC2600GT240B	1 B 19
NC2600GT250B	1 B 20
NC2600GT260B	1 B 21
NC2600GT270B	1 B 22
NC2600GT280B	1 B 23
NC2600GT290B	1 B 24
NC2600GT300B	1 B 25
NC2600GT310B	1 B 26
NC2600GT320B	1 B 27
NC2600GT330B	1 B 28

Nisshinbo Micro Devices Inc.

NC2600GT Marking List

Product Code	(1) (2) (3) (4)
NC2600GT000C	1 C 00
NC2600GT060C	1 C 01
NC2600GT070C	1 C 02
NC2600GT080C	1 C 03
NC2600GT090C	1 C 04
NC2600GT100C	1 C 05
NC2600GT110C	1 C 06
NC2600GT120C	1 C 07
NC2600GT130C	1 C 08
NC2600GT140C	1 C 09
NC2600GT150C	1 C 10
NC2600GT160C	1 C 11
NC2600GT170C	1 C 12
NC2600GT180C	1 C 13
NC2600GT190C	1 C 14
NC2600GT200C	1 C 15
NC2600GT210C	1 C 16
NC2600GT220C	1 C 17
NC2600GT230C	1 C 18
NC2600GT240C	1 C 19
NC2600GT250C	1 C 20
NC2600GT260C	1 C 21
NC2600GT270C	1 C 22
NC2600GT280C	1 C 23
NC2600GT290C	1 C 24
NC2600GT300C	1 C 25
NC2600GT310C	1 C 26
NC2600GT320C	1 C 27
NC2600GT330C	1 C 28

Product Code	(1) (2) (3) (4)
NC2600GT000D	1 D 00
NC2600GT060D	1 D 01
NC2600GT070D	1 D 02
NC2600GT080D	1 D 03
NC2600GT090D	1 D 04
NC2600GT100D	1 D 05
NC2600GT110D	1 D 06
NC2600GT120D	1 D 07
NC2600GT130D	1 D 08
NC2600GT140D	1 D 09
NC2600GT150D	1 D 10
NC2600GT160D	1 D 11
NC2600GT170D	1 D 12
NC2600GT180D	1 D 13
NC2600GT190D	1 D 14
NC2600GT200D	1 D 15
NC2600GT210D	1 D 16
NC2600GT220D	1 D 17
NC2600GT230D	1 D 18
NC2600GT240D	1 D 19
NC2600GT250D	1 D 20
NC2600GT260D	1 D 21
NC2600GT270D	1 D 22
NC2600GT280D	1 D 23
NC2600GT290D	1 D 24
NC2600GT300D	1 D 25
NC2600GT310D	1 D 26
NC2600GT320D	1 D 27
NC2600GT330D	1 D 28

APPLICATION NOTES

Operation of Step-down Switching Regulator and Output Current

The operation of the step-down switching regulator is explained.
Step1. The high side MOSFET turns on and the inductor current $I_{L}=i 1$ flows, storing energy in the inductor and at the same time charging to the Cout. Then, the inductor current $\mathrm{I}_{\mathrm{L}}=\mathrm{i} 1$ increases from ILlow in proportion to the time when the high side MOSFET turns on and reaches ILhigh.
Step2. When the high side MOSFET turns off and the low side MOSFET turns on, the inductor operates to hold the inductor current $\mathrm{IL}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}} \mathrm{high}$. At this time, the inductor uses the energy stored in Step 1 to flow the inductor current IL $=\mathrm{i} 2$.
Step3. i2 gradually decreases until the low side MOSFET is turned off. When the next cycle, it returns to Step 1 again and the high side MOSFET turns on.
By performing Step 1 to 3 above cyclically, an arbitrary output voltage is obtained according to the ratio of on time for one cycle.

