

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC3221GV$

5 V AGC AMPLIFIER + VIDEO AMPLIFIER

DESCRIPTION

The μ PC3221GV is a silicon monolithic IC designed for use as AGC amplifier for digital CATV, cable modem systems. This IC consists of gain control amplifier and video amplifier.

The package is 8-pin SSOP suitable for surface mount.

This IC is manufactured using our 10 GHz fr NESAT II AL silicon bipolar process. This process uses silicon nitride passivation film. This material can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

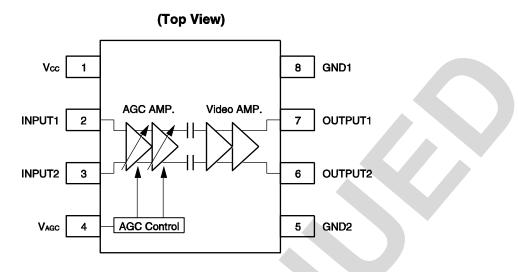
FEATURES

- Low distortion : $IM_3 = 56 \text{ dBc TYP}$. @ single-ended output, $V_{out} = 0.7 V_{p-p}$ /tone
- Low noise figure : NF = 4.2 dB TYP.
- Wide AGC dynamic range
- : GCR = 50 dB TYP. @ input prescribe
- On-chip video amplifier
- : Vout = 1.0 Vp-p TYP. @ single-ended output
- Supply voltage : Vcc = 5.0 V TYP.
- · Packaged in 8-pin SSOP suitable for surface mounting

APPLICATION

Digital CATV/Cable modem receivers

ORDERING INFORMATION


Part Number	Package	Supplying Form
μΡC3221GV-E1-A	8-pin plastic SSOP (4.45 mm (175))	 Embossed tape 8 mm wide Pin 1 indicates pull-out direction of tape Qty 1 kpcs/reel

Remark To order evaluation samples, contact your nearby sales office. Part number for sample order: μ PC3221GV-A

Caution: Observe precautions when handling because these devices are sensitive to electrostatic discharge

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

INTERNAL BLOCK DIAGRAM AND PIN CONNECTIONS

PRODUCT LINE-UP OF 5 V AGC AMPLIFIER

Part Number	Icc (mA)	Gмах (dB)	Gміn (dB)	GCR (dB)	NF (dB)	IM ₃ (dBc) ^{Note}	Package
μPC3217GV	23	53	0	53	6.5	50	8-pin SSOP (4.45 mm (175))
μPC3218GV	23	63	10	53	3.5	50	
μPC3219GV	36.5	42.5	0	42.5	9.0	58	
μPC3221GV	33	60	10	50	4.2	56	

Note $f_1 = 44$ MHz, $f_2 = 45$ MHz, $V_{out} = 0.7$ V_{p-p} /tone, single-ended output

PIN EXPLANATIONS

Pin No.	Pin Name	Applied Voltage (V)	Pin Voltage (V) ^{Note}	Function and Application	Internal Equivalent Circuit
1	Vcc	4.5 to 5.5	_	Power supply pin. This pin should be externally equipped with bypass capacitor to minimize ground impedance.	
2	INPUT1	_	1.29	Signal input pins to AGC amplifier. This pin should be coupled with capacitor for DC cut.	AGC Control
3	INPUT2	_	1.29		
4	Vage	0 to Vcc	_	Gain control pin. This pin's bias govern the AGC output level. Minimum Gain at V _{AGC} : 0 to 0.5 V Maximum Gain at V _{AGC} : 3 to 3.5 V Recommended to use AGC voltage with externally resister (example: 1 k Ω).	AGC Amp.
5	GND2	0		Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible.	
6	OUTPUT2		2.28	Signal output pins of video amplifier. This pin should be coupled with capacitor for DC cut.	
7	OUTPUT1		2.28		
8	GND1	0	_	Ground pin. This pin should be connected to system ground with minimum inductance. Ground pattern on the board should be formed as wide as possible. All ground pins must be connected together with wide ground pattern to decrease impedance difference.	

