GR6206xx 系列

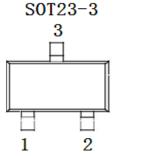
线性稳压器

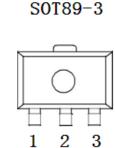
■ 产品简介

GR6206xx系列是高纹波抑制率、低功耗、低压差,具有过流和短路保护的CMOS降压型电压稳压器。这 些器件具有很低的静态偏置电流(6.5µA Typ.),它们能在输入、输出电压差极小的情况下提供200mA的输 出电流,并且仍能保持良好的调整率。由于输入输出间的电压差很小和静态偏置电流很小,这些器件特别 适用于希望延长电池寿命的电池供电类产品,如计算机、消费类产品和工业设备等。

■ 产品特点

- 高精度输出电压: ±2.5%
- 极低的静态偏置电流(Typ.=6.5 µ A) 封装形式: SOT89-3、SOT23-3
- 最高输入电压可达 6.5V
- 輸出电压: 1.5V~5.0V(步长 0.1V)可以作为调整器和参考电压来使用

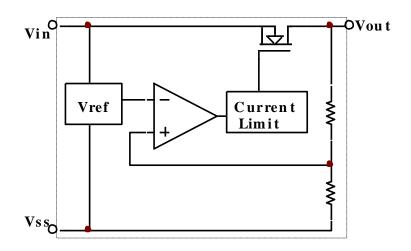

■ 产品用途


- 电池供电系统
- 无绳电话设备
- 无线控制系统
- 便携/手掌式计算机

- 便携式消费类设备
- 便携式仪器
- 汽车电子设备
- 电压基准源

■ 封装形式和管脚定义功能

	管	脚序号		管脚	元十 今尺 3 円	
MR 封装	ML 封装	PR 封装	PL 封装	定义	功能说 明	
S0T23-3	S0T23-3	S0T89-3	S0T89-3	是 又	99	
1	3	1	2	VSS	接地端	
2	1	3	1	VOUT	输出端	
3	2	2	3	VIN	输入端	



■ 型号选择

名称	型号	最高输入电压(V)	输出电压(V)	容差	封装形式
GR6206	GR6206xxxxx-x	6.5	1.5, 1.8, 2.1, 2.5, 2.7, 3.0, 3.3, 3.6, 4.4, 5.0	±2.5%	SOT89-3 SOT23-3
型号说明	第 4 个 "X" 代 型(MR→SOT23 要求;省略表示 如,型号 GR620	型(P表示不带使能表输出电压容差精度 8-3、PR→SOT89-3); 不作要求)。 06P302PR-G,表示产。 SOT89-3 标准封装形	(2→±2.5%);第5 第7个"X"代表标 品为 GR6206 不带使	、6 个 "XX' 准项,(G ⁵ 能脚,输出	"代表封装类 表示符合 RoSH

■ 功能框图

■ 极限参数

项目	符号	说明		极限值	单位		
中正	Vin	输入电压		输入电压		7	V
电压	Vout	输	出电压	Vss-0.3 ~Vin+0.3	V		
电流	Iout	输出电流		500	mA		
T-1, #£	DD	SOT23	旦十分次刊起	250	W		
功耗	PD	S0T89-3	最大允许功耗	500	mW		
	Tw	工	作温度	-40∼+85	$^{\circ}$		
温度	Tc	存	储温度	−55~+125	$^{\circ}$		
	Th	焊	接温度	260	°C, 10s		

注:极限参数是指无论在任何条件下都不能超过的极限值。如果超过此极限值,将有可能造成产品劣化 等物理性损伤;同时在接近极限参数下,不能全部保证芯片可以正常工作。

■电学特性

GR6206-2. 1V (Ci=Co=10uF, Ta=25℃除特别指定)

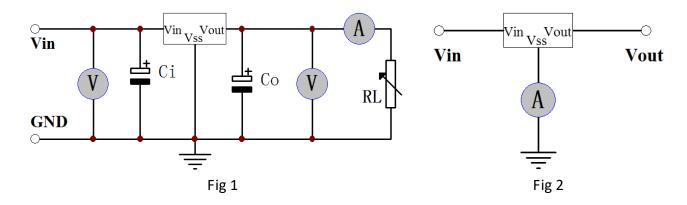
特性	符号	测试条件	最小值	典型值	最大值	单位	测试图
输出电压	V _{OUT} (E)	$I_{\text{OUT}}=1\text{mA}$, $V_{\text{IN}}=5\text{V}$	2. 048	2.1	2. 153	V	Fig 1
最大输出电流	$I_{ ext{OUT}}$ (max)	V _{IN} =3.1V	200			mA	Fig 1
跌落压差	Vdrop1	$I_{OUT}=10$ mA		35		mV	Fig 1
以 俗	Vdrop2	$I_{\text{OUT}}=40\text{mA}$		140		IIIV	rig i
静态电流	I_{ss}	$V_{IN}=6.5V$	3	6.5	9	μА	Fig 2
负载稳定度	$\Delta V_{ ext{OUT}}$	$V_{\text{IN}}=3.1V$, $1\text{mA} \leqslant I_{\text{OUT}} \leqslant 100\text{mA}$		22		mV	Fig 1
输入稳定度	$\Delta V_{OUT} / (\Delta V_{IN} - V_{OUT})$	I _{OUT} =40mA, 3.1V≤V _{IN} ≤6V		0. 35		%/V	Fig 1
输出电压	Δ V _{OUT} /(Δ Ta	$V_{IN}=3.1V$, $I_{OUT}=10$ mA		±200		ppm/℃	Fig 1
温度系数	• V _{OUT})	-10°C≤Ta≤70°C		1200		ppiii/ C	rig i
输入电压	V_{IN}		1.8		6.5	V	Fig 1
保护电流	Ishort	$V_{\text{IN}}\!\!=\!\!4.5 V$, $V_{\text{OUT}}\!\!=\!\!V_{\text{SS}}$		150		mA	Fig 1