Basic Circuit of Step-down Switching Regulator

Current Through Inductor
 ΔI_{L} is called the current ripple, $\Delta I_{L}=I_{L h i g h}-I_{\text {Llow. }}$. The current ripple $\Delta I_{\llcorner }$during Step 1 is shown by using ton (on-time), $V_{I N}$, Vout, and L (inductor value) as follows.

$$
\begin{equation*}
\Delta \mathrm{I}_{\mathrm{L}}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \text { toN } / \mathrm{L} . \tag{2}
\end{equation*}
$$

On the other hand, during Step2, it is represented by the following equation using toff (off-time).

$$
\begin{equation*}
\Delta \mathrm{I}_{\mathrm{L}}=\mathrm{V}_{\text {OUT }} \times \mathrm{toFF} / \mathrm{L} \tag{3}
\end{equation*}
$$

Since In the static state, the values of equations (2) and (3) are the same,

Therefore, ton / tpERIOD is shown by following equation.

$$
\begin{equation*}
\text { ton } / \text { tperiod }=\mathrm{V}_{\text {OUT }} / \mathrm{V} \text { IN } \tag{5}
\end{equation*}
$$

Where tpERIOD is the period and is shown by the following equation.

$$
\begin{equation*}
\text { tPERIOD }=\text { ton }+ \text { toff }=1 / \mathrm{fosc} \tag{6}
\end{equation*}
$$

fosc is the switching frequency.
Duty is the ratio of the time that the high side MOSFET is on during one cycle and can be calculated by the following equation.

$$
\begin{equation*}
\text { Duty }(\%)=\text { ton } / \mathrm{t}_{\text {PERIOD }} \times 100=\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }} \times 100 \tag{7}
\end{equation*}
$$

Calculation Conditions of SW Pin Maximum Output Current ($\mathrm{I}_{\text {swmax }}$)

The following equations explain the calculation to determine Iswmax at the ideal operation of the ICs in continuous conduction mode.
The p-p value of the ripple current is $I_{\text {RP }}$, the on-resistance of the high side MOSFET and low side MOSFETs is Ronp and Ronn, respectively, and the DC resistance of the inductor is RL.

First, define ton be the time when the high side MOSFET is on.

$$
\begin{equation*}
V_{\text {IN }}=V_{\text {OUT }}+\left(R_{\text {ONP }}+R_{\mathrm{L}}\right) \times \text { IOUT }+\mathrm{L} \times \mathrm{I}_{\text {RP }} / \text { toN } . \tag{8}
\end{equation*}
$$

Next, define toff be the time when the high side MOSFET is off (low side MOSFET is on).
$\mathrm{L} \times \mathrm{I}_{\text {RP }} /$ toff $=$ Ronn \times lout + Vout + RL \times lout

Put Equation (9) into Equation (8) to solve Don $=\mathrm{ton}^{\prime} /\left(\mathrm{tofF}_{\mathrm{F}}+\mathrm{toN}\right)$ that is on-duty of high side MOSFET.

$$
\begin{equation*}
\text { Don }=\left(\mathrm{V}_{\text {OUT }}+\text { RoNN } \times \text { IOUT }+\mathrm{R}_{\mathrm{L}} \times \text { IOUT }\right) /\left(\mathrm{V}_{\text {IN }}+\text { RONN } \times \text { IOUT }- \text { RONP } \times \text { lout }\right) \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
I_{R P}=\left(V_{\text {IN }}-V_{\text {OUT }}-R_{\text {ONP }} \times \text { IOUT }-R_{L} \times \text { lout }\right) \times \text { DON } / \text { fosc } / L . \tag{11}
\end{equation*}
$$

The peak current flowing through the inductor and high side MOSFET can be calculated by the following equation.

$$
\begin{equation*}
I_{\text {swmax }}=\text { lout }+\mathrm{I}_{\text {RP }} / 2 . \tag{12}
\end{equation*}
$$

Typical Application Circuit

NC2600xx000 (Adjustable Output Voltage Type)

Recommended external parts

Symbol	Capacitance	Tolerance	Protection Voltage	Temperature characteristics
CIN	$4.7 \mu \mathrm{~F}$	$\pm 20 \%$	6.3 V	X5R
Cout	$10 \mu \mathrm{~F}$	$\pm 20 \%$	6.3 V	X5R
Css	-	$\pm 20 \%$	6.3 V	X5R
Symbol	Inductance		erance	Rated Current
L	$1.0 \mu \mathrm{H}$		20\%	2.0 A

External Resistor for Setting Output Voltage (NC2600xx000x)

The output voltage can be set by the external resistors ($\mathrm{R} 1, \mathrm{R} 2$) connected to the FB pin as shown in the following equation.

```
VSET = VFB }\times(R1+R2)/R
```