Note Pin voltage is measured at Vcc = 5.0 V.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C	6.0	V
Gain Control Voltage Range	VAGC	T _A = +25°C	0 to Vcc	V
Power Dissipation	PD	T _A = +85°C Note	250	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C

Note Mounted on double-sided copper-clad 50 \times 50 \times 1.6 mm epoxy glass PWB

RECOMMENDED OPERATING RANGE

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc		4.5	5.0	5.5	V
Operating Ambient Temperature	TA	Vcc = 4.5 to 5.5 V	-40	+25	+85	°C
Gain Control Voltage Range	VAGC		0	-	3.5	V
Operating Frequency Range	fвw		10	45	100	MHz

ELECTRICAL CHARACTERISTICS

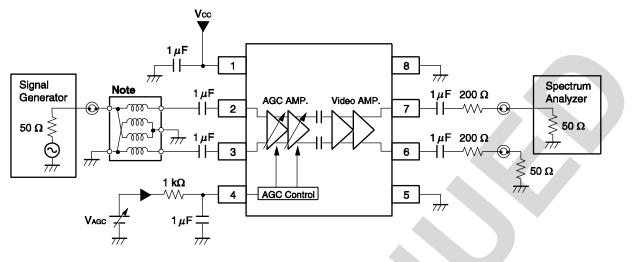
(TA = +25°C, Vcc = 5 V, f = 45 MHz, Zs = 50 Ω , ZL = 250 Ω , single-ended output)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
DC Characteristics							
Circuit Current	Icc	No input signal	Note 1	26	33	41	mA
AGC Pin Current	IAGC	No input signal, VAGC = 3.5 V	Note 1	-	16	50	μA
AGC Voltage High Level	VAGC (H)	@ Maximum gain	Note 1	3.0	_	3.5	V
AGC Voltage Low Level	VAGC (L)	@ Minimum gain	Note 1	0	-	0.5	V
RF Characteristics							
Maximum Voltage Gain	Gmax	$V_{AGC} = 3.0 \text{ V}, \text{ P}_{in} = -60 \text{ dBm}$	Note 1	57	60	63	dB
Middle Voltage Gain 1	GMID1	V_{AGC} = 2.2 V, P_{in} = -60 dBm	Note 1	47.5	50.5	53.5	dB
Middle Voltage Gain 2	GMID2	V_{AGC} = 1.2 V, P_{in} = -30 dBm	Note 1	18	21	24	dB
Minimum Voltage Gain	Gmin	$V_{AGC} = 0.5 \text{ V}, \text{ Pin} = -30 \text{ dBm}$	Note 1	6	10	14	dB
Gain Control Range (input prescribe)	GCRin	VAGC = 0.5 to 3.0 V	Note 1	43	50	I	dB
Gain Control Range (output prescribe)	GCRout	Vout = 1.0 V _{P-P}	Note 1	36	40	-	dB
Gain Slope	Gslope	Gain (@ V _{AGC} = 2.2 V) – Gain (= 1.2 V)	@ VAGC Note 1	26.5	29.5	32.5	dB/V
Maximum Output Voltage	Voclip	VAGC = 3.0 V (@ Maximum gain)	Note 1	2.0	2.8	-	V _{p-p}
Noise Figure	NF	VAGC = 3.0 V (@ Maximum gain)	Note 3	-	4.2	5.7	dB
3rd Order Intermodulation Distortion 1	IM31	$ f_1 = 44 \text{ MHz}, f_2 = 45 \text{ MHz}, Z_L = 2 \\ P_{in} = -30 \text{ dBm/tone}, \\ V_{out} = 0.7 \text{ V}_{P\text{-}p}/\text{tone} (@ single-endoted output}) $		43	47	_	dBc
3rd Order Intermodulation Distortion 2	IM32	$ f_1 = 44 \text{ MHz}, f_2 = 45 \text{ MHz}, Z_L = 2 \\ V_{AGC} = 3.0 \text{ V} (@ \text{ Maximum gain}), \\ V_{out} = 0.7 \text{ V}_{P\text{-}p}/\text{tone} (@ \text{ single-end} \\ \text{output}) $,	50	56	-	dBc
Gain Difference of OUTPUT1 and OUTPUT2	ДG	$V_{AGC} = 3.0 \text{ V}, \text{ P}_{in} = -60 \text{ dBm},$ $\Delta G = G (@ P_{out}1) - G (@ P_{out}2)$ No	ote 1, 2	-0.5	0	+0.5	dB

