

2 W, 20 MHz - 6000 MHz, GaN MMIC Power Amplifier

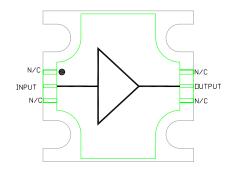
Description

Wolfspeed's CMPA0060002F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC employs a distributed (traveling-wave) amplifier design approach, enabling extremely wide bandwidths to be achieved in a small footprint screw-down package featuring a copper-tungsten heat sink.

PN: CMPA0060002F Package Type: 780019

Typical Performance Over 20 MHz - 6.0 GHz ($T_c = 25^{\circ}C$)

Parameter	20 MHz	0.5 GHz	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	19.9	18.8	17.8	16.8	16.8	17.5	18.5	16.5	dB
Saturated Output Power, P _{SAT} ¹	4.3	4.1	4.5	4.2	3.7	3.9	4.8	3.7	W
Power Gain @ P _{SAT} ¹	14.7	13.1	12.6	12.2	12.6	10.9	12.2	9.5	dB
PAE @ P _{SAT} ¹	34	28	29	28	24	26	33	20	%


Notes:

Features

- 17 dB Small Signal Gain
- 3 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- 0.5" x 0.5" total product size

Applications

- Ultra Broadband Amplifiers
- Fiber Drivers
- Test Instrumentation
- EMC Amplifier Drivers

¹ P_{SAT} is defined as the RF output power where the device starts to draw positive gate current in the range of 2 - 4 mA.

 $^{^2}$ V_{DD} = 28 V, I_{DQ} = 100 mA

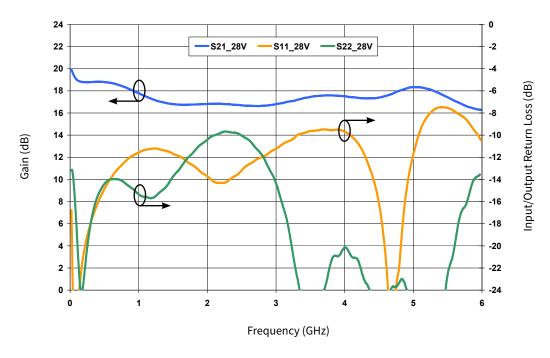
Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units
Drain-source Voltage	$V_{ extsf{DSS}}$	84	
Gate-source Voltage	V_{GS}	-10, +2	- V _{DC}
Storage Temperature	T _{STG}	-65, +150	°C
Operating Junction Temperature	T _J	225	
Maximum Forward Gate Current	I _{GMAX}	4	mA
Soldering Temperature ¹	T _s	245	°C
Screw Torque	τ	40	in-oz
Thermal Resistance, Junction to Case	$R_{ heta Jc}$	4.3	°C/W
Case Operating Temperature ^{2,3}	T _c	-40, +150	°C

Notes

Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage ¹	$V_{GS(th)}$	-3.8	-3.0	-2.7	V	$V_{DS} = 20 \text{ V}, \Delta I_{D} = 2 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$
Saturated Drain Current	I _{DS}	_	1.4	_	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
RF Characteristics						
Small Signal Gain	S21	13.5	17	21.5		
Input Return Loss	S11	_		_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$
Output Return Loss	S22	_	-9	-5		
Power Output	P _{out}	2	3	_	w	
Power Added Efficiency	PAE	_	23	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}, f = 4.0 \text{ GHz},$ $P_{IN} = 23 \text{ dBm}$
Power Gain	G _P	10	_	_	dB	IN 25 GBIII
Output Mismatch Stress	VSWR	_	-	5:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}, P_{IN} = 23 \text{ dBm}$


Note:

¹ Refer to the Application Note on soldering at wolfspeed.com/rf/document-library

 $^{^{2}}$ Measured for the CMPA0060002F at P_{DISS} = 2 W.

 $^{^{}m 1}$ The device will draw approximately 20 - 25 mA at pinch off due to the internal circuit structure.