GR6206-3. 0V (Ci=Co=10uF,Ta=25℃除特别指定)

特性	符号	测试条件	最小值	典型值	最大值	单位	测试图
输出电压	V _{OUT} (E)	$I_{OUT}=1$ mA, $V_{IN}=5$ V	2. 925	3.0	3. 075	V	Fig 1
最大输出电流	$I_{ ext{OUT}}$ (max)	$V_{IN}=4V$	200			mA	Fig 1
跌落压差	Vdrop1	$I_{OUT} = 10 \text{mA}$		30		mV	Fig 1
以 俗 压 左	Vdrop2	$I_{OUT} = 40 \text{mA}$		110		mV	rig i
静态电流	I_{ss}	$V_{IN}=4V$		6.5		μА	Fig 2
负载稳定度	$\Delta V_{ ext{OUT}}$	$V_{IN}=4V$, $1mA \leqslant I_{OUT} \leqslant 100mA$		25		mV	Fig 1
输入稳定度	$\Delta V_{\text{OUT}} / (\Delta V_{\text{IN}}$	$I_{OUT} = 40 \text{mA},$		0.4		%/V	Fig 1
100/100/2/2	• V _{OUT})	4V ≤V _{IN} ≤6V		0. 1		707 1	118 1
输出电压	Δ V _{OUT} /(Δ Ta	$V_{IN}=4V$, $I_{OUT}=10mA$		±200		ppm/℃	Fig 1
温度系数	$\bullet V_{OUT}$)	-40℃≤Ta≤85℃				ррш/ С	rig i
输入电压	$V_{\scriptscriptstyle \mathrm{IN}}$		1.8		6. 5	V	Fig 1
保护电流	Ishort	$V_{\text{IN}}\!\!=\!\!4.5 \text{V}$, $V_{\text{OUT}}\!\!=\!\!V_{\text{SS}}$		150		mA	Fig 1

GR6206-3.3V	(Ci=Co=10uF	$V_{am}(T) = 3.3V$,Ta=25℃除特别指定)
010200 0.01	(CI-CO-IOUI,	VOUT (1) - 3. 3 V	、1.4-4.0 UKT11Tカリョ日 AE /

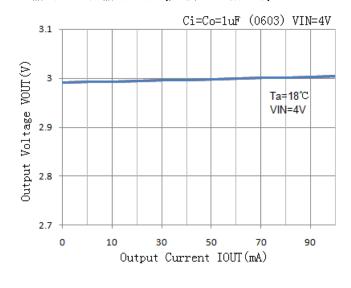
特性	符号	测试条件	最小值	典型值	最大值	单位	测试图
输出电压	V _{OUT} (E)	$I_{OUT}=1$ mA, $V_{IN}=5$ V	3. 218	3.3	3. 382	V	Fig 1
最大输出电流	$I_{ t OUT}$ (max)	$V_{IN}=4.3V$	200			mA	Fig 1
跌落压差	Vdrop1	I _{OUT} =1OmA		31		mV	Fig 1
以 俗	Vdrop2	$I_{\text{OUT}}=40\text{mA}$		121		III V	rig i
静态电流	I_{ss}	$V_{IN}=6.5V$	3	6.5	9	μА	Fig 2
负载稳定度	$\Delta V_{ ext{OUT}}$	$V_{IN}=4.3V$, $1mA \leq I_{OUT} \leq 100mA$		24		mV	Fig 1
输入稳定度	$\Delta V_{\text{OUT}} / (\Delta V_{\text{IN}} + V_{\text{OUT}})$	I _{OUT} =40mA, 4.3V≪V _{IN} ≪6V		0.4		%/V	Fig 1
输出电压 温度系数	ΔV _{OUT} /(ΔTa •V _{OUT})	$V_{IN}=4.3V$, $I_{OUT}=10$ mA -10 °C \leq Ta \leq 70°C		±200		ppm/℃	Fig 1
输入电压	$V_{\scriptscriptstyle \mathrm{IN}}$		1.8		6.5	V	Fig 1
保护电流	Ishort	$V_{\text{IN}}\!\!=\!\!4.5\text{V}$, $V_{\text{OUT}}\!\!=\!\!V_{\text{SS}}$		150		mA	Fig 1