Notes 1. By measurement circuit 1

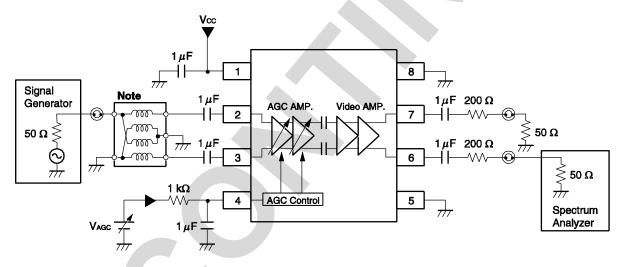
2. By measurement circuit 2

3. By measurement circuit 3

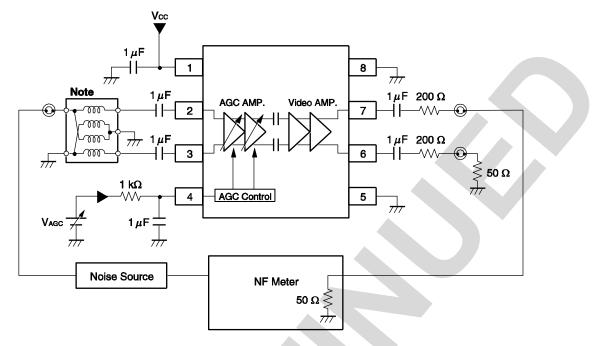

STANDARD CHARACTERISTICS (T_A = +25°C, Vcc = 5 V, Zs = 50 Ω)

Parameter	Symbol	Test Conditions		Reference Value	Unit
Noise Figure 2	NF2	Gain reduction = -10 dBm No	te 2	6.0	dB
Noise Figure 3	NF3	Gain reduction = -20 dBm No	te 2	9.5	dB
Output Voltage	Vout	P _{in} = -56 to -16 dBm No	te 1	1.0	V _P -p
Input Impedance	Zin	VAGC = 0.5 V, f = 45 MHz No	te 3	0.9 k – j1.4 k	Ω
Output Impedance	Zout	VAGC = 0.5 V, f = 45 MHz No	te 3	9.0 + j1.9	Ω
Input 3rd Order Distortion Intercept Point	IIP₃	$V_{AGC} = 0.5 V (@ Minimum gain),$ f1 = 44 MHz, f2 = 45 MHz, ZL = 250 Ω (@ single-ended output) No) te 1	+2.5	dBm

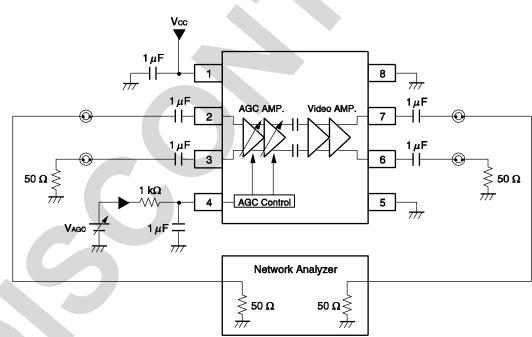
Notes 1. By measurement circuit 1


- 2. By measurement circuit 3
- 3. By measurement circuit 4

MEASUREMENT CIRCUIT 1

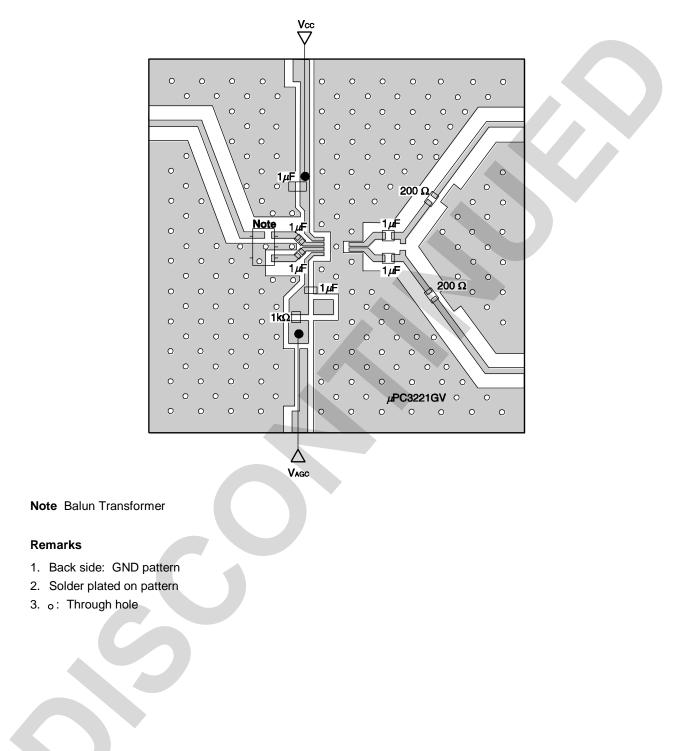

Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

MEASUREMENT CIRCUIT 2



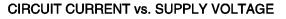
Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

