
SiHD240N60E

Vishay Siliconix

E Series Power MOSFET

PRODUCT SUMMARY				
V _{DS} (V) at T _J max.	650			
R _{DS(on)} typ. (Ω) at 25 °C	$V_{GS} = 10 V$	0.208		
Q _g max. (nC)	23			
Q _{gs} (nC)	4			
Q _{gd} (nC)	6			
Configuration	Single			

FEATURES

- 4th generation E series technology
- Low figure-of-merit (FOM) Ron x Qg
- Low effective capacitance (C_{o(er)})
- Reduced switching and conduction losses
- Avalanche energy rated (UIS)
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Server and telecom power supplies
- Switch mode power supplies (SMPS)
- Power factor correction power supplies (PFC)
- Lighting
 - High-intensity discharge (HID)
 - Fluorescent ballast lighting
- Industrial
 - Welding
 - Induction heating
 - Motor drives
 - Battery chargers
 - Solar (PV inverters)

ORDERING INFORMATION				
Package DPAK (TO-252)				
Lead (Pb)-free and halogen-free	SiHD240N60E-GE3			
	SiHD240N60E-T1-GE3			
	SiHD240N60E-T4-GE3			
	SiHD240N60E-T5-GE3			

ABSOLUTE MAXIMUM RATINGS ($T_C = 25$ °C, unless otherwise noted)					
PARAMETER			SYMBOL	LIMIT	UNIT
Drain-source voltage			V _{DS}	600	V
Gate-source voltage			V _{GS}	± 30	v
Continuous drain current (T _J = 150 °C)	V _{GS} at 10 V	T _C = 25 °C T _C = 100 °C	°C I _D	12	
	VGS at 10 V	T _C = 100 °C		7	А
Pulsed drain current ^a			I _{DM}	30	
Linear derating factor				0.63	W/°C
Single pulse avalanche energy ^b			E _{AS}	81	mJ
Maximum power dissipation			PD	78	W
Operating junction and storage temperature range			T _J , T _{stg}	-55 to +150	°C
Drain-source voltage slope $T_J = 125 \text{ °C}$		dv/dt	100		
Reverse diode dv/dt ^d			28	V/ns	
Soldering recommendations (peak temperature) ^c For 10 s			260	°C	

Notes

a. Repetitive rating; pulse width limited by maximum junction temperature

b. V_{DD} = 120 V, starting T_J = 25 °C, L = 28.2 mH, R_g = 25 Ω , I_{AS} = 2.4 A

