电容传感评估板 Minyuan Capacitive Sensing Kit MCSK-MC

用户使用手册

(V3.0)

©敏源传感科技有限公司

202312

目 录

1.	产品概述	3
2.	主板构成	3
3.	使用指南	3
	3.1 供电电源	3
	3.2 固件选择	3
	3.3 评估板上电启动界面	4
	3.4 安装串口助手	4
	3.5 串口交互命令	5
	3.6 串口命令查表	6
4.	测试环境搭建	8

1. 产品概述

电容温度传感评估板 MCSK(Minyuan Capacitive Sensing Kit)提供了一个测试开发平台,通过I2C或数 字单总线接口,可读取敏源传感研发的电容类、温度类芯片及模组,在 OLED 显示测量数据,或通过电脑串口 工具显示并长期记录数据,也可以通过人机交互指令对电容芯片/模组进行编程配置。

MCSK-MC可集成敏源传感数字电容芯片MC11X、MC12X、差分液位模组LDM、单端液位模组LSP等, 进行电容测量。

2. 主板构成

MCSK主板构成如下图所示:

电源开关: 左开右关 复位按键

3. 使用指南

MCSK可以直观显示敏源传感电容型芯片及模组测量出的数据。用户还可以通过评估板的USB接口连接 PC端串口工具(比如: sscom)进行命令交互和数据打印。

3.1 供电电源

MCSK可采用USB供电方式,或通过下载器供电,供电电压为 5V。

3.2 固件选择

MCSK内置ARM内核的MCU,出厂前会配置固件。MCSK-MC适用于MC11PCB、MC12PCB、LSP模 组以及LDM模组。若使用其他芯片或模组,可通过IAP在线升级的方式更新固件,IAP升级操作流程请参考 《MCSK-IAP在线升级流程说明》。

3.3 评估板上电启动界面

评估板默认版本适用于MC11、MC12系列芯片以及LSP模组、LDM模组,若暂时未接或接入了不识别的芯片/模组,显示屏将显示"Search module...",串口打印相同提示信息;接入后显示当前模组/芯片测量信息,串口界面循环打印相关测量数据,接入不同产品的显示屏及打印信息不完全一致,下图以评估板接入MC11PCB为例。

未接入

接MC11PCB

串口打印信息如下:

*************当前模组类型为: MC11***********************************															
	RUI	NT.	SCD	J		201	NI 34	4							
*****	kokokoko	kokok	skokoko	kokokoko	sko ko	kokoko	kokokoko	kokoł	cokokokok	:skoko	kojeo jeo	kokokokok	<u> </u>		
MC11S:	F0=	3.	122	Mhz	f	17	F1=	1.	512	7	4f	Mhz	R=	0.	4843
MC11S:	F0=	3.	120	Mhz	f	15	F1=	1.	512	7	4f	Mhz	R=	0.	4846
MC11S:	F0=	3.	119	Mhz	f	14	F1=	1.	511	7	4e	Mhz	R=	0.	4845
MC11S:	F0=	3.	120	Mhz	f	15	F1=	1.	512	7	4f	Mhz	R=	0.	4846
			_		-								_		

图3.3-2. MC11PCB串口打印信息

图3.3-1. MCSK显示信息

3.4 安装串口助手

评估板 USB 串口输出可配合常用的串口工具,如 sscom5.13 串口调试工具(下载网址为: <u>http://www.daxia.com/download/sscom.rar</u>)。

在端口号下拉菜单选择电脑识别出的MCSK对应的串口COM端口号,波特率115200bps,数据位8, 停止位1,奇偶校验无,流控无,如下左图所示。"发送"-"终端仿真设置"中设置为"按键立即发送该键 值",如下右图所示。

settings	-	
Port	CUM24	T
Baud rate	115200	-
Data bits	8	
Stop bits	1	
Parity	None	
Flow control	None	-

发送	多字符串	小工具	帮助	回报作者	PCB打样	
	终端仿真设置	E >		回车后发送	輸入行(带回显)	
	发送文件设置		~	按键立即发送该键值		
	帮助		本地回显按键值			