MEASUREMENT CIRCUIT 3



Note Balun Transformer: TOKO 617DB-1010 B4F (Double balanced type)

MEASUREMENT CIRCUIT 4


The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

■ ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD (MEASUREMENT CIRCUIT 1)

1 000

TYPICAL CHARACTERISTICS (T_A = +25°C , unless otherwise specified)

VOLTAGE GAIN vs. FREQUENCY

-60 dBm)

30

100

Frequency f (MHz)

GAIN CONTROL VOLTAGE RANGE

TA = +85°C

AGC PIN CURRENT vs.

dBm)

VAGC = 3.0 V (Pin = -60 dBm)

 $1.6 V (P_{in} =$

= 0.5 V (Pi

70

60 50

40 30

20

10

0 -10 -20 -30

-40

-50 -60 10

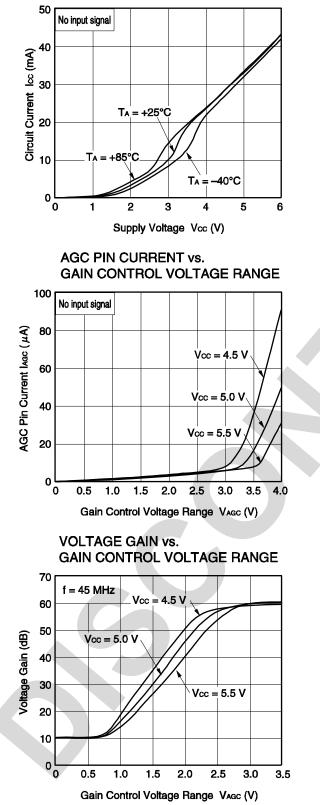
100

80

60

40

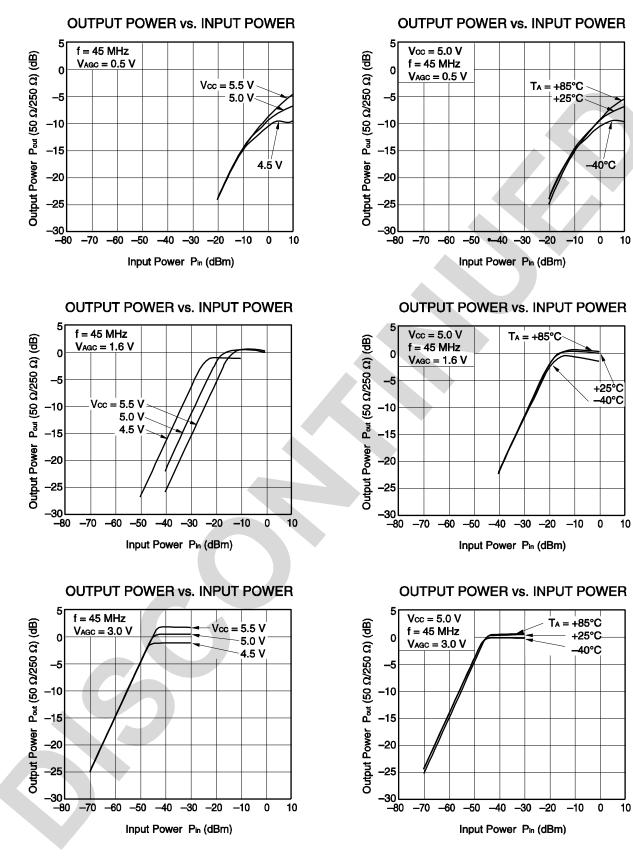
AGC Pin Current lage (µA)

