Renesns

256K x 36, 512K x 18
3.3V Synchronous ZBT ${ }^{\text {M }}$ SRAMs

71V65603
ZBT ${ }^{\text {M }}$ Feature 71V65803
3.3 V I/O, Burst Counter

Pipelined Outputs

Features

- $256 \mathrm{~K} \times 36,512 \mathrm{~K} \times 18$ memory configurations
- Supports high performance system speed -150 MHz (3.8ns Clock-to-Data Access)
- ZBT ${ }^{T M}$ Feature - No dead cycles between write and read cycles
- Internally synchronized output buffer enable eliminates the need to control $\overline{O E}$
- Single R/్̄ (READ/WRITE) control pin
- Positive clock-edge triggered address, data, and control signal registers for fully pipelined applications
- 4-word burst capability (interleaved or linear)
- Individual byte write ($\left.\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}\right)$ control (May tie active)
- Three chip enables for simple depth expansion
- $3.3 V$ power supply $(\pm 5 \%)$
- 3.3V IIO Supply (VDDQ)
- Power down controlled by ZZ input
- Packaged in a JEDEC standard 100 -pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array(fBGA)
- Industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ is available for selected speeds
- Green parts available, see ordering information

Functional Block Diagram - 256 K x 36

ZBT and Zero Bus Turnaround are trademarks of Renesas Electronics Corporation and the architecture is supported by Micron Technology and Motorola, Inc.

Description

The IDT71V65603/5803 are 3.3V high-speed 9,437,184-bit (9 Megabit) synchronous SRAMS. They are designed to eliminate dead bus cycles when turning the bus around between reads and writes, or writes and reads. Thus, they have been given the name ZBT ${ }^{T M}$, or Zero Bus Turnaround.

Address and control signals are applied to the SRAM during one clock cycle, andtwo cycleslatertheassociateddatacycleoccurs, beitreadorwrite.

The IDT71V65603/5803 contain datal/O, address and control signal registers. Outputenable is the only asynchronoussignal and can be used to disable the outputs at any given time.

A Clock Enable ($\overline{\mathrm{CEN}})$ pin allows operation of the IDT71V65603/5803 to be suspended as long as necessary. All synchronous inputs are ignored when (CEN) is high and the internal device registers will hold their previous values.

There are three chip enable pins ($\overline{\mathrm{CE}} 1, \mathrm{CE} 2, \overline{\mathrm{CE}} 2$) that allow the user todeselectthe devicewhendesired. Ifanyoneofthesethreearenotasserted
whenADV//D is low, no newmemory operation canbeinitiated. However, any pending datatransfers(reads or writes) will becompleted. The databus will tri-state two cycles after chip is deselected or a write is initiated.

The IDT71V65603/5803 have an on-chip burst counter. In the burst mode, the IDT71V65603/5803 can provide four cycles of data for a single address presented to the SRAM. The order of the burst sequence is defined by the $\overline{\mathrm{LBO}}$ inputpin. The $\overline{\mathrm{LBO}}$ pin selects between linear and interleaved burstsequence. The ADV/ $\overline{\mathrm{LD}}$ signal is used to load a new external address (ADV/ $\overline{\mathrm{LD}}=\mathrm{LOW}$) or increment the internal burst counter (ADV/ $\overline{\mathrm{LD}}=\mathrm{HIGH}$).

The IDT71V65603/5803SRAMs utilize a high-performanceCMOS process, andarepackagedinaJEDECStandard14mmx20mm100-pinthinplastic quadflatpack(TQFP) aswellasa119 ball gridarray (BGA) and 165 fine pitch ball grid array (fBGA).

Functional Block Diagram - 512K x 18

71V65603, 71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with

Pin Description Summary

A0-A18	Address Inputs	Input	Synchronous
$\overline{\mathrm{C} E} 1, \mathrm{CE} 2, \bar{C}_{2}$	Chip Enables	Input	Synchronous
$\overline{\mathrm{OE}}$	Output Enable	Input	Asynchronous
R/W	Read/Write Signal	Input	Synchronous
$\overline{C E N}$	Clock Enable	Input	Synchronous
$\overline{\mathrm{BW}}_{1}, \overline{\mathrm{BW}}_{2}, \overline{\mathrm{BW}}_{3}, \overline{\mathrm{BW}}_{4}$	Individual Byte Write Selects	Input	Synchronous
CLK	Clock	Input	N/A
ADV/LD	Advance burst address / Load new address	Input	Synchronous
$\overline{\text { LBO }}$	Linear / Interleaved Burst Order	Input	Static
ZZ	Sleep Mode	Input	Asynchronous
//O-I/O31, I/Op1-//Op4	Data Input / Output	I/O	Synchronous
VdD, VdDQ	Core Power, I/O Power	Supply	Static
Vss	Ground	Supply	Static