$\mathrm{R} 1=\mathrm{R} 11+\mathrm{R} 12$

The reference voltage $\left(\mathrm{V}_{\mathrm{FB}}\right)$ of this IC is set 0.6 V . The V_{FB} accuracy and output voltage setting range are as follows.

```
\(V_{\text {fb }}\) Accuracy
                                    :0.6 V 士 9 mV
Output Voltage Setting Range : \(0.6 \mathrm{~V} \leq \mathrm{V}_{\text {SET }} \leq 5.5 \mathrm{~V}\)
```

Recommended values for R1, R2, and C1 are shown below.
Set Output Voltage (VSET) vs. R1,R2,C1 (Adjustable Output Voltage Type)

$\mathbf{V}_{\text {SET }}[\mathrm{V}]$	$\mathbf{R 1}[\mathrm{k} \Omega]$	$\mathbf{R 2}[\mathrm{k} \Omega]$	$\mathbf{C 1}[\mathrm{pF}]$
0.6	0	220	Open
$0.6<\mathrm{V}_{\text {SET }} \leq 2.1$		220	10
$2.1<\mathrm{V}_{\text {SET }} \leq 4.0$		47	6.8
$4.0<\mathrm{V}_{\text {SET }} \leq 5.5$	$\mathrm{R} 1=\left(\mathrm{V}_{\text {SET }} / \mathrm{V}_{\text {FB }}-1\right) \times \mathrm{R} 2$		33
			3.3

When using R2 other than the above table, adjust C1 according to the table below and check that there is no problem with the actual application.

Set Output Voltage (VSET) vs. R2/C1 (Adjustable Output Voltage Type)

$\mathrm{V}_{\text {SET }}[\mathrm{V}]$	$\mathrm{C1}[\mathrm{pF}]$
0.6	Open
$0.6<\mathrm{V}_{\text {SET }} \leq 2.1$	$2200 / \mathrm{R} 2[\mathrm{k} \Omega]$
$2.1<\mathrm{V}_{\text {SET }} \leq 4.0$	$319.6 / \mathrm{R} 2[\mathrm{k} \Omega]$
$4.0<\mathrm{V}_{\text {SET }} \leq 5.5$	$108.9 / \mathrm{R} 2[\mathrm{k} \Omega]$

R0 prevents against the effects of noise. Noise varies depending on the board layout. R0 is not required for optimized boards, but if you are concerned about spikes, use about $1 \mathrm{k} \Omega$.

Cautions for Selecting External Components

- Choose a low ESR ceramic capacitor. The input capacitor (CIN) between VIN and GND should be more than $4.7 \mu \mathrm{~F}$, and the output capacitor (Cout) should be used of $10 \mu \mathrm{~F}$. Also, choose the capacitor with consideration for bias characteristics and input/output voltages.
Even when using a capacitor other than a ceramic capacitor such as aluminum electrolytic, connect a ceramic capacitor with shortest-distance wiring.
- The phase compensation of this device is designed according to the Cout and L values. The inductance value of an inductor should be $1.0 \mu \mathrm{H}$ to gain stability.
- Choose an inductor that has small DC resistance, has enough permissible current and is hard to cause magnetic saturation. If the inductance value of the inductor becomes extremely small under the load conditions, the peak current of inductor may increase along with the load current. As a result, the current limit circuit may start to operate before the peak current of inductor reaches to load current range. Therefore, choose an inductor with consideration for the value of Iswmax.
Refer to the data sheet "Calculation Conditions of SW Pin Maximum Output Current (Iswmax)".

Evaluation Board / PCB Layout NC2600ZA [WLCSP-8-P11]

Layer 1

Layer 3

Layer 2

Layer 4

NC2600GT [DFN2020-8-GT]

Layer 1

Layer 3

Layer 2

Layer 4

TECHNICAL NOTES

The performance of a power source circuit using this device is highly dependent on a peripheral circuit. A peripheral component or the device mounted on PCB should not exceed a rated voltage, a rated current or a rated power. When designing a peripheral circuit, please be fully aware of the following points.