c. 1.6 mm from case

d. $I_{SD} \leq I_D, \, di/dt$ = 100 A/µs, starting T_J = 25 $^\circ C$

S22-0679-Rev. C, 08-Aug-2022

COMPLIANT

HALOGEN

FREE

Vishay Siliconix

Static Vol	THERMAL RESISTANCE RATINGS								
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	PARAMETER	SYMBOL	TYP.		MAX.		UNIT		
Maximum junction-to-case (drain) $R_{h,uc}$ - 1.6 SPECIFICATIONS (T _J = 25 °C, unless otherwise noted) Test conditions Min. TYP. MAX. UN Static Test conditions Min. TYP. MAX. UN Static Vigs emperature coefficient $\Delta V_{DS}/T_J$ Reference to 25 °C, $I_D = 1 mA$ - 0.63 - 5.0 V////////////////////////////////////	Maximum junction-to-ambient	R _{thJA}	- 62		00.004				
$\begin{array}{ c c c c c } \hline PARAMETER SYMBOL SYMBOL TEST CONDITIONS MIN. TYP. MAX. UN Static $$$ Test conditions $$$ WIN. TYP. MAX. UN $$$ Static $$$$ Test conditions $$$ Works = 0 V, l_p = 250 \muA $$$ 600 $$ - $$$ 0 V, $$$ 0.5 emperature coefficient $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$	Maximum junction-to-case (drain)	R _{thJC}	- 1.6				C/W		
$\begin{array}{ c c c c c } \hline PARAMETER SYMBOL SYMBOL TEST CONDITIONS MIN. TYP. MAX. UN Static $$$ Test conditions $$$ WIN. TYP. MAX. UN $$$ Static $$$$ Test conditions $$$ Works = 0 V, l_p = 250 \muA $$$ 600 $$ - $$$ 0 V, $$$ 0.5 emperature coefficient $$$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$									
Static Vol Vol Vol Vol Vol Vol Vol Vol Vol State Vol State Vol <th< td=""><td>SPECIFICATIONS (T_J = 25 $^{\circ}$C, 1</td><td>unless otherwi</td><td>se noted)</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	SPECIFICATIONS (T _J = 25 $^{\circ}$ C, 1	unless otherwi	se noted)						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PARAMETER	SYMBOL	TES	T CONDIT	IONS	MIN.	TYP.	MAX.	UNIT
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Static								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source breakdown voltage	V _{DS}	V _{GS} =	= 0 V, I _D = 2	250 μΑ	600	-	-	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{DS} temperature coefficient	$\Delta V_{DS}/T_{J}$	Referenc	e to 25 °C,	$I_D = 1 \text{ mA}$	-	0.63	-	V/°C
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source threshold voltage (N)	V _{GS(th)}	V _{DS} =	V_{GS} , $I_D = 2$	250 µA	3.0	-	5.0	V
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		I	\	$I_{\rm GS} = \pm 20$	V	-	-	± 100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source leakage	IGSS	\	/ _{GS} = ± 30	V	-	-	± 1	μA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zour anto unlitera durin comunit		V _{DS} =	600 V, V _G	_S = 0 V	-	-	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero gale voltage drain current	IDSS	V _{DS} = 480 V	, V _{GS} = 0 V	′, T _J = 125 °C	-	-	10	μA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-source on-state resistance	R _{DS(on)}	V _{GS} = 10 V	Ic	₀ = 5.5 A	-	0.208	0.240	Ω
Dynamic Input capacitance Ciss V _{GS} = 0 V, V _{DS} = 100 V, f = 1 MHz - 783 - - 783 - - 783 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 50 - - 187 - - 187 - - 187 - - 187 - - 187 - - 187 - 187 - 187 - 187 - 187 - 187 - 187 - 15 23 - 165 23 100 10 5 5 10 10 5 5 10 10 15 10 10 10 15 30 10 10 11 23 10 10 <	Forward transconductance ^a		V _{DS} =	= 20 V, I _D =	5.5 A	-	4	-	S
Output capacitance C_{oss} $V_{DS} = 100 \text{ V}, f = 1 \text{ MHz}$ $ 50$ $-$ Reverse transfer capacitance C_{rss} r_{rss} $r_{rss} = 100 \text{ V}, f = 1 \text{ MHz}$ $ 5$ $-$ Effective output capacitance, energy related b $C_{o(er)}$ $V_{DS} = 0 \text{ V to } 480 \text{ V}, V_{GS} = 0 \text{ V}$ $ 32$ $ 32$ $-$ Effective output capacitance, time related b $C_{o(tr)}$ $V_{DS} = 0 \text{ V to } 480 \text{ V}, V_{GS} = 0 \text{ V}$ $ 187$ $ 32$ $-$ Total gate charge Q_{gg} Q_{gg} $V_{GS} = 10 \text{ V}$ $I_D = 5.5 \text{ A}, V_{DS} = 480 \text{ V}$ $ 4$ $ nd$ Gate-drain charge Q_{gd} $V_{GS} = 10 \text{ V}$ $I_D = 5.5 \text{ A}, V_{DS} = 480 \text{ V}$ $ 4$ $ nd$ Turn-on delay time $t_{d(on)}$ T_v $V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ $ 14$ 28 $ 26$ 52 $-$ Fall time t_f T_f T_f T_f $ 14$ 28 $ 14$ 28 $ 14$ 28 Gate input resistance R_g $f = 1 \text{ MHz}, open drain0.81.53.000Drain-Source Body Diode Characteristics 12 12 30Diode forward currentI_SMOSFET symbolshowing theintegral reversep - n junction diode 12 209418$									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input capacitance	C _{iss}	V _{DS} = 100 V,		-	783	-	-	