Pin Definitions ${ }^{(1)}$

Symbol	Pin Function	1/0	Active	Description
A0-A18	Address Inputs	1	N/A	Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK, ADV/LD low, $\overline{C E N}$ low, and true chip enables.
ADV/LD	Advance / Load	1	N/A	$A D V / \overline{\mathrm{D}}$ is a synchronous input that is used to load the internal registers with new address and control when it is sampled low at the rising edge of clock with the chip selected. When ADV/ $\overline{\mathrm{LD}}$ is low with the chip deselected, any burst in progress is terminated. When ADV/ $\overline{\mathrm{D}}$ is sampled high then the internal burst counter is advanced for any burst that was in progress. The external addresses are ignored when ADV/LD is sampled high.
R / \bar{W}	Read / Write	1	N/A	R / \bar{W} signal is a synchronous input that identifies whether the current load cycle initiated is a Read or Write access to the memory array. The data bus activity for the current cycle takes place two clock cycles later.
$\overline{C E N}$	Clock Enable	1	LOW	Synchronous Clock Enable Input. When $\overline{\mathrm{CEN}}$ is sampled high, all other synchronous inputs, including clock are ignored and outputs remain unchanged. The effect of CEN sampled high on the device outputs is as if the low to high clock transition did not occur. For normal operation, $\overline{C E N}$ must be sampled low at rising edge of clock.
$\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}}_{4}$	Individual Byte Write Enables	1	LOW	Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load write cycles (When R/W and ADV/ $\overline{L D}$ are sampled low) the appropriate byte write signal ($\overline{\mathrm{BW}} 1-\overline{\mathrm{BW}} 4)$ must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write signals are ignored when R / \bar{W} is sampled high. The appropriate byte(s) of data are written into the device two cycles later. $\overline{\mathrm{BW}}_{1}-\overline{\mathrm{BW}}_{4}$ can all be tied low if always doing write to the entire 36 -bit word.
$\overline{\mathrm{C}} \mathrm{E}_{1}, \overline{\mathrm{C}} \mathrm{E}_{2}$	Chip Enables	1	LOW	Synchronous active low chip enable. $\overline{\mathrm{C}} \bar{E}_{1}$ and $\overline{\mathrm{C}}_{2}$ are used with CE_{2} to enable the IDT71V65603/5803. ($\overline{\mathrm{CE}} 1$ or $\overline{\mathrm{CE}} 2$ sampled high or CE2 sampled low) and ADV/LD low at the rising edge of clock, initiates a deselect cycle. The $Z B T^{T M}$ has a two cycle deselect, i.e., the data bus will tri-state two clock cycles after deselect is initiated.
CE2	Chip Enable	1	HIGH	Synchronous active high chip enable. CE_{2} is used with $\overline{\mathrm{C}} \bar{E}_{1}$ and $\overline{\mathrm{C}}_{2}$ to enable the chip. CE_{2} has inverted polarity but otherwise identical to $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}} \mathrm{E}_{2}$.
CLK	Clock	1	N/A	This is the clock input to the IDT71V65603/5803. Except for $\overline{\mathrm{OE}}$, all timing references for the device are made with respect to the rising edge of CLK.
$\begin{gathered} \text { I/OO-//O31 } \\ \text { I/OP1-//Op4 } \end{gathered}$	Data Input/Output	I/O	N/A	Synchronous data input/output (I/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK.
$\overline{\text { LBO }}$	Linear Burst Order	1	LOW	Burst order selection input. When $\overline{\mathrm{LBO}}$ is high the Interleaved burst sequence is selected. When $\overline{\mathrm{LBO}}$ is low the Line ar burst sequence is selected. $\overline{\mathrm{LBO}}$ is a static input and it must not change during device operation.
$\overline{\mathrm{OE}}$	Output Enable	1	LOW	Asynchronous output enable. $\overline{\mathrm{OE}}$ must be low to read data from the 71V65603/5803. When $\overline{O E}$ is high the I / O pins are in a high-impedance state. $\overline{O E}$ does not need to be actively controlled for read and write cycles. In normal operation, $\overline{\mathrm{OE}}$ can be tied low.
ZZ	Sleep Mode	1	N/A	Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the $71 \mathrm{~V} 65603 / 5803$ to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.
VDD	Power Supply	N/A	N/A	3.3 V core power supply.
VDDQ	Power Supply	N/A	N/A	3.3V I/O Supply.
Vss	Ground	N/A	N/A	Ground.

NOTE:

1. All synchronous inputs must meet specified setup and hold times with respect to CLK.

Pin Configuration $-256 \mathrm{~K} \times 36$, PKG100 ${ }^{(3)}$

Top View
 100 TQFP

NOTES:

1. Pins 14,16 and 66 do not have to be connected directly to VDD as long as the input voltage is $\geq \mathrm{VIH}$.
2. DNU=Do not use. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).
3. This text does not indicate orientation of actual part-marking.

Pin Configuration $-512 \mathrm{~K} \times 18$, PKG100 ${ }^{(3)}$

Top View 100 TQFP

NOTES:

1. Pins 14,16 and 66 do not have to be connected directly to $V_{\text {DD }}$ as long as the input voltage is \geq VIH.
2. $\mathrm{DNU}=\mathrm{Do}$ not use. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).
3. This text does not indicate orientation of actual part-marking.

Pin Configuration-256K X 36, BG119, BGG119 ${ }^{(3)}$

Top View						

Pin Configuration-512K X 18, BG119, BGG119 ${ }^{(3)}$

NOTES:

1. J3, J5, and R5 do nothave to be directly connected to VDD as long as the inputvoltage is $\geq \mathrm{VIH}$.
2. $\mathrm{DNU}=\mathrm{Do}$ not use. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).
3. This text does not indicate orientation of actual part-marking.

Pin Configuration-256K X 36, BQ165, BQG165 ${ }^{(3)}$

	1	2	3	4	5	6	7	8	9	10	11
A	NC	A7	$\overline{\mathrm{CE}} 1$	$\overline{\mathrm{BW}} 3$	$\overline{\mathrm{BW}} 2$	$\overline{\mathrm{CE}} 2$	$\overline{C E N}$	ADV/LD	A17	A8	NC
B	NC	A6	CE2	$\overline{\mathrm{BW}} 4$	$\overline{\mathrm{BW}} 1$	CLK	$\mathrm{R} / \overline{\mathrm{W}}$	$\overline{\mathrm{OE}}$	NC	A9	NC
C	I/OP3	NC	VDDQ	VSS	VSS	VSS	VSS	VSS	VDDQ	NC	I/OP2
D	//O17	1/O16	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	I/O15	I/O14
E	I/O19	I/O18	VDDQ	VDD	VSS	Vss	VSS	VDD	VDDQ	I/O13	I/O12
F	1/O21	1/O20	VDDQ	VDD	VSS	VSS	Vss	VDD	VDDQ	//O11	I/O10
G	$1 / \mathrm{O}_{23}$	I/O22	VDDQ	VDD	VsS	VSS	VSS	VDD	VDDQ	I/O9	I/O8
H	VDD ${ }^{(1)}$	VDD ${ }^{(1)}$	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	ZZ
J	I/O25	I/O24	VDDQ	VDD	VSS	Vss	VSS	VDD	VDDQ	I/O7	I/O6
K	//O27	1/O26	VDDQ	VDD	VSS	Vss	VSS	VDD	VDDQ	I/O5	I/O4
L	I/O29	I/O28	VDDQ	VDD	VSS	Vss	VSS	VDD	VDDQ	I/O3	I/O2
M	1/O31	I/O30	VDDQ	VDD	VSS	Vss	Vss	VDD	VDDQ	V/O1	I/O0
N	I/Op4	NC	VDDQ	VSS	DNU ${ }^{(2)}$	NC	VDD ${ }^{(1)}$	Vss	VDDQ	NC	//OP1
P	NC	NC	A5	A2	DNU ${ }^{(2)}$	A1	DNU ${ }^{(2)}$	A10	A13	A14	NC
R	$\overline{\text { LBO }}$	NC	A4	A3	DNU ${ }^{(2)}$	A0	$\mathrm{DNU}^{(2)}$	A11	A12	A15	A16