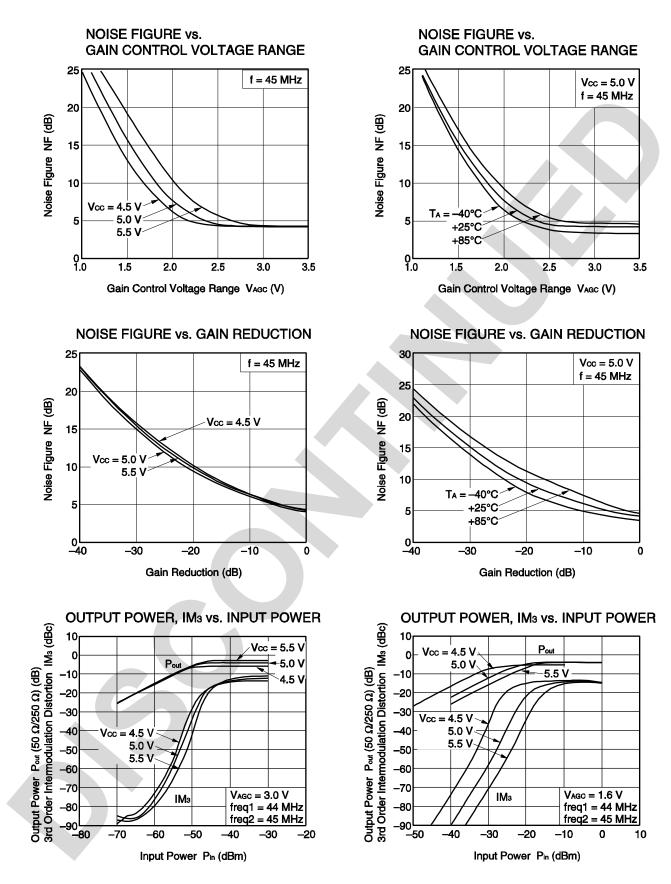

Voltage Gain (dB)

