GE1301, GE1302 GE1303, GE1304

December 1993

6A, 50V - 200V Ultrafast Diodes

Features

- Glass-Passivated Junction
- Ultra-Fast Recovery Times
- . Low Forward Voltage Drop, High-Current Capability
- . Low Leakage Current
- High Surge Current Capability

Description

The GE1301, GE1302, GE1303, and GE1304 are ultra-fast recovery silicon rectifiers ($t_{\rm RR}$ = 35ns max.) featuring low forward voltage drop, high-current capability. They use glass-passivated epitaxial construction.

These rectifiers are intended for TV deflection, inverter, high-frequency power supplies, energy recovery, and output rectification.

These types are supplied in unitized-glass hermeticallysealed AL-4 package.

Absolute Maximum Ratings Supply Frequency of 60Hz, Resi	stive or Inducti	ve Loads (Note	1)		
•	GE1301	GE1302	GE1303	GE1304	UNITS
Maximum Peak Repetitive Reverse VoltageVRRM	50	100	150	200	٧
Maximum RMS Input (Supply) VoltageV _{RMS}	35	70	105	140	٧
Maximum DC Reverse (Blocking) Voltage V _{R(DC)}	50	100	150	200	٧
Maximum Average Forward Output Current Lead Length = 0.375 in. (9.5mm); T _A = +55°C	6	6	6	6	A
Maximum Peak Surge (Non-Repetitive) Forward Current For 8.3ms Half Sine Wave, Superimposed on Rated Load I _{FSM} Operating Junction and Storage Temperature	150 -65 to +175	150 -65 to +175	150 -65 to +175	150 -65 to +175	A ℃

NOTE:

1. For capacitive load derate current by 20%.

Specifications GE1301, GE1302, GE1303, GE1304

Electrical Specifications $T_A = +25$ °C, Unless Otherwise Specified

		LIMITS FOR ALL TYPES			
PARAMETERS	SYMBOL	MIN	TYP	MAX	UNITS
Maximum Instantaneous Forward-Voltage Drop at 2A	V _F	-	-	0.975	٧
Maximum Reverse Current					
At Maximum DC Reverse (Blocking) Voltage, T _A = +25°C	I _R	-	-	5	μΑ
At Maximum DC Reverse (Blocking) Voltage, T _A = +150°C	I _R	-		50	μА
Maximum Reverse Recovery Time					
At $I_F = 0.5A$, $I_R = 1A$, $I_{RR} = 0.25A$	t _{RR}	-	-	35	ns
Typical Junction Capacitance					
At Frequency = 1MHz and Applied Reverse Voltage = 4V	CJ	-	100	-	pF
Thermal Resistance					
Junction-to-Lead at 0.375 in. (9.5mm)	R _{eJA}	-	16		°C/W

Typical Performance Curves

FIGURE 1. MAXIMUM AVERAGE FORWARD OUTPUT CURRENT CHARACTERISTIC

FIGURE 2. MAXIMUM PEAK SURGE (NON-REPETITIVE)
FORWARD CURRENT CHARACTERISTIC

Typical Performance Curves (Continued)

FIGURE 3. TYPICAL INSTANTANEOUS FORWARD CURRENT CHARACTERISTIC

FIGURE 4. TYPICAL REVERSE LEAKAGE CURRENT CHARACTERISTICS

FIGURE 5. REVERSE-RECOVERY TIME WAVEFORM

FIGURE 6. TYPICAL JUNCTION CAPACITANCE CHARACTERISTIC

NOTES:

- 1. RISE TIME = 7ns MAX., INPUT IMPEDANCE = 1MΩ, 22pF
- 2. RISE TIME = 10ns MAX., SOURCE IMPEDANCE = 50Ω

FIGURE 7. REVERSE-RECOVERY TIME TEST CIRCUIT