Pin Configuration-512K X 18, BQ165, BQG165 ${ }^{(3)}$

	1	2	3	4	5	6	7	8	9	10	11
A	NC	A7	$\overline{\mathrm{CE}} 1$	$\overline{\mathrm{BW}} 2$	NC	$\overline{\mathrm{CE}} 2$	$\overline{C E N}$	ADVI/LD	A18	A8	A10
B	NC	A6	CE2	NC	$\overline{B W}_{1}$	CLK	R/W	$\overline{\mathrm{OE}}$	NC	A9	NC
C	NC	NC	VdDQ	Vss	Vss	Vss	Vss	Vss	VDDQ	NC	I/OP1
D	NC	//08	VdDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/07
E	NC	1/09	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/06
F	NC	//010	VDDQ	VDD	VSs	Vss	Vss	VDD	VDDQ	NC	I/05
G	NC	//011	VdDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	NC	1/04
H	VDD ${ }^{(1)}$	VDD ${ }^{(1)}$	NC	VDD	Vss	Vss	Vss	VDD	NC	NC	ZZ
J	I/O12	NC	VdDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//03	NC
K	1/013	NC	VdDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/02	NC
L	//014	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	//01	NC
M	//015	NC	VDDQ	VDD	Vss	Vss	Vss	VDD	VDDQ	1/00	NC
N	//OP2	NC	VDDQ	Vss	DNU(2)	NC	VDD ${ }^{(1)}$	VSS	VDDQ	NC	NC
P	NC	NC	A5	A2	DNU(2)	A1	DNU ${ }^{(2)}$	A11	A14	A15	NC
R	$\overline{\mathrm{LBO}}$	NC	A4	A3	DNU(2)	A0	DNU ${ }^{(2)}$	A12	A13	A16	A17

NOTES:

1. $\mathrm{H} 1, \mathrm{H} 2$, and N 7 do nothave to be directly connected to VDD as long as the input voltage is $\geq \mathrm{V} \mathrm{IH}$.
2. $\mathrm{DNU}=\mathrm{Do}$ not use. The current die revision allows these pins to be left unconnected, tied LOW (Vss), or tied HIGH (VDD).

3 This text does not indicate orientation of actual part-marking.

Absolute Maximum Ratings ${ }^{(1)}$

Symbol	Rating	 Industrial	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM $^{(3,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD	V
VTERM $^{(4,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
VTERM ${ }^{(5,6)}$	Terminal Voltage with Respect to GND	-0.5 to VDDQ +0.5	V
TA $^{(7)}$	Commercial Operating Temperature	-0 to +70	${ }^{\circ} \mathrm{C}$
	Industrial Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
	Temperature Under Bias	-55 to +125	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature	-55 to +125	${ }^{\circ} \mathrm{C}$
PT	Power Dissipation	2.0	$\mathrm{~V}^{\circ}$
lout	DC Output Current	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. VDD terminals only.
3. VDDQ terminals only.
4. Input terminals only.
5. I/O terminals only.
6. This is a steady-state DC parameter that applies after the power supply has reached its nominal operating value. Power sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up.
7. During production testing, the case temperature equals TA .

100 TQFP Capacitance ${ }^{(1)}$

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=3 \mathrm{dV}$	5	pF
C/o	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

Recommended Operating Temperature and Supply Voltage

Grade	Ambient Temperature	Vss	VDD	VDDQ
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	0 V	$3.3 \mathrm{~V} \pm 5 \%$	$3.3 \mathrm{~V} \pm 5 \%$

NOTE:

1. During production testing, the case temperature equals the ambient temperature.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
VDD	Core Supply Voltage	3.135	3.3	3.465	V
VDDQ	I/O Supply Voltage	3.135	3.3	3.465	V
Vss	Supply Voltage	0	0	0	V
VIH	Input High Voltage - Inputs	2.0	-	VDD+0.3	V
$\mathrm{VIH}^{\prime 2}$	Input High Voltage - I/O	2.0	-	VDDQ+0.3	V
VIL	Input Low Voltage	$-0.3^{(1)}$	-	0.8	V

NOTE:

1. VIL (min.) $=-1.0 \mathrm{~V}$ for pulse width less than tcrc/2, once per cycle.

165 fBGACapacitance ${ }^{(1)}$

($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=3 \mathrm{dV}$	TBD	pF
C/Io	I/O Capacitance	Vout $=3 \mathrm{dV}$	TBD	pF

119 BGA Capacitance ${ }^{(1)}$

($\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$)

Symbol	Parameter $^{(1)}$	Conditions	Max.	Unit
CIN	Input Capacitance	VIN $=3 \mathrm{dV}$	7	pF
CIo	I/O Capacitance	Vout $=3 \mathrm{dV}$	7	pF

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

Synchronous Truth Table ${ }^{(1)}$

$\overline{C E N}$	R / \bar{W}	$\begin{aligned} & \text { Chip } \\ & \text { Enable } \end{aligned}$	ADVILD	$\overline{\mathrm{BW}} \mathrm{x}$	ADDRESS USED	PREVIOUS CYCLE	CURRENT CYCLE	I/O (2 cycles later)
L	L	Select	L	Valid	External	X	LOAD WRITE	$D^{(7)}$
L	H	Select	L	X	External	X	LOAD READ	$Q^{(7)}$
L	X	X	H	Valid	Internal	LOAD WRITE / BURST WRITE	BURST WRITE (Advance burst counter) ${ }^{(2)}$	$D^{(7)}$
L	X	X	H	X	Internal	LOAD READ / BURST READ	BURST READ (Advance burst counter) ${ }^{(2)}$	$Q^{(7)}$
L	X	Deselect	L	X	X	X	DESELECT or STOP ${ }^{(3)}$	Hiz
L	X	X	H	X	X	DESELECT / NOOP	NOOP	Hiz
H	X	X	X	X	X	X	SUSPEND ${ }^{(4)}$	Previous Value

NOTES:

1. $\mathrm{L}=\mathrm{VIL}, \mathrm{H}=\mathrm{VIH}, \mathrm{X}=$ Don't Care.
2. When $A D V / \overline{L D}$ signal is sampled high, the internal burst counter is incremented. The R / \bar{W} signal is ignored when the counter is advanced. Therefore the nature of the burst cycle (Read or Write) is determined by the status of the $\mathrm{R} / \overline{\mathrm{W}}$ signal when the first address is loaded at the beginning of the burst cycle.
3. Deselect cycle is initiated when either ($\overline{\mathrm{CE}}_{1}$, or $\overline{\mathrm{CE}}_{2}$ is sampled high or CE 2 is sampled low) and $\mathrm{ADV} / \overline{\mathrm{LD}}$ is sampled low at rising edge of clock. The data bus will tri-state two cycles after deselect is initiated.
4. When $\overline{C E N}$ is sampled high at the rising edge of clock, that clock edge is blocked from propagating through the part. The state of all the internal registers and the I/ Os remains unchanged.
5. To select the chip requires $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}, \mathrm{CE} 2=\mathrm{H}$ on these chip enables. Chip is deselected if any one of the chip enables is false.
6. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.
7. Q - Data read from the device, D - data written to the device.