Reverse transfer capacitance C_{rss} $f = 1 \text{ MHz}$ $ 5$ $-$ Effective output capacitance, energy related a $C_{o(er)}$ $V_{DS} = 0 \text{ V}$ to $480 \text{ V}, V_{GS} = 0 \text{ V}$ $ 32$ $-$ Effective output capacitance, time related b $C_{o(tr)}$ $V_{DS} = 0 \text{ V}$ to $480 \text{ V}, V_{GS} = 0 \text{ V}$ $ 187$ $-$ Total gate charge Q_{g} Q_{g} $V_{GS} = 10 \text{ V}$ $I_{D} = 5.5 \text{ A}, V_{DS} = 480 \text{ V}$ $ 44$ $-$ Gate-source charge Q_{gd} Q_{gd} $V_{GS} = 10 \text{ V}$ $I_{D} = 5.5 \text{ A}, V_{DS} = 480 \text{ V}$ $ 44$ $-$ Turn-on delay time $t_{d(on)}$ $V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ $ 144$ 28 Turn-off delay time $t_{d(off)}$ $V_{GS} = 10 \text{ V}, R_g = 9.1 \Omega$ $ 144$ 28 Fall time t_f $ 144$ 28 $ 144$ 28 Gate input resistance R_g $f = 1 \text{ MHz}$ open drain 0.8 1.5 3.0 G_G Drain-Source Body Diode Characteristics $P - n$ junction diode $ 12$ P Pulsed diode forward current I_{SM} V_{SD} $T_J = 25 ^{\circ} C, I_S = 5.5 \text{ A}, V_{GS} = 0 \text{ V}$ $ 1.2$ V_{GS} Diode forward voltage V_{SD} $T_J = 25 ^{\circ} C, I_S = 5.5 \text{ A}, V_{GS} = 0 \text{ V}$ $ 1.2$ V_{GS}	Output capacitance	C _{oss}			-	50	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse transfer capacitance	C _{rss}			-	5	-		
Effective output capacitance, time related b $C_{o(tr)}$ -187-Total gate charge Q_g Q_g $V_{GS} = 10 \text{ V}$ $I_D = 5.5 \text{ A}, V_{DS} = 480 \text{ V}$ -4-ndGate-source charge Q_{gd} Q_{gd} $I_D = 5.5 \text{ A}, V_{DS} = 480 \text{ V}$ -4-ndGate-drain charge Q_{gd} Q_{gd} -1523-4-ndTurn-on delay time $t_{d(on)}$ $V_{CS} = 10 \text{ V}$ $P_D = 480 \text{ V}, I_D = 5.5 \text{ A}, V_{CS} = 10 \text{ V}$ -1428-1428Turn-off delay time $t_{d(off)}$ $V_{CS} = 10 \text{ V}, R_g = 9.1 \Omega$ -1428-1428-1428-1428-1428-1428-1428-1428-14281428142814281428142814281428142814281428142814281428142812121212121212			V_{DS} = 0 V to 480 V, V_{GS} = 0 V		-	32	-	pF	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		C _{o(tr)}			-	187	-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total gate charge	Qg				-	15	23	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-source charge	Q _{gs}	$V_{GS} = 10 \text{ V}$ $I_D = 5.5 \text{ A}, V_{DS} = 480 \text{ V}$		-	4	-	nC	
Rise time t_r $V_{DD} = 480 \text{ V}, \text{ I}_D = 5.5 \text{ A}, \text{ V}_{GS} = 10 \text{ V}, \text{ Rg} = 9.1 \Omega$ $ 14$ 28 Turn-off delay time $t_{d(off)}$ Fall time t_f Gate input resistance R_g $f = 1 \text{ MHz}, \text{ open drain}$ 0.8 1.5 3.0 $Continuous source-drain diode currentI_SPulsed diode forward currentI_SI_{SM}MOSFET \text{ symbol}showing theintegral reversep - n junction diode 12ADiode forward voltageV_{SD}T_J = 25 \text{ °C}, I_S = 5.5 \text{ A}, V_{GS} = 0 \text{ V} 1.2VReverse recovery timet_{rr}T_L = 25 \text{ °C}, I_S = 5.5 \text{ A} 209418ms$	Gate-drain charge					-	6	-	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-on delay time	t _{d(on)}				-	15	30	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise time	t _r	V _{DD} =			-	14	28	
Gate input resistance R_g $f = 1 \text{ MHz}$, open drain 0.8 1.5 3.0 G Drain-Source Body Diode CharacteristicsContinuous source-drain diode current I_S MOSFET symbol showing the integral reverse $p - n$ junction diode $ 12$ A Pulsed diode forward current I_{SM} $T_J = 25 \ ^{\circ}C$, $I_S = 5.5 \text{ A}$, $V_{GS} = 0 \text{ V}$ $ 1.2$ V Piode forward voltage V_{SD} $T_J = 25 \ ^{\circ}C$, $I_S = 5.5 \text{ A}$, $V_{GS} = 0 \text{ V}$ $ 1.2$ V Reverse recovery time t_{rr} $T_{rr} = 25 \ ^{\circ}C$, $I_S = 16 = 55 \ ^{\circ}A$ $ 209$ 418 rr	Turn-off delay time	t _{d(off)}				-	26	52	ns
Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse $p - n$ junction diode12APulsed diode forward currentIsmIsmTJ = 25 °C, Is = 5.5 A, VGS = 0 V1.2VDiode forward voltageVspTJ = 25 °C, Is = 5.5 A, VGS = 0 V1.2VReverse recovery timetrrTL = 25 °C, Is = 16 = 5.5 A-209418ns	Fall time	t _f			-	14	28		
Drain-Source Body Diode CharacteristicsContinuous source-drain diode currentIsMOSFET symbol showing the integral reverse $p - n$ junction diode12APulsed diode forward currentIsmIsmTJ = 25 °C, Is = 5.5 A, VGS = 0 V1.2VDiode forward voltageVspTJ = 25 °C, Is = 5.5 A, VGS = 0 V1.2VReverse recovery timetrrTL = 25 °C, Is = 16 = 5.5 A-209418ns	Gate input resistance	R _g	f = 1 MHz, open drain		0.8	1.5	3.0	Ω	
Continuous source-drain diode currentIsshowing the integral reverse $p - n$ junction diode12APulsed diode forward currentIsIs $r_{J} = 25 °C$, Is = 5.5 A, VGS = 0 V30Diode forward voltageVSDTJ = 25 °C, Is = 5.5 A, VGS = 0 V1.2VReverse recovery time t_{rr} TJ = 25 °C, Is = 16 = 5.5 A-209418ns									
Pulsed diode forward currentIIII30Diode forward voltageVSD $T_J = 25 \ ^{\circ}C$, $I_S = 5.5 \ ^{\circ}A$, $V_{GS} = 0 \ ^{\circ}V$ 1.2VReverse recovery time t_{rr} $T_J = 25 \ ^{\circ}C$, $I_S = 5.5 \ ^{\circ}A$ 209418ms	Continuous source-drain diode current	I _S	showing the integral reverse		-	-	12		
Reverse recovery time t_{rr} $-$ 209418ns	Pulsed diode forward current	I _{SM}			-	-	30	A	
Reverse recovery time t_{rr} $T_{rr} = 25 \degree C_{rr} = I_0 = 55.4$ $- 209 418 ns$	Diode forward voltage	V _{SD}	T _J = 25 °C, I _S = 5.5 A, V _{GS} = 0 V		-	-	1.2	V	
T ₁ = 25 °C ₁ = -1 ₂ = -55 Δ	Reverse recovery time					-	209	418	ns
Reverse recovery charge Q_{rr} di(dt = 100 A/us V = 25 V = 2.1 4.2 μ C	Reverse recovery charge	Q _{rr}	$T_J = 25 \text{ °C}, I_F = I_S = 5.5 \text{ A},$ di/dt = 100 A/µs, V _R = 25 V		-	2.1	4.2	μC	
	Reverse recovery current				-	18	-	A	