- External components must be connected as close as possible to the ICs and make wiring as short as possible and on the same side of the IC. Especially, the capacitor connected in between VIN pin and GND pin must be wiring the shortest.
- The VIN line, the GND line, and SW pin should make special considerations for the large switching current flows. If their impedance is high, internal voltage of the IC may shift by the switching current, and the operating may be unstable. Make the power supply and GND lines as wide and short as possible. The wiring from the SW pin to the inductor becomes a noise source, so ensure that the current capacity is secured and that the wiring is not wider or longer than necessary so that the noise does not increase.
- Connect Cout to the wiring between the FB pin and the inductor(L), or between the output voltage setting resistor (R1) and L. Also, keep them as far away as possible from noise sources such as inductors to prevent noise from being mixed in.
- The thermal shutdown function prevents the IC from fuming and ignition but does not ensure the IC's reliability or keep the IC below the absolute maximum ratings. The thermal shutdown function does not operate on the heat generated by other than the normal IC operation such as latch-up and overvoltage application. The thermal shutdown function operates in a state over the absolute maximum ratings, therefore the thermal shutdown function should not be used for a system design.
- The tab on the bottom side of the DFN-Package is recommended to be connected to GND. It will work even if it is open, but please note that the heat dissipation and mounting strength will decrease.

TYPICAL CHARACTERISTICS

Typical characteristics are intended to be used as reference data, they are not guaranteed.

1)Efficiency vs Output Current

NC2600ZA
$V_{\text {out }}=1.2[\mathrm{~V}]$

NC2600ZA
$V_{\text {OUt }}=3.3$ [V]

NC2600GT
$V_{\text {out }}=1.8[\mathrm{~V}]$

NC2600ZA
$V_{\text {out }}=1.8[\mathrm{~V}]$

NC2600GT
$V_{\text {out }}=1.2[\mathrm{~V}]$

NC2600GT
$V_{\text {out }}=3.3[\mathrm{~V}]$

2)Output Voltage vs Output Current

NC2600ZA
$V_{\text {out }}=1.8[\mathrm{~V}]$
MODE = Low

NC2600GT

3)Maximum Output Current vs V_{IN}

MODE $=$ High
NC2600ZA

MODE $=\mathrm{High}$

MODE $=$ High

NC2600GT
Vout $=0.6[\mathrm{~V}]$

Vout $=1.2[\mathrm{~V}]$

$V_{\text {OUT }}=3.3[\mathrm{~V}]$
4)Switching Frequency vs Input Voltage

lout $=1000[\mathrm{~mA}]$
MODE = LOW

5)Load Transient Response
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=3.6[\mathrm{~V}]$, $\mathrm{V}_{\text {OUT }}=1.8[\mathrm{~V}]$
MODE = Low
lout $=1[\mathrm{~mA}]->500[\mathrm{~mA}]$

$$
\text { lout }=1[\mathrm{~mA}]
$$

MODE = High

$$
\text { lout }=1000[\mathrm{~mA}]->1[\mathrm{~mA}]
$$

MODE $=$ High
lout $=1[\mathrm{~mA}]->500[\mathrm{~mA}]$

$$
\text { lout }=500[\mathrm{~mA}]->1[\mathrm{~mA}]
$$

$$
\text { lout }=1000[\mathrm{~mA}]->1[\mathrm{~mA}]
$$

6)Output Voltage Waveform

$$
\begin{aligned}
& \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=3.6[\mathrm{~V}], \text { Vout }=1.8[\mathrm{~V}] \\
& \text { lout }=1[\mathrm{~mA}]
\end{aligned}
$$

MODE = Low

lout $=1000[\mathrm{~mA}]$
MODE = Low

7)Output Voltage vs Temperature
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {EN }}=3.6[\mathrm{~V}]$, $\mathrm{V}_{\text {OUT }}=1.8[\mathrm{~V}]$
lout $=0[\mathrm{~mA}]$
MODE $=\mathrm{High}$

MODE $=\mathrm{High}$

MODE $=$ High

8)Soft-Start Waveform

Vout $=1.8[\mathrm{~V}], \mathrm{MODE}=\mathrm{High}, \mathrm{Css}=$ open, lout $=0[\mathrm{~mA}]$
$\mathrm{V}_{\mathrm{IN}}=3.6[\mathrm{~V}], \mathrm{V}_{\mathrm{EN}}=0->3.6[\mathrm{~V}]$