Partial Truth Table for Writes ${ }^{(1)}$

OPERATION	R/W	$\overline{\mathrm{BW}}_{1}$	$\overline{\mathrm{BW}}_{2}$	$\overline{\mathrm{BW}}_{3}{ }^{(3)}$	$\overline{\mathrm{BW}} 4^{(3)}$
READ	H	X	X	X	X
WRITE ALL BYTES	L	L	L	L	L
WRITE BYTE 1 (//O[0:7], //OP1) ${ }^{(2)}$	L	L	H	H	H
WRITE BYTE 2 (//O[8:15], //Op2) ${ }^{(2)}$	L	H	L	H	H
WRITE BYTE 3 (//O[16:23], I/Op3) ${ }^{(2,3)}$	L	H	H	L	H
WRITE BYTE 4 (//O[24:31], //Op4) ${ }^{(2,3)}$	L	H	H	H	L
NO WRITE	L	H	H	H	H

NOTES:

1. $\mathrm{L}=\mathrm{VIL}, \mathrm{H}=\mathrm{V} \mathrm{IH}, \mathrm{X}=$ Don't Care.
2. Multiple bytes may be selected during the same cycle.
3. N/A for X18 configuration.

Interleaved Burst Sequence Table ($\overline{\text { LBO }}=\mathrm{VDD}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	0	0	1	1	1	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	1	0	0	1	0	0

NOTE:
5304 tbl 10

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting

Linear Burst Sequence Table ($\overline{\mathrm{LBO}}=\mathrm{Vss}$)

	Sequence 1		Sequence 2		Sequence 3		Sequence 4	
	A1	A0	A1	A0	A1	A0	A1	A0
First Address	0	0	0	1	1	0	1	1
Second Address	0	1	1	0	1	1	0	0
Third Address	1	0	1	1	0	0	0	1
Fourth Address ${ }^{(1)}$	1	1	0	0	0	1	1	0

NOTE:
5304 tbl 11

1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting

Functional Timing Diagram ${ }^{(1)}$

CYCLE	n+29	n+30	$\mathrm{n}+31$	$\mathrm{n}+32$	$\mathrm{n}+33$	$\mathrm{n}+34$	n+35	$\mathrm{n}+36$	$\mathrm{n}+37$
CLOCK	4	-	\triangle	4	4	4	-	4	4
$\begin{gathered} \text { ADDRESS }^{(2)} \\ (\mathrm{AO}-\mathrm{A} 17) \end{gathered}$	A29	A30	A31	A32	A33	A34	A35	A36	A37
$\frac{\mathrm{CONTROL}(2)}{(\mathrm{R} / \mathrm{W}, \mathrm{ADV} / \overline{\mathrm{LD}}, \overline{\mathrm{BW}} \mathrm{x})}$	C29	C30	C31	C32	C33	C34	C35	C36	C37
$\begin{gathered} \text { DATA }^{(2)} \\ \text { I/O [0:31], I/O P[1:4] } \end{gathered}$	D/Q27	D/Q28	D/Q29	D/Q30	D/Q31	D/Q32	D/Q33	D/Q34	D/Q35

NOTES:

1. This assumes $\overline{\mathrm{CEN}}, \overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{2}$ are all true.
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data delay from the rising edge of clock.

Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles ${ }^{(2)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}}{ }^{(1)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	$1 / 0$	Comments
n	A0	H	L	L	L	X	X	X	Load read
n+1	X	X	H	X	L	X	X	X	Burst read
n+2	A1	H	L	L	L	X	L	Q0	Load read
n+3	X	X	L	H	L	X	L	Q0+1	Deselect or STOP
n+4	X	X	H	X	L	X	L	Q1	NOOP
n+5	A2	H	L	L	L	X	X	Z	Load read
n+6	X	X	H	X	L	X	X	Z	Burst read
n+7	X	X	L	H	L	X	L	Q2	Deselect or STOP
n+8	А3	L	L	L	L	L	L	Q2+1	Load write
n+9	X	X	H	X	L	L	X	Z	Burst write
n+10	A4	L	L	L	L	L	X	D3	Load write
n+11	X	X	L	H	L	X	X	D3+1	Deselect or STOP
n+12	X	X	H	X	L	X	X	D4	NOOP
n+13	A5	L	L	L	L	L	X	Z	Load write
n+14	A6	H	L	L	L	X	X	Z	Load read
n+15	A7	L	L	L	L	L	X	D5	Load write
n+16	X	X	H	X	L	L	L	Q6	Burst write
n+17	A8	H	L	L	L	X	X	D7	Load read
n+18	X	X	H	X	L	X	X	D7+1	Burst read
n+19	A9	L	L	L	L	L	L	Q8	Load write

NOTES:

1. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.
2. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance

Read Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathrm{CE}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / 0$	Comments
n	A_{0}	H	L	L	L	X	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	X	X	L	Q_{0}	Contents of Address Ao Read Out

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $C E_{2}=H . \overline{\mathrm{CE}}=H$ is defined as $\overline{\mathrm{CE}}_{1}=H, \overline{C E}_{2}=H$ or $C E_{2}=L$.

Burst Read Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ \bar{L}	$\overline{C E}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
$n+1$	X	X	H	X	L	X	X	X	Clock Setup Valid, Advance Counter
$\mathrm{n}+2$	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
n+3	X	X	H	X	L	X	L	Q $0+1$	Address A0+1 Read Out, Inc. Count
$\mathrm{n}+4$	X	X	H	X	L	X	L	Q $0+2$	Address A0+2 Read Out, Inc. Count
$n+5$	A1	H	L	L	L	X	L	Q $0+3$	Address A0+3 Read Out, Load A1
n+6	X	X	H	X	L	X	L	Q0	Address Ao Read Out, Inc. Count
n+7	X	X	H	X	L	X	L	Q1	Address A1 Read Out, Inc. Count
$\mathrm{n}+8$	A2	H	L	L	L	X	L	Q1+1	Address A1+1 Read Out, Load A2

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=L$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $C E_{2}=H . \overline{\mathrm{CE}}=H$ is defined as $\overline{\mathrm{CE}}_{1}=H, \overline{\mathrm{CE}}_{2}=H$ or $\mathrm{CE} 2=L$

Write Operation ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	$\mathrm{ADV} / \overline{\mathrm{D}}$	$\overline{\mathrm{CE}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I / O	Comments
n	A 0	L	L	L	L	L	X	X	Address and Control meet setup
$\mathrm{n}+1$	X	X	X	X	L	X	X	X	Clock Setup Valid
$\mathrm{n}+2$	X	X	X	X	L	X	X	D_{0}	Write to Address Ao

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=L$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Burst Write Operation ${ }^{(1)}$