Notes

a. $C_{oss(er)}$ is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS}

b. $C_{oss(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 % to 80 % V_{DSS}

SiHD240N60E

Vishay Siliconix

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

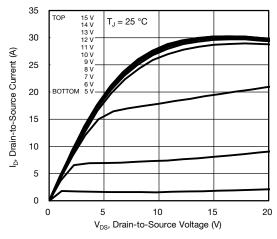
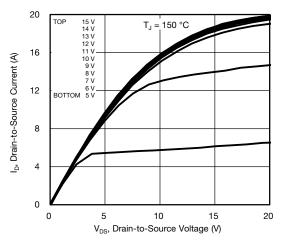



Fig. 1 - Typical Output Characteristics

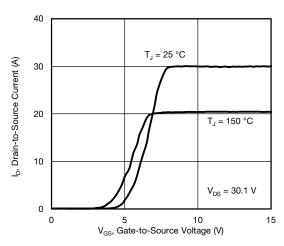


Fig. 3 - Typical Transfer Characteristics

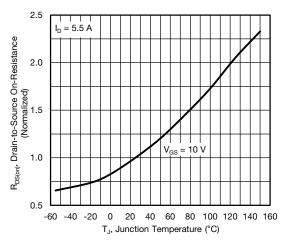


Fig. 4 - Normalized On-Resistance vs. Temperature

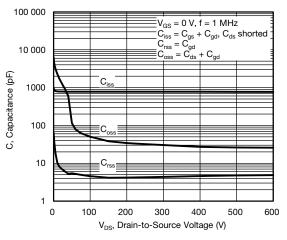


Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage

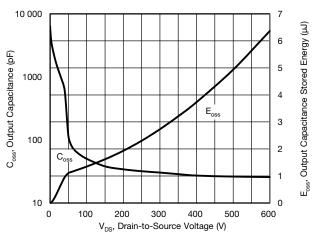


Fig. 6 - $C_{\rm oss}$ and $E_{\rm oss}$ vs. $V_{\rm DS}$

S22-0679-Rev. C, 08-Aug-2022

3

Document Number: 92100

For technical questions, contact: <u>hvm@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