3.5 串口交互命令

在评估板搜索到电容芯片状态下,如下图所示,**注意光标要在数据界面**,单击"Esc"键退出循环显示模式,进入命令接收模式。

图3.5-1. 串口工具进入命令交互模式

注:某些电脑键盘的Esc键对应的值不是0x1B,所以存在Esc键不能退出循环的现象,可以如下图所示 直接发送0x1B来进行退出循环搜索模式。

LSP: F1 = 76.532 Mhz C1 = 0.327 pF F2 = 76.344 Mhz C2 = 0.429 pF VT = 615.3 mV LSP: F1 = 76.532 Mhz C1 = 0.327 pF F2 = 76.344 Mhz C2 = 0.429 pF VT = 616.6 mV LSP: F1 = 76.532 Mhz C1 = 0.327 pF F2 = 76.344 Mhz C2 = 0.429 pF VT = 615.5 mV **清除窗口** 打开文件 ktop\串口助手\1_sscom5.12.1\MCSK指令.txt 发送文件 停止 清发送区 日 最前 English 保存参数 扩展 一 端口号 COM6 USB-SERIAL CH340 FMZ显示 保存数据 F接收数据到文件 F2 = 76.344 Mhz C2 = 0.429 pF VT = 615.5 mV **清除窗口** 打开文件 ktop\串口助手\1_sscom5.12.1\MCSK指令.txt 发送文件 停止 清发送区 日 最前 English 保存参数 扩展 一 端口号 COM6 USB-SERIAL CH340 FMZ显示 保存数据 F接收数据到文件 F2 = 76.344 Mhz C2 = 0.429 pF VT = 615.5 mV **清除窗口** 打开文件 ktop\串口助手\1_sscom5.12.1\MCSK指令.txt 发送文件 停止 清发送区 日 最前 English 保存参数 扩展 一 端口号 COM6 USB-SERIAL CH340 FMITIAL CH340

在串口助手命令提示符">"后输入\$?回车,可列出帮助命令清单。

>\$?

******** LSP&LDM&MC11&MC12 ******** ******** Mysentech 2023/11 ********

通用指令: \$M[MS][CR]: 测量温度/频率/电容/比值,间隔[MS]毫秒 \$R[ADDR][LEN][CR]: 从地址为ADDR(Hex)开始读取LEN个寄存器数值 \$W[ADDR][DATA][CR]: 将DATA写入地址ADDR(Hex)注: 不可随意修改 \$?[CR]: 指令列表

LSP&LDM指令: \$C[CR]: 获取LSP/LDM配置

图3.5-2. 帮助菜单

具体交互命令中, "\$"为开始标志, "\$"后字符为命令, "[]"内为命令参数, "[CR]"表示回车。

3.6 串口命令查表

通用指令						
循环测量	\$Mxx	xx: 测量间隔[ms],可配置				

MC11指令表					
功能	指令	说明			
配置计数时间 \$W0Cxx		xx:RCNT寄存器高8位 yy:RCNT寄存器低8位			
	\$W0Dyy	构成16bit数据,用于设置通道CH0和CH1的转换的计数时长。			
配置建立时间	\$W10xx	xx: SCNT寄存器数值,用于设置通道CH0和CH1的建立时间。			
设置振荡信号分频比	\$W15xx	xx: FIN_DIV寄存器数值,用于设置振荡信号分频比			
		00:不分频 10:2分频 20:4分频 30:8分频 40:16分频			
		50:32 分频 60:64 分频 70:128 分频 80:256 分频			
设置参考时钟分频比	\$W16xx	xx: FREF_DIV寄存器数值,用于设置参考时钟分频比			
		00 - FF:对应数值1到256分频			
设置驱动电流	\$W25xx	xx: DRIVE_I寄存器数值,用于设置驱动电流			
		00: 200uA 10: 400uA 20: 800uA 30: 1.6mA 40: 2.4mA			
		50: 3.2mA 60: 3.2mA 70: 3.2mA			
读多个寄存器	\$Rxxyy	从地址xx开始,读取yy个寄存器			
		例: \$R0C02, 读0x0C、0x0D寄存器			