Cycle	Address	R/W	ADVIL̄D	$\overline{C E}{ }^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{O E}$	110	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup
n+1	X	X	H	X	L	L	X	X	Clock Setup Valid, Inc. Count
n+2	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+3	X	X	H	X	L	L	X	Do+1	Address Ao+1 Write, Inc. Count
n+4	X	X	H	X	L	L	X	Do+2	Address Ao+2 Write, Inc. Count
$\mathrm{n}+5$	A1	L	L	L	L	L	X	Do+3	Address A0+3 Write, Load A1
n+6	X	X	H	X	L	L	X	Do	Address Ao Write, Inc. Count
n+7	X	X	H	X	L	L	X	D1	Address A1 Write, Inc. Count
n+8	A2	L	L	L	L	L	X	D1+1	Address A1+1 Write, Load A2

NOTES:
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Read Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADVILD	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\text { CEN }}$	$\overline{\mathrm{BW}} \mathrm{X}$	$\overline{O E}$	$1 / 0$	Comments
n	A0	H	L	L	L	X	X	X	Address and Control meet setup
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored
n+2	A1	H	L	L	L	X	X	X	Clock Valid
n+3	X	X	X	X	H	X	L	Q0	Clock Ignored, Data Q_{0} is on the bus.
n+4	X	X	X	X	H	X	L	Q0	Clock Ignored, Data Q_{0} is on the bus.
n+5	A2	H	L	L	L	X	L	Q0	Address Ao Read out (bus trans.)
n+6	А3	H	L	L	L	X	L	Q1	Address A1 Read out (bus trans.)
n+7	A4	H	L	L	L	X	L	Q2	Address A2 Read out (bus trans.)

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=L$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $\mathrm{CE} 2=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

Write Operation with Clock Enable Used ${ }^{(1)}$

Cycle	Address	R/W	ADVI/LD	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{C E N}$	$\overline{\mathrm{BW}} \mathrm{x}$	$\overline{\mathrm{OE}}$	I/O	Comments
n	A0	L	L	L	L	L	X	X	Address and Control meet setup.
n+1	X	X	X	X	H	X	X	X	Clock n+1 Ignored.
n+2	A1	L	L	L	L	L	X	X	Clock Valid.
n+3	X	X	X	X	H	X	X	X	Clock Ignored.
n+4	X	X	X	X	H	X	X	X	Clock Ignored.
n+5	A2	L	L	L	L	L	X	Do	Write Data Do
n+6	A3	L	L	L	L	L	X	D1	Write Data D1
n+7	A4	L	L	L	L	L	X	D2	Write Data D2

5304 tbl 18

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; $\mathrm{Z}=$ High Impedance.
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE} 2=\mathrm{H}$. $\overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE}_{2}=\mathrm{L}$.

71V65603, 71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with

Read Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	$\mathrm{R} / \overline{\mathrm{W}}$	ADV/ $\overline{\mathrm{D}}$	$\overline{\mathrm{CE}}{ }^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} / \mathrm{O}^{(3)}$	Comments
n	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+1$	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+2$	A 0	H	L	L	L	X	X	Z	Address and Control meet setup
$\mathrm{n}+3$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+4$	A 1	H	L	L	L	X	L	Q 0	Address A0 Read out. Load A1.
$\mathrm{n}+5$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+6$	X	X	L	H	L	X	L	Q 1	Address A1 Read out. Deselected.
$\mathrm{n}+7$	A 2	H	L	L	L	X	X	Z	Address and control meet setup.
$\mathrm{n}+8$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+9$	X	X	L	H	L	X	L	Q 2	Address A2 Read out. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance
2. $\overline{\mathrm{CE}}=\mathrm{L}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{L}, \overline{\mathrm{CE}}_{2}=\mathrm{L}$ and $\mathrm{CE}_{2}=\mathrm{H} . \overline{\mathrm{CE}}=\mathrm{H}$ is defined as $\overline{\mathrm{CE}}_{1}=\mathrm{H}, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.
3. Device Outputs are ensured to be in High-Z after the first rising edge of clock upon power-up.

Write Operation with Chip Enable Used ${ }^{(1)}$

Cycle	Address	R / \bar{W}	ADV/ $\overline{\mathrm{LD}}$	$\overline{\mathbf{C E}}^{(2)}$	$\overline{\mathrm{CEN}}$	$\overline{\mathrm{BW}} \mathbf{x}$	$\overline{\mathrm{OE}}$	$\mathrm{I} \mathrm{O}^{(3)}$	Comments
n	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+1$	X	X	L	H	L	X	X	$?$	Deselected.
$\mathrm{n}+2$	A 0	L	L	L	L	L	X	Z	Address and Control meet setup
$\mathrm{n}+3$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+4$	$\mathrm{~A}_{1}$	L	L	L	L	L	X	D 0	Address Do Write in. Load A1.
$\mathrm{n}+5$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+6$	X	X	L	H	L	X	X	D 1	Address D1 Write in. Deselected.
$\mathrm{n}+7$	A 2	L	L	L	L	L	X	Z	Address and control meet setup.
$\mathrm{n}+8$	X	X	L	H	L	X	X	Z	Deselected or STOP.
$\mathrm{n}+9$	X	X	L	H	L	X	X	D 2	Address D2 Write in. Deselected.

NOTES:

1. $\mathrm{H}=$ High; $\mathrm{L}=$ Low; $\mathrm{X}=$ Don't Care; ? = Don't Know; $\mathrm{Z}=$ High Impedance
2. $\overline{\mathrm{CE}}=L$ is defined as $\overline{\mathrm{CE}}_{1}=L, \overline{\mathrm{CE}}_{2}=L$ and $C E 2=H . \overline{\mathrm{CE}}=H$ is defined as $\overline{\mathrm{CE}}_{1}=H, \overline{\mathrm{CE}}_{2}=\mathrm{H}$ or $\mathrm{CE} 2=\mathrm{L}$.

DC Electrical Characteristics Over the Operating
Temperature and Supply Voltage Range (VdD = 3.3V +l-5\%)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit		
\|	니	Input Leakage Current		-	5	$\mu \mathrm{A}$	
\|	니	$\overline{\text { LBO }}$ Input Leakage Current ${ }^{(1)}$	VdD = Max., VIN = OV to Vdd	-	30	$\mu \mathrm{A}$	
\|	Lo		Output Leakage Current	Vout $=0 \mathrm{~V}$ to VDDQ, Device Deselected	-	5	$\mu \mathrm{A}$
VOL	Output Low Voltage	$\mathrm{loL}=+8 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	-	0.4	V		
Vor	Output High Voltage	$\mathrm{l} \mathrm{OH}^{\prime}=-8 \mathrm{~mA}, \mathrm{VDD}=\mathrm{Min}$.	2.4	-	V		

NOTE:
5304 tbl 21

1. The $\overline{L B O}$ pin will be internally pulled to Vod if it is not actively driven in the application and the $Z Z$ pin will be internally pulled to Vss if not actively driven.