9)Input Current vs Input Voltage

MODE = Low
Vout $=2.1[\mathrm{~V}]$

$V_{\text {OUT }}=5.0[\mathrm{~V}]$

[^1]
TEST CIRCUIT

【Components List for Our Evaluation】

Symbol	Specification	Parts Number
$\mathrm{C}_{\text {IN }}$	$4.7 \mu \mathrm{~F}$	GRM035R60J475ME
$\mathrm{C}_{\text {out }}$	$10 \mu \mathrm{~F}$	GRM155R60J106ME44
L	$1.0 \mu \mathrm{H}$	TFM201610ALM-1R0MTAA

Nisshinbo Micro Devices Inc.
WLCSP-8-P11

■ PACKAGE DIMENSIONS

■ EXAMPLE OF SOLDER PADS DIMENSIONS

Recommended Land Pattern

NSMD Pad Definition		
Pad definition	Copper Pad	Solder Mask Opening
NSMD (Non-Solder Mask defined)	0.245 mm	MIN. 0.345 mm

*) Pad Layout and size can modify by customers material, equipment and method.
*) Please adjust pad layout according to your conditions.
*) Recommended Stencil Aperture Size: $\phi 0.245 \mathrm{~mm}$

Nisshinbo Micro Devices Inc.

WLCSP-8-P11

- PACKING SPEC

UNIT: mm
(1) Taping dimensions / Insert direction

(2) Taping state

Nisshinbo Micro Devices Inc.
(3) Reel dimensions

(4) Peeling strength

Peeling strength of cover tape
$\begin{array}{ll}\text { - Peeling angle } & 165 \text { to } 180^{\circ} \text { degrees to the taped surface. } \\ \text { - Peeling speed } & 300 \mathrm{~mm} / \mathrm{min} \\ \text { - Peeling strength } & 0.1 \text { to } 1.0 \mathrm{~N}\end{array}$

Nisshinbo Micro Devices Inc.
(5) Packing state

- HEAT-RESISTANCE PROFILES

Reflow profile

Nisshinbo Micro Devices Inc.
DFN2020-8-GT

- PACKAGE DIMENSIONS

UNIT: mm

■ EXAMPLE OF SOLDER PADS DIMENSIONS

Nisshinbo Micro Devices Inc.

DFN2020-8-GT

- PACKING SPEC

UNIT: mm
(1) Taping dimensions / Insert direction

(2) Taping state

Nisshinbo Micro Devices Inc.
DFN2020-8-GT
PI-DFN2020-8-GT-E-A
(3) Reel dimensions

(4) Peeling strength

Peeling strength of cover tape

- Peeling angle

165 to 180° degrees to the taped surface.

- Peeling speed $300 \mathrm{~mm} / \mathrm{min}$
-Peeling strength
0.1 to 1.0 N

Nisshinbo Micro Devices Inc.

DFN2020-8-GT
(5) Packing state

- HEAT-RESISTANCE PROFILES

Revision History

Date	Version	Contents of Changes
August 26.2022	1.0	Initial release
October 18.2022	1.1	• Corrected the size thickness of DFN2020-8-GT to 0.6 (mm). • Added page for marking specification.
February 22.2023	1.2	• In NC2600GT lineup added. • In NC2600ZA, the mark specification was corrected (addition of NC2600ZA100B, correction of mark numbering) and the format was changed.
March 24, 2023	1.3	- In NC2600GT lineup added. • In NC2600ZA, the mark specification was corrected (addition of NC2600ZA100B, correction of mark numbering) and the format was changed.

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.

- Aerospace Equipment
- Equipment Used in the Deep Sea
- Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
- Life Maintenance Medical Equipment
- Fire Alarms / Intruder Detectors
- Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
- Various Safety Devices
- Traffic control system
- Combustion equipment In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.

6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
8. Quality Warranty

8-1. Quality Warranty Period
In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section 8-2. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
8-2. Quality Warranty Remedies
When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
8 -3. Remedies after Quality Warranty Period
With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
9. Anti-radiation design is not implemented in the products described in this document.
10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/

[^0]: *1 Soft-Start time (tstart) indicates the duration until the reference voltage ($\mathrm{V}_{\text {REF }}$) reaches the specified voltage after Soft-Start circuit's activation.

[^1]: *Note that if the voltage difference between V_{IN} and $\mathrm{V}_{\text {OUT }}$ decreases, switching current increases regardless of lout.