VAGC =

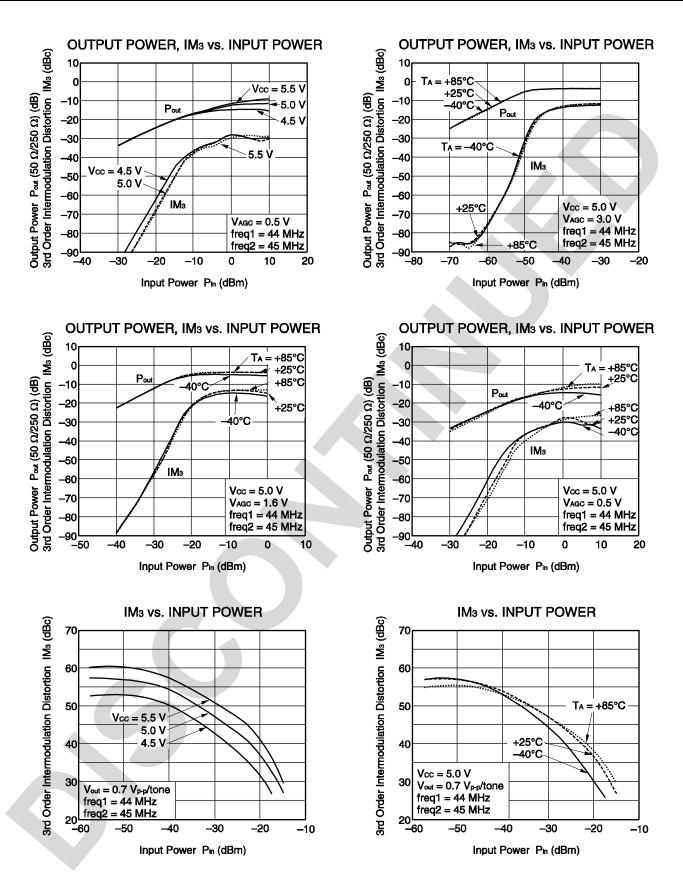
Vagc

Vcc = 5.5 V 5.0 V

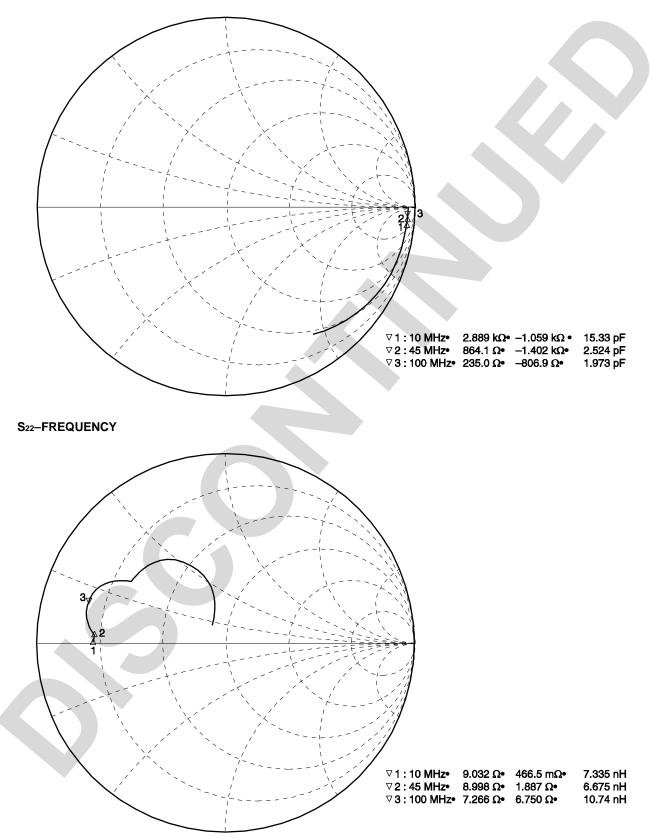

No input signal


 $T_A = -40^{\circ}C$ 20 TA = +25°C 0 0 1.0 2.5 0.5 1.5 2.0 3.0 3.5 4.0 Gain Control Voltage Range VAGC (V) VOLTAGE GAIN vs. GAIN CONTROL VOLTAGE RANGE 70 Vcc = 5.0 Vf = 45 MHz 60 50 40 30 40°C 20 T₄ =

Remark The graphs indicate nominal characteristics.

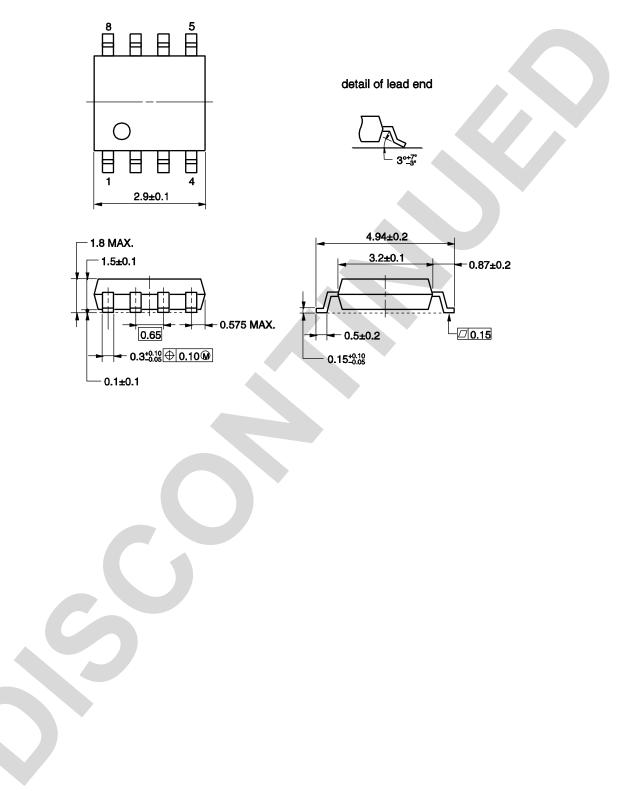

Data Sheet PU10171EJ03V0DS

Remark The graphs indicate nominal characteristics.


Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

S-PARAMETERS (TA = +25°C, Vcc = VAGc = 5.0 V)



Data Sheet PU10171EJ03V0DS

PACKAGE DIMENSIONS

8-PIN PLASTIC SSOP (4.45 mm (175)) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).

All the ground pins must be connected together with wide ground pattern to decrease impedance difference.

(3) The bypass capacitor should be attached to Vcc line.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
VPS	Peak temperature (package surface temperature) Time at temperature of 200°C or higher Preheating time at 120 to 150°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 215°C or below : 25 to 40 seconds : 30 to 60 seconds : 3 times : 0.2%(Wt.) or below	VP215
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (pin temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	H\$350

Caution Do not use different soldering methods together (except for partial heating).