DC Electrical Characteristics Over the Operating

Temperature and Supply Voltage Range ${ }^{(1)}$ (VDD $=3.3 \mathrm{~V}+1-5 \%$)

Symbol	Parameter	Test Conditions	150MHz		133MHz		100MHz		Unit
			Com'l	Ind	Com'l	Ind	Com'l	Ind	
IDD	Operating Power Supply Current	Device Selected, Outputs Open, ADV/LD $=X, V D D=M a x .$, $V_{\mathbb{N}} \geq V_{\mathbb{H}}$ or $\leq V_{I L}, f=f_{m a x}{ }^{(2)}$	325	345	300	320	250	270	mA
ISB1	CMOS Standby Power Supply Current	Device Deselected, Outputs Open, VdD = Max., VIN \geq Vhd or $\leq \operatorname{VLD}$, $\mathrm{f}=0^{(2,3)}$	40	60	40	60	40	60	mA
ISB2	Clock Running Power Supply Current	Device Deselected, Oupputs Open, Vdd = Max., Vin \geq Vhd or < VLD, $f=$ flas ${ }^{(2,3)}$	120	140	110	130	100	120	mA
ISB3	Idle Power Supply Current	Device Selected, Outputs Open, $\overline{\mathrm{CEN}} \geq \mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$., VIN \geq VHD or $\leq \operatorname{VLD}, f=f_{\text {max }}{ }^{(2,3)}$	40	60	40	60	40	60	mA
Izz	Full Sleep Mode Supply Current	Device Selected, Outputs Open $\overline{\mathrm{CEN}} \leq \mathrm{VIL}, \mathrm{VDD}=\mathrm{Max} ., \mathrm{ZZ} \geq$ VHD $\mathrm{VIN} \geq \mathrm{VHD}$ or $\leq \mathrm{VLD}, \mathrm{f}=\mathrm{fMax}^{(2,3)}$	40	60	40	60	40	60	mA

NOTES:

1. All values are maximum guaranteed values.
2. At $f=f$ max, inputs are cycling at the maximum frequency of read cycles of $1 / t c y c ; f=0$ means no input lines are changing.
3. For I/Os $\mathrm{VHD}=\mathrm{V} D D Q-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$. For other inputs $\mathrm{VHD}=\mathrm{V} D \mathrm{D}-0.2 \mathrm{~V}, \mathrm{~V} L D=0.2 \mathrm{~V}$.

AC Test Load

AC Test Conditions
(VDDQ = 3.3V)

Input Pulse Levels	0 to 3 V
Input Rise/Fall Times	2 ns
Input Timing Reference Levels	1.5 V
Output Timing Reference Levels	1.5 V
AC Test Load	See Figure 1

5304 tbl 23

Figure 2. Lumped Capacitive Load, Typical Derating

AC Electrical Characteristics

Symbol	Parameter	150MHz ${ }^{(6)}$		133MHz		100MHz		Unit
		Min.	Max.	Min.	Max.	Min.	Max	
tcyc	Clock Cycle Time	6.7	-	7.5	-	10	-	ns
tF ${ }^{(1)}$	Clock Frequency	-	150	-	133	-	100	MHz
tch ${ }^{(2)}$	Clock High Pulse Width	2.0	-	2.2	-	3.2	-	ns
tcL ${ }^{(2)}$	Clock Low Pulse Width	2.0	-	2.2	-	3.2	-	ns

Output Parameters

tCD	Clock High to Valid Data	-	3.8.	-	4.2	-	5	ns
tcDC	Clock High to Data Change	1.5	-	1.5	-	1.5	-	ns
tc_ $Z^{(3,4,5)}$	Clock High to Output Active	1.5	-	1.5	-	1.5	-	ns
tchz ${ }^{(3,4,5)}$	Clock High to Data High-Z	1.5	3	1.5	3	1.5	3.3	ns
toe	Output Enable Access Time	-	3.8	-	4.2	-	5	ns
tocz $z^{(3,4)}$	Output Enable Low to Data Active	0	-	0	-	0	-	ns
tohz ${ }^{(3,4)}$	Output Enable High to Data High-Z	-	3.8	-	4.2	-	5	ns

Set Up Times

tSE	Clock Enable Setup Time	1.5	-	1.7	-	2.0	-	
tsA	Address Setup Time	1.5	-	1.7	-	2.0	-	
tsD	Data In Setup Time	1.5	-	1.7	-	2.0	-	ns
tsw	Read/Write (R/ $\bar{W})$ Setup Time	1.5	-	1.7	-	2.0	-	ns
tsADV	Advance/Load (ADV/(̄D) Setup Time	1.5	-	1.7	-	2.0	-	ns
tsc	Chip Enable/Select Setup Time	1.5	-	1.7	-	2.0	-	ns
tsB	Byte Write Enable $(\overline{\mathrm{BW}})$ Setup Time	1.5	-	1.7	-	2.0	-	ns

Hold Times

the	Clock Enable Hold Time	0.5	-	0.5	-	0.5	-	ns
tha	Address Hold Time	0.5	-	0.5	-	0.5	-	ns
tHD	Data In Hold Time	0.5	-	0.5	-	0.5	-	ns
thw	Read/Write (R/W) Hold Time	0.5	-	0.5	-	0.5	-	ns
thadV	Advance/Load (ADV/LD) Hold Time	0.5	-	0.5	-	0.5	-	ns
thc	Chip Enable/Select Hold Time	0.5	-	0.5	-	0.5	-	ns
thB	Byte Write Enable ($\overline{\mathrm{BW}} \mathrm{X}$) Hold Time	0.5	-	0.5	-	0.5	-	ns

NOTES:

1. $\mathrm{tF}=1 / \mathrm{tc} \mathrm{Yc}$.
2. Measured as HIGH above 0.6 VDDQ and LOW below 0.4 VDDQ .
3. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state.
4. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.
5. To avoid bus contention, the output buffers are designed such that tchz (device turn-off) is about 1 ns faster than tclz (device turn-on) at a given temperature and voltage. The specs as shown do not imply bus contention because tclz is a Min. parameter that is worse case at totally different test conditions (0 deg. $\mathrm{C}, 3.465 \mathrm{~V}$) than tchz, which is a Max. parameter (worse case at 70 deg. C, 3.135 V).
6. Commercial temperature range only.