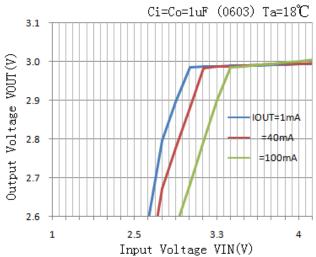

注:

- 1、 Vour (T): 规定的输出电压;
- 2、Vout (E): 有效输出电压。
- 3、Iout (max): V_{IN}=Vout (T)+1V,缓慢增加输出电流,当输出电压≤Vout (E)*95%时的电流值。
- 4、 $Vdrop=V_{INI}-V_{OUT}$ (E) s : $V_{INI}=$ 逐渐减小输入电压, 当输出电压降为 V_{OUT} (E) 1 的 98%时的输入电压。

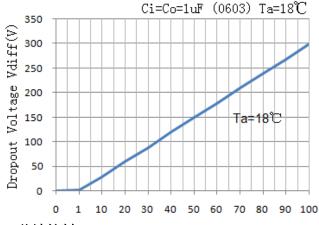
 V_{OUT} (E) s= V_{OUT} (E) 1*98%;

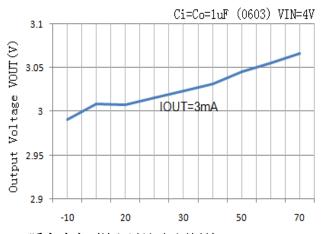
 V_{OUT} (E) 1=当 V_{IN} = $V_{\text{OUT}}(T)$ + 1V , Iout=某一数值时的输出电压值。

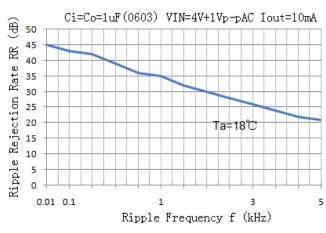

■ 测试电路

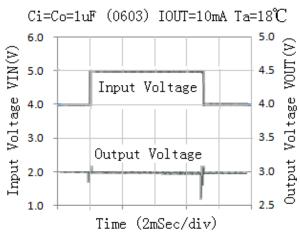


■ 特性曲线 (3.0V输出)

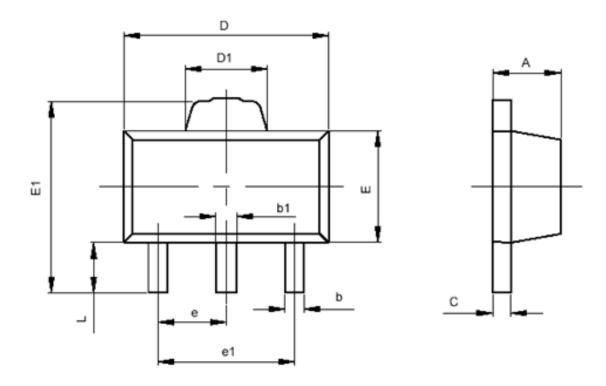

1、输出电压和输出电流 (负载电流增加时)


2、输出电压和输入电压

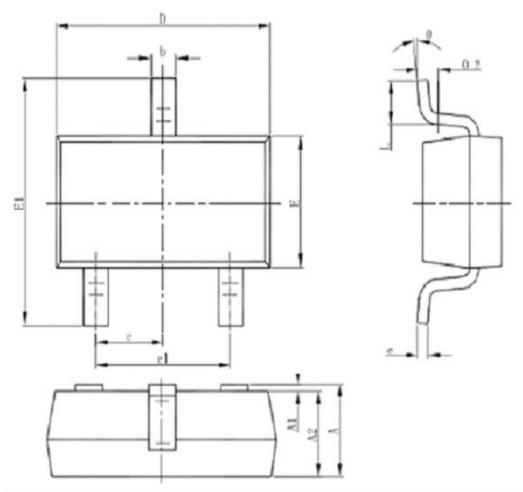

3、Dropout 电压和输出电流


4、输出电压和温度

5、纹波抑制



6、瞬态响应(输入过渡响应特性)


■ 封装信息

SOT-89-3

符号	最小值(mm)	最大值(mm)
Α	1.400	1.600
ь	0.320	0.520
b1	0.360	0.560
С	0.350	0.440
D	4.400	4.600
D1	1.400	1.800
E	2.300	2.600
E1	3.940	4.250
e	1.50	ОТҮР
e1	2.900	3.100
L	0.900	1.100

SOT-23-3

Sumbol	Dimensions In	Millimeters	Dinensions	In Inches
Symbol	Min	Max	Min	Max
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
¢	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
0	0.950(BSC)	0.037(E	SC)
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
θ	O°	8°	0,	81