SiHD240N60E

Vishay Siliconix

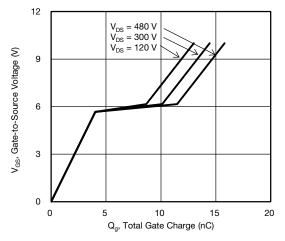


Fig. 7 - Typical Gate Charge vs. Gate-to-Source Voltage

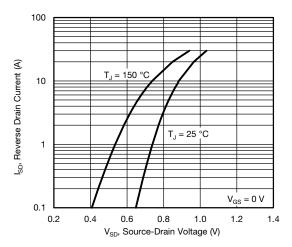


Fig. 8 - Typical Source-Drain Diode Forward Voltage

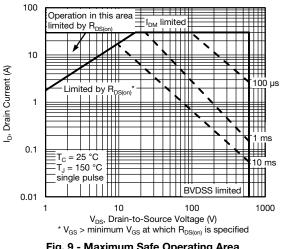


Fig. 9 - Maximum Safe Operating Area

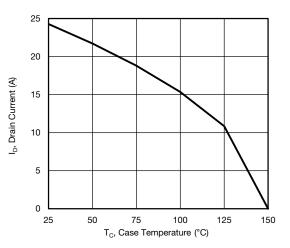


Fig. 10 - Maximum Drain Current vs. Case Temperature

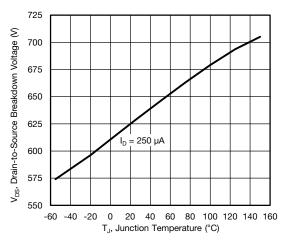
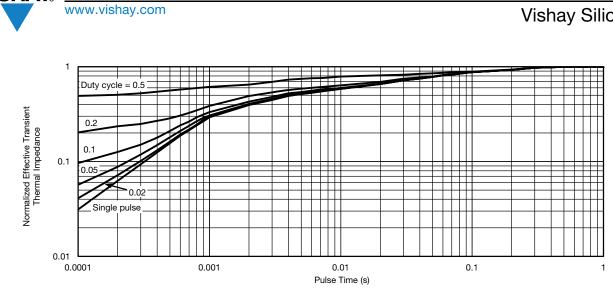
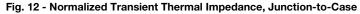




Fig. 11 - Temperature vs. Drain-to-Source Voltage

For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

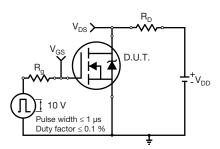


Fig. 13 - Switching Time Test Circuit

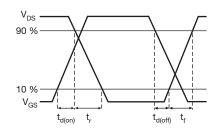


Fig. 14 - Switching Time Waveforms

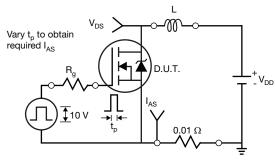


Fig. 15 - Unclamped Inductive Test Circuit

Current regulator Same type as D.U.T

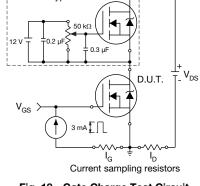


Fig. 18 - Gate Charge Test Circuit

S22-0679-Rev. C, 08-Aug-2022

5

Document Number: 92100

V_{DD} VDS AS

Fig. 16 - Unclamped Inductive Waveforms

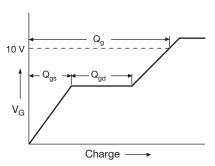
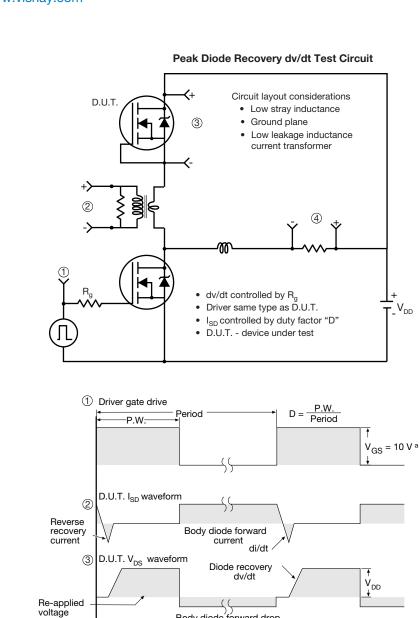



Fig. 17 - Basic Gate Charge Waveform

SiHD240N60E

Vishay Siliconix

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?92100.