Timing Waveform of Read Cycle ${ }^{(1,2,3,4)}$

[^0]Timing Waveform of Write Cycles ${ }^{(1,2,3,4,5)}$

[^1]Timing Waveform of Combined Read and Write Cycles ${ }^{(1,2,3)}$

[^2]Timing Waveform of CEN Operation ${ }^{(1,2,3,4)}$

NOTES:
2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals. For example, when $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are LOW on this waveform, CE2 is $H I \mathrm{GH}$.
3. $\overline{\mathrm{CEN}}$ when sampled high on the rising edge of clock will block that $\mathrm{L}-\mathrm{H}$ transition of the clock from propagating into the SRAM. The part will behave as if the L-H clock transition did not occur. All internal registers in the SRAM will retain their previous state.

[^3]Timing Waveform of $\overline{\mathbf{C S}}$ Operation ${ }^{(1,2,3,4)}$

NOTES:

1. $\mathrm{Q}\left(\mathrm{A}_{1}\right)$ represents the first output from the external address A_{1}. $\mathrm{D}\left(\mathrm{A}_{3}\right)$ represents the input data to the SRAM corresponding to address A_{3}.
2. $\mathrm{Q}\left(\mathrm{A}_{1}\right)$ represents the first output from the external address $\mathrm{A}_{1} . \mathrm{D}\left(\mathrm{A}_{3}\right)$ represents the input data to the $\mathrm{SR} \mathrm{A}_{1}$ corresponding to address A_{3}.
3. CE 2 timing transitions are identical but inverted to the $\overline{C E}_{1}$ and \bar{C}_{2} signals. For example, when $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{C}}_{2}$ are LOW on this waveform, $C E_{2}$ is $H \| G H$.
4. $\overline{\mathrm{CEN}}$ when sampled high on the rising edge of clock will block that L-H transition of the clock from propagating into the SRAM. The part will behave as if the L-H clock transition did not occur. All intemal registers in the SRAM will retain their previous state. cycles before the actual data is presented to the SRAM.

Timing Waveform of $\overline{\mathrm{OE}}$ Operation ${ }^{(1)}$

NOTE:

1. A read operation is assumed to be in progress.

Ordering Information

NOTES:

1. Contactyour local sales office for Industrial temp range for other speeds, packages and powers.
2. Green parts available. For specific speeds, packages and powers contactyour local sales office.

Orderable Part Information

Speed (MHz)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
100	71V65603S100BG	BG119	PBGA	C
	71V65603S100BG8	BG119	PBGA	C
	71V65603S100BGI	BG119	PBGA	1
	71V65603S100BGI8	BG119	PBGA	1
	71V65603S100BQ	BQ165	CABGA	C
	71V65603S100BQG	BQG165	CABGA	C
	71V65603S100BQG8	BQG165	CABGA	C
	71V65603S100BQGI	BQG165	CABGA	1
	71V65603S100BQG18	BQG165	CABGA	1
	71V65603S100BQI	BQ165	CABGA	1
	71V65603S100PFG	PKG100	TQFP	C
	71V65603S100PFG8	PKG100	TQFP	C
	71V65603S100PFGI	PKG100	TQFP	1
	71V65603S100PFGI8	PKG100	TQFP	1
133	71V65603S133BG	BG119	PBGA	C
	71V65603S133BG8	BG119	PBGA	C
	71V65603S133BGG	BGG119	PBGA	C
	71V65603S133BGG8	BGG119	PBGA	C
	71V65603S133BGGI	BGG119	PBGA	I
	71V65603S133BGGI8	BGG119	PBGA	1
	71V65603S133BGI	BG119	PBGA	1
	71V65603S133BGI8	BG119	PBGA	1
	71V65603S133BQ	BQ165	CABGA	C
	71V65603S133BQG	BQG165	CABGA	C
	71V65603S133BQG8	BQG165	CABGA	C
	71V65603S133BQGI	BQG165	CABGA	1
	71V65603S133BQG18	BQG165	CABGA	1
	71V65603S133BQI	BQ165	CABGA	1
	71V65603S133PFG	PKG100	TQFP	C
	71V65603S133PFG8	PKG100	TQFP	C
	71V65603S133PFGI	PKG100	TQFP	1
	71V65603S133PFGI8	PKG100	TQFP	1

Speed (MHz)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
150	71V65603S150BG	BG119	PBGA	C
	71V65603S150BG8	BG119	PBGA	C
	71V65603S150BGG	BGG119	PBGA	C
	71V65603S150BGG8	BGG119	PBGA	C
	71V65603S150BGGI	BGG119	PBGA	1
	71V65603S150BGGI8	BGG119	PBGA	1
	71V65603S150BQ	BQ165	CABGA	C
	71V65603S150BQ8	BQ165	CABGA	C
	71V65603S150BQG	BQG165	CABGA	C
	71V65603S150BQG8	BQG165	CABGA	C
	71V65603S150BQGI	BQG165	CABGA	1
	71V65603S150BQGI8	BQG165	CABGA	1
	71V65603S150BQI	BQ165	CABGA	1
	71V65603S150BQ18	BQ165	CABGA	1
	71V65603S150PFG	PKG100	TQFP	C
	71V65603S150PFG8	PKG100	TQFP	C
	71V65603S150PFGI	PKG100	TQFP	1
	71V65603S150PFGI8	PKG100	TQFP	1

71V65603, 71V65803, 256K x 36, 512K x 18, 3.3V Synchronous SRAMS with
ZBT ${ }^{\text {TM }}$ Feature, 3.3 V I/O, Burst Counter, and Pipelined Outputs
Commercial and Industrial Temperature Ranges
Orderable Part Information(con't)

Speed (MHz)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
100	71V65803S100BG	BG119	PBGA	C
	71V65803S100BG8	BG119	PBGA	C
	71V65803S100BGG	BGG119	PBGA	C
	71V65803S100BGG8	BGG119	PBGA	C
	71V65803S100BGGI	BGG119	PBGA	1
	71V65803S100BGG18	BGG119	PBGA	1
	71V65803S100BGI	BG119	PBGA	1
	71V65803S100BGI8	BG119	PBGA	1
	71V65803S100BQ	BQ165	CABGA	C
	71V65803S100BQG	BQG165	CABGA	C
	71V65803S100BQG8	BQG165	CABGA	C
	71V65803S100BQI	BQ165	CABGA	1
	71V65803S100PFG	PKG100	TQFP	C
	71V65803S100PFG8	PKG100	TQFP	C
	71V65803S100PFGI	PKG100	TQFP	1
	71V65803S100PFGI8	PKG100	TQFP	1
133	71V65803S133BG	BG119	PBGA	C
	71V65803S133BG8	BG119	PBGA	C
	71V65803S133BGG	BGG119	PBGA	C
	71V65803S133BGG8	BGG119	PBGA	C
	71V65803S133BGGI	BGG119	PBGA	1
	71V65803S133BGGI8	BGG119	PBGA	1
	71V65803S133BGI	BG119	PBGA	1
	71V65803S133BGI8	BG119	PBGA	1
	71V65803S133BQ	BQ165	CABGA	C
	71V65803S133BQG	BQG165	CABGA	C
	71V65803S133BQG8	BQG165	CABGA	C
	71V65803S133BQI	BQ165	CABGA	1
	71V65803S133BQ18	BQ165	CABGA	1
	71V65803S133PFG	PKG100	TQFP	C
	71V65803S133PFG8	PKG100	TQFP	C
	71V65803S133PFGI	PKG100	TQFP	1
	71V65803S133PFGI8	PKG100	TQFP	1