Typical Performance

Figure 1. Small Signal Gain and Return Losses vs Frequency at 28 V

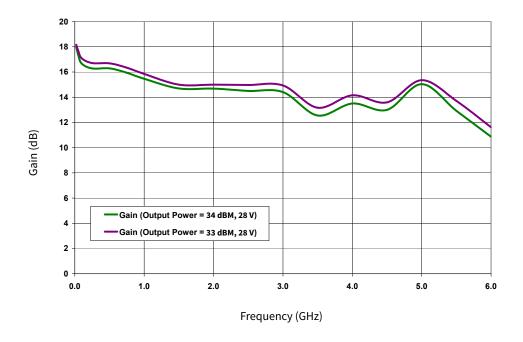
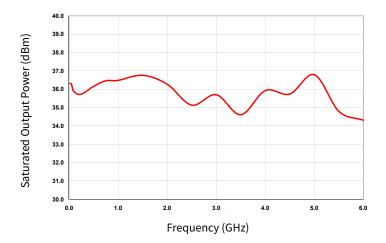



Figure 2. Power Gain vs Frequency at 28 V

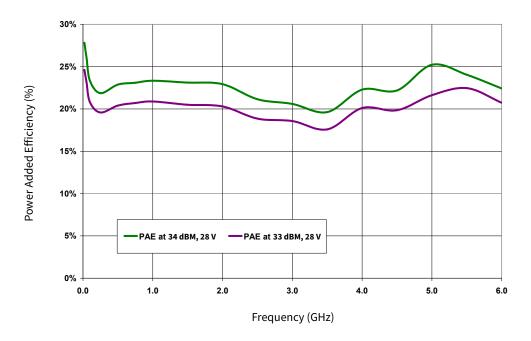

Typical Performance

Figure 3. Saturated Output Power Performance (P_{SAT}) vs Frequency

Frequency (GHz)	P _{SAT} at 28V (dBm)	P _{SAT} at 28V (W)
0.02	36.6	4.3
0.5	36.2	4.1
1.0	36.5	4.5
1.5	36.8	4.7
2.0	36.3	4.2
2.5	35.1	3.3
3.0	35.7	3.7
3.5	34.6	2.9
4.0	35.9	3.9
4.5	35.7	3.8
5.0	36.8	4.8
5.5	34.8	3.0
6.0	34.3	2.7

Note: P_{SAT} is defined as the RF output power where the device starts to draw positive gate current in the range of 2 - 4 mA.

Figure 4. PAE at 33 & 34 dBm Output Power vs Frequency at 28 V

General Device Information

The CMPA0060002F is a GaN HEMT MMIC Distributed Driver Amplifier, which operates between 20 MHz - 6.0 GHz. The amplifier typically provides 17 dB of small signal gain and 2 W saturated output power with an associated power added efficiency of better than 20 %. The wideband amplifier's input and output are internally matched to 50 Ohm. The amplifier requires bias from appropriate Bias-T's, through the RF input and output ports.

The CMPA0060002F is provided in a flange package format. The input and output connections are gold plated to enable gold bond wire attach at the next level assembly.

The measurements in this data sheet were taken on devices wire-bonded to the test fixture with 2 mil gold bond wires. The CMPA0060002F-AMP and the device were then measured using external Bias-T's, (Aeroflex: 8800, SMF3-12; TECDIA: AMPT-06M20 or similar), as shown in Figure 5. The Bias-T's were included in the calibration of the test system. All other losses associated with the test fixture are included in the measurements.