Body diode forward drop

55

Fig. 19 - For N-Channel

Ripple ≤ 5 %

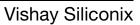
a. $V_{GS} = 5$ V for logic level devices

ł I_{SD}

Inductor current

4

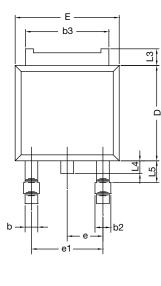
Note

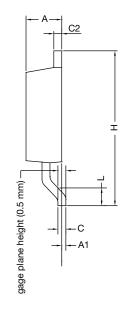

6

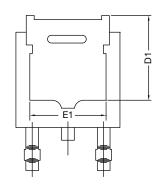
For technical questions, contact: hvm@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Siliconix

SiHD240N60E



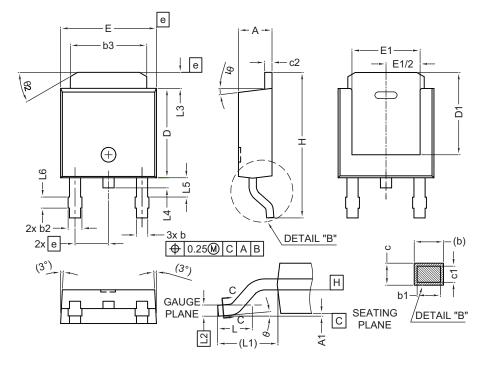




TO-252AA Case Outline

VERSION 1: FACILITY CODE = Y

	MILLIMETERS			
DIM.	MIN.	MAX.		
А	2.18	2.38		
A1	-	0.127		
b	0.64	0.88		
b2	0.76	1.14		
b3	4.95	5.46		
С	0.46	0.61		
C2	0.46	0.89		
D	5.97	6.22		
D1	4.10	-		
E	6.35	6.73		
E1	4.32	-		
Н	9.40	10.41		
е	2.28	2.28 BSC		
e1	4.56	4.56 BSC		
L	1.40	1.78		
L3	0.89	1.27		
L4	-	1.02		
L5	1.01	1.52		


Note

• Dimension L3 is for reference only

Vishay Siliconix

VERSION 2: FACILITY CODE = N

	MILLIMETERS		
DIM.	MIN.	MAX.	
A	2.18	2.39	
A1	-	0.13	
b	0.65	0.89	
b1	0.64	0.79	
b2	0.76	1.13	
b3	4.95	5.46	
С	0.46	0.61	
c1	0.41	0.56	
c2	0.46	0.60	
D	5.97	6.22	
D1	5.21	-	
E	6.35	6.73	
E1	4.32 -		
е	2.29 BSC		
Н	9.94	10.34	

	MILLIMETERS		
DIM.	MIN.	MAX.	
L	1.50	1.78	
L1	2.74	l ref.	
L2	0.51	BSC	
L3	0.89	1.27	
L4	-	1.02	
L5	1.14	1.49	
L6	0.65	0.85	
θ	0°	10°	
θ1	0°	15°	
θ2	25° 35°		

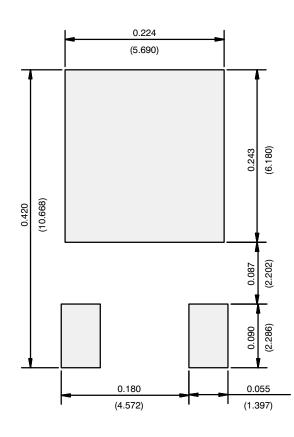
Notes

• Dimensioning and tolerance confirm to ASME Y14.5M-1994

• All dimensions are in millimeters. Angles are in degrees

• Heat sink side flash is max. 0.8 mm

Radius on terminal is optional


ECN: E22-0399-Rev. R, 03-Oct-2022 DWG: 5347

2

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR DPAK (TO-252)

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.