$\begin{array}{\|l} \text { Speed } \\ \text { (MHz) } \end{array}$	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
150	71V65803S150BG	BG119	PBGA	C
	71V65803S150BG8	BG119	PBGA	C
	71V65803S150BGI	BG119	PBGA	1
	71V65803S150BGI8	BG119	PBGA	1
	71V65803S150BQ	BQ165	CABGA	C
	71V65803S150BQG	BQG165	CABGA	C
	71V65803S150BQG8	BQG165	CABGA	C
	$71 \mathrm{~V} 65803 \mathrm{S150BQI}$	BQ165	CABGA	1
	71V65803S150BQ18	BQ165	CABGA	1
	71V65803S150PFG	PKG100	TQFP	C
	71V65803S150PFG8	PKG100	TQFP	C
	71V65803S150PFGI	PKG100	TQFP	1
	71V65803S150PFGI8	PKG100	TQFP	1

Datasheet Document History

12/31/99		Created new datasheet from obsolete devices IDT71V656 and IDT71V658
03/04/00	Pg. 1,14,15	Removed 166MHz speed grade offering; Added 150MHz speed grade offering
04/20/00	Pg. 5,6	Added JTAG test pins to TQFP pin configuration; removed footnote
	Pg. 5,6	Add clarification note to Recommended Operating temperature and Absolute Max Ratings tables
	Pg. 7	Add note to BGA pin Configuration; correct typo within pinout
	Pg. 21	Insert TQFP Package Diagram Outline
05/23/00		Add new package offering, $13 \times 15 \mathrm{~mm} 165$ fBGA
	Pg. 23	Correction in BG 119 Package Diagram Outline
07/28/00		Add industrial temperature
	Pg. 2	Correction VDDQ 3.3V I/O supply
	Pg. 5-8	Remove JTAG offerings, refer to IDT71V656xx and IDT71V658xx device errata sheet
	Pg. 7	Correct pin B2
	Pg. 8	Change pin B1 to NC
	Pg. 23	Update BG119 Package Diagram Outline
11/04/00	Pg. 8	Add note to pin N5 on BQ165 pinout, reserved for JTAG TRST
	Pg. 15	Add Izz parameter to DC Electrical Characteristics
10/16/01	Pg. 16	Changed sub-header to include Commercial and Industrial Temperature Ranges. Corrected the TCH from 22ns to 2.2 ns and TSADV from 20ns to 2.0ns.
12/04/02	Pg. 1-25	Changed datasheet from Preliminary to final release.
	Pg. 15	Added I temp to 150MHz.
	Pg. 16	Corrected typo from 22 to 2.2.
12/19/02	$\begin{gathered} \text { Pg. 1,2,5,6 } \\ 7,8 \end{gathered}$	Removed JTAG functionality for current die revision.
	Pg. 7	Corrected pin configuration on the x36, 119BGA. Switched pins I/O0 and I/OP1.
09/30/04	Pg. 5,6	Updated temperature TA note.
	Pg. 7	Updated pin configuration for the 119BGA-reordered I/O signals on P7,N6,L6, K7,H6, G7, F6, E7, D6 ($512 \mathrm{~K} \times 18$).
	Pg. 25	Added "restricted hazardous substance device" to ordering information.
02/21/07	Pg. 25	Added Z generation die step to data sheet ordering information.
10/16/08	Pg. 25	Updated the ordering information by removing the "IDT" notation.
11/12/21	Pg. 1-27	Source file updated to reflect previous Corporate Marketing rebranding
	Pg. 1 \& 23	Removed Z stepping information
	Pg. 1 \& 23	Updated Industrial temp range, green availability and package codes
	Pg. 23	Added Tape \& Reel and green to ordering information
	Pg. 5-8	Updated package codes
	Pg. 22-24	Deleted all Package Diagram Outlines
	Pg. 24-25	Added Orderable Part Informationtables

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

[^0]: notes:
 of the base address $A 2$, etc. where address bits $A 0$ and $A 1$ are advancing for the four word burst in the sequence defined by the state of the $\overline{L B} \bar{O}$ input. 2. CE_{2} timing transitions are identical but inverted to the $\overline{\mathrm{C}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ signals. For example, when $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are LOW on this waveform, CE 2 is $H I G H$,
 3. Burst ends when new address and control are loaded into the SRAM by sampling $A D V / \overline{L D} L O W$.
 4. $\mathrm{R} \bar{W}$ is don't care when the SRAMis bursting (ADV/LD sampledHIGH). The nature of the burst access (Read or Wite) is fixed by the state of the $R \bar{W}$ signal when newaddress and control
 are loaded into the SRAM.

[^1]: NOTES: the base address A_{2}, etc. where address bits A_{0} and A_{1} are advancing for the four word burst in the sequence defined by the state of the $\overline{L B O}$ input. 2. CE2 timing transitions are identical but inverted to the CE_{1} and CE_{2} signals. For example, 3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW. 4. RW is don't care Whento
 5. Individual Byte White signals $\left(\bar{B} W_{X}\right)$ must be valid on all write and burst-write cycles. A write cycle is initiated when $R \bar{W}$ signal is sampled LOW. The byte write information comes in two cycles before the actual data is presented to the SRAM.

[^2]: $Q\left(A_{1}\right)$ represents the first output from the external address A_{1}. $D_{2}\left(A_{2}\right)$ represents the input data to the $S R A M$ corresponding to address A_{2} 1. $\mathrm{Q}\left(\mathrm{A}_{1}\right)$. 2. . Individual Byte White signals ($\bar{B} W \times)$ must be valid on all write and burst-write cycles. A write cycle is initiated when $R \bar{W}$ signal is sampled $L O W$. The byte wite information comes in two cycles before the actual data is presented to the SRAM.

[^3]: 4. Individual Byte White signals $(\overline{\mathrm{BW}} \times$) must be valid on all write and burst-write cycles. A write cycle is initiated when $\mathrm{R} \overline{\mathrm{W}}$ signal is sampled LoW. The byte write information comes in two
 cycles before the actual data is presented to the SRAM.