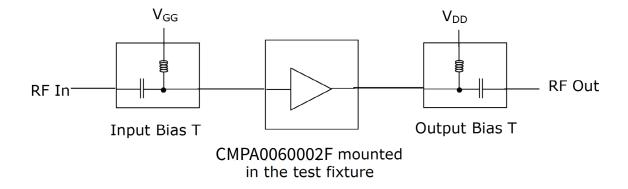
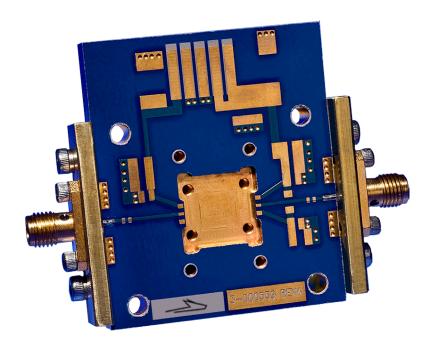
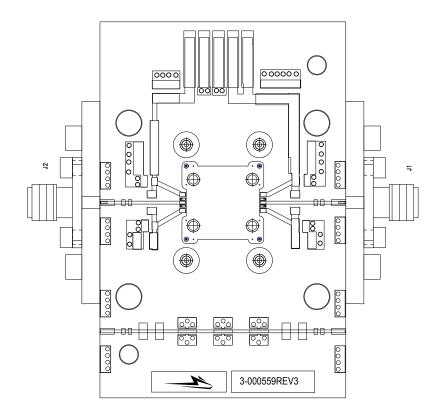



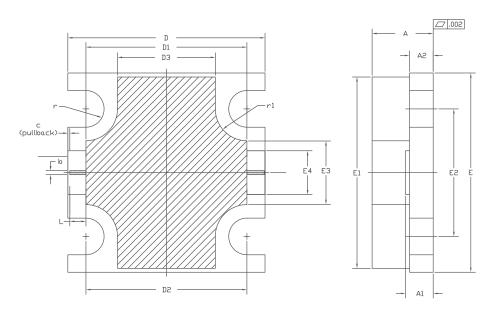
Figure 5. Typical test system setup required for measuring CMPA0060002F-AMP


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	нвм	2	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	C2a	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

CMPA0060002F-TB Demonstration Amplifier Circuit

CMPA0060002F-TB Demonstration Amplifier Circuit Outline



CMPA0060002F-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
J1,J2	CONNECTOR, SMA, AMP11052901-1	2
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA0060002F	1

Notes

Product Dimensions CMPA0060002F (Package Type — 780019)

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.						
5. ALL P	5. ALL PLATED SURFACES ARE NI/AU					
	INC	HES	MILLIMETERS		NOTE	
DIM	MIN	MAX	MIN	MAX	NOTE	
Α	0.148	0.162	3.76	4.12	-	
A1	0.066	0.076	1.67	1.93	-	
A2	0.056	0.064	1.42	1.63	_	
b	0.0	09	0.24		x2	
С	0.0	05	0.13		×2	
D	0.495	0.505	12.57	12.83	_	
D1	0.403	0.413	10.23	10.49	_	
D2	0.408		1	0.36	-	
D3	0.243	0.253	6.17	6.43	_	
Е	0.495	0.505	12.57	12.83	-	
E1	0.475	0.485	12.06	12.32	_	
E2	0.3	20	8	.13	_	
E3	0.155	0.165	3.93	4.19	_	
E4	0.105	0.115	2.66	2.92	_	
L	0.0	41	1	.04	x2	

R1.17

R2.03

x4

x4

R0.046

R0.080

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020° BEYOND EDGE OF LID.

2. CONTROLLING DIMENSION: INCH.

¹ The CMPA0060002F is connected to the PCB with 2.0 mil Au bond wires.

² An external Bias-T is required.

Part Number System

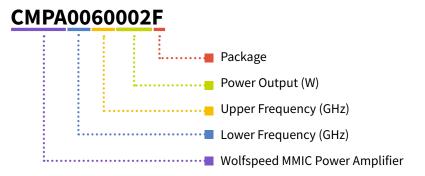


Table 1.

Parameter	Value	Units	
Lower Frequency	20	MIL	
Upper Frequency	6000	- MHz	
Power Output	2	W	
Package	Flange	-	

Note

Table 2.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Alpha characters used in frequency code indicate a value greater than
 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA0060002F	GaN MMIC	Each	CHE TUS S 82
CMPA0060002F-AMP	Test board with GaN MMIC installed	Each	

For more information, please contact:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/RF

Sales Contact RFSales@wolfspeed.com

RF Product Marketing Contact RFMarketing@wolfspeed.com

Notes & Disclaimer

Specifications are subject to change without notice. "Typical" parameters are the average values expected by Wolfspeed in large quantities and are provided for information purposes only. Wolfspeed products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

©2009-2022 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.