注:详细寄存器介绍请参考《MC11数字电容传感芯片产品手册》。

MC12指令表					
功能	指令	说明			
配置通道0计数时间	\$W08xx	xx:RCNT_CH0寄存器高8位 yy:RCNT_CH0寄存器低8位			
	\$W09yy	构成 16bit 数据,用于设置通道 CH0 的计数时长。			
配置通道1计数时间	\$W0Axx	xx:RCNT_CH1寄存器高8位 yy:RCNT_CH1寄存器低8位			
	\$W0Byy	构成16bit数据,用于设置通道CH1的计数时长。			
配置通道0建立时间	\$W0Exx	xx: SCNT_CH0寄存器数值,用于设置通道CH0的建立时间。			
配置通道1建立时间	\$W0Fxx	xx: SCNT_CH1寄存器数值,用于设置通道CH1的建立时间。			
设置通道0振荡信号	\$W11xx	xx: FIN_DIV_CH0寄存器数值,用于设置振荡信号分频比			
分频比		00:不分频 10:2分频 20:4分频 30:8分频 40:16分频			
		50:32分频 60:64分频 70:128分频 80:256分频			
设置通道0参考时钟	\$W12xx	xx: FREF_DIV_CH0寄存器数值,用于设置通道0参考时钟分频比			
分频比		00 - FF: 对应数值1到256分频			
设置通道1振荡信号	\$W13xx	xx: FIN_DIV_CH1寄存器数值,用于设置通道1振荡信号分频比			
分频比		00:不分频 10:2分频 20:4分频 30:8分频 40:16分频			
		50:32分频 60:64分频 70:128分频 80:256分频			
设置通道1参考时钟	\$W14xx	xx: FREF_DIV_CH1寄存器数值,用于设置通道1参考时钟分频比			
分频比		00 - FF: 对应数值1到256分频			

设置通道	\$W20xx	xx: 通道使能位控制
		C0:开启两通道 80:仅开启通道1 40:仅开启通道0
设置通道0驱动电流	\$W23xx	xx: DRIVE_I_CH0寄存器数值,用于设置驱动电流
		00: 0.5mA 10: 1.0mA 20: 1.5mA 30: 2.0mA 40: 2.5mA
		50: 3.0mA 60: 3.5mA 70: 4.0mA 80: 4.5mA 90: 5.0mA
		A0: 5.5mA B0: 6.0mA C0: 6.5mA D0: 7.0mA E0: 7.5mA
		F0: 8.0mA
设置通道1驱动电流	\$W24xx	xx: DRIVE_I_CH1寄存器数值,用于设置驱动电流
		00: 0.5mA 10: 1.0mA 20: 1.5mA 30: 2.0mA 40: 2.5mA
		50: 3.0mA 60: 3.5mA 70: 4.0mA 80: 4.5mA 90: 5.0mA
		A0: 5.5mA B0: 6.0mA C0: 6.5mA D0: 7.0mA E0: 7.5mA
		F0: 8.0mA
读多个寄存器	\$Rxxyy	F0: 8.0mA 从地址xx开始,读取yy个寄存器

注:详细寄存器介绍请参考《MC12数字电容传感芯片产品手册》。

LSP指令表						
功能	指令	说明				
设置振荡信号分频比	\$W02xy	x: FIN_CH2寄存器数值,用于设置通道2振荡信号分频比				
		y: FIN_CH1寄存器数值,用于设置通道1振荡信号分频比				
		0: 32分频 1: 4分频 2: 8分频 3: 16分频				
设置驱动电流	\$W01xx	xx: ISEL寄存器数值,用于设置振荡信号驱动电流				
		31: 驱动电流5mA 71: 驱动电流6mA				
		B1: 驱动电流7mA F1: 驱动电流11mA				
读多个寄存器	\$Rxxyy	从地址xx开始,读取yy个寄存器				
		例: \$R0C02, 读0x0C、0x0D寄存器				

注:详细寄存器介绍请参考《LSP I2C协议手册》。

LDM指令表						
功能	指令	说明				
设置振荡信号分频比	\$W02xx	xx: FIN_CH寄存器数值,用于设置振荡信号分频比				
		00: 不分频 01: 2分频 02: 4分频 03: 8分频 04: 16分频				
		05: 32分频 06: 64分频 07: 128分频 08: 256分频				
设置驱动电流	\$W01xx	xx: ISEL寄存器数值,用于设置振荡信号驱动电流				
		11: 驱动电流200uA 31: 驱动电流400uA				
		51: 驱动电流800uA 71: 驱动电流1.6mA				
		91: 驱动电流2.4mA B1: 驱动电流3.2mA				
读多个寄存器	\$Rxxyy	从地址xx开始,读取yy个寄存器				
		例: \$R0C02, 读0x0C、0x0D寄存器				

注:详细寄存器介绍请参考《LDM I2C协议手册》。

4. 测试环境搭建

MCSK开发板通过USB串口线接到PC的USB端口处,打开MCSK开关。将LSP/LDM/MC12PCB/ MC11PCB按照I2C线序接入MCSK的I2C通信接口处,即可在显示屏以及串口调试助手中获取相关测量信息。 下图为MCSK接入MC12PCB示意图。

