Vishay Semiconductors

Ultrafast Rectifier, 8 A FRED Pt®

PRODUCT SUMMARY								
Package	TO-220AC							
I _{F(AV)}	8 A							
V _R	1200 V							
V _F at I _F at 125 °C	1.95 V							
t _{rr}	42 ns							
T _J max.	175 °C							
Diode variation	Single die							

FEATURES

- Ultrafast and soft recovery time
- Optimized forward voltage drop
- 175 °C maximum operating junction temperature
- Polyimide passivation
- Rugged design
- · Good thermal performance
- AEC-Q101 qualified available
- Meets JESD 201 class 2 whisker test
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

Ultrafast recovery rectifiers designed with optimized forward voltage drop, ultrafast recovery time and soft recovery.

Polyimide passivated with a planar structure and platinum-doped lifetime control guarantee ruggedness, reliability and offer a solid value for efficiency and thermal performance.

These devices are intended for use in the boost stage in the AC/DC section of SMPS, high frequency output rectification of battery chargers, inverters for solar inverters or as freewheeling diodes in motor drives.

ABSOLUTE MAXIMUM RATINGS										
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS						
Repetitive peak reverse voltage	V _{RRM}		1200	V						
Average rectified forward current	I _{F(AV)}	T _C = 140 °C, D = 0.50	8							
Non repetitive peak surge current	I _{FSM}	$T_C = 25 \text{ °C}, t_p = 10 \text{ ms}, \text{ sine wave}$	80	А						
Repetitive peak forward current	I _{FM}		16							
Operating junction and storage temperature	T _J , T _{Stg}		-55 to +175	°C						

ELECTRICAL SPECIFICATIONS (T_J = 25 °C unless otherwise specified)										
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS				
Breakdown voltage, blocking voltage	V_{BR}, V_{R}	I _R = 200 μA	1200	-	-					
Forward voltage	V _F	I _F = 8 A	-	2.05	2.55	V				
		I _F = 8 A, T _J = 125 °C	-	1.95	2.37					
Poverse leakage ourrent	L	$V_{R} = V_{R}$ rated	-	-	55					
neverse leakage current	IR	$T_J = 125 \text{ °C}, V_R = V_R \text{ rated}$	-	-	100	μΑ				
Junction capacitance	CT	V _R = 200 V	-	8	-	pF				
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nH				

RoHS COMPLIANT HALOGEN FREE

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS			
Reverse recovery time	t _{rr}	I _F = 1.0 A, dI _F /dt =	-	42	-				
		T _J = 25 °C		-	144	-	ns A nC		
		T _J = 125 °C		-	204	-			
Peak recovery current	I _{RRM}	T _J = 25 °C	I _F = 8 A dI _F /dt = 100 A/µs V _R = 390 V	-	5	-			
		T _J = 125 °C		-	7.2	-			
Reverse recovery charge	Q _{rr}	T _J = 25 °C		-	370	-			
		T _J = 125 °C		-	745	-			

THERMAL - MECHANICAL SPECIFICATIONS									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS			
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C			
Thermal resistance, junction to case	R _{thJC}		-	1.25	1.5				
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	54	60	°C/W			
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth, and greased	-	0.18	0.4				
Waight			-	0.2	-	g			
weight			-	0.07	-	oz.			
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)			
Marking device		Case style: TO-220AC	8ETU12H						

Fig. 1 - Typical Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Document Number: 95775

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-8ETU12HN3

Vishay Semiconductors

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Revision: 08-Jun-16

3

Document Number: 95775

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

200

100

300 dl_⊧/dt (A/µs) 400

500

Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

Fig. 8 - Typical Reverse Recovery Time vs. dI_F/dt

Fig. 9 - Typical Stored Charge vs. dl_F/dt

Fig. 10 - Typical Stored Charge vs. dl_F/dt

Fig. 11 - Typical Reverse Current vs. dl_F/dt

Fig. 12 - Typical Reverse Current vs. dI_F/dt

Revision: 08-Jun-16

4

Document Number: 95775

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-8ETU12HN3

Vishay Semiconductors

(3) t_{rr} - reverse recovery time measured from zero crossing point of negative going I_s to point where a line passing through 0.75 $\mathrm{I}_{\mathrm{RRM}}$ and 0.50 $\mathrm{I}_{\mathrm{RRM}}$ extrapolated to zero current.

 $Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$

(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 13 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

www.vishay.com

Device code	VS-	8	Е	Т	U	12	н	N3
	1	2	3	4	5	6	7	8
	1 - 2 - 3 - 4 -	Visł Cur Circ Pac T =	nay Sem rent rati cuit conf kage: TO-220	niconduo ng (8 = a iguratior	ctors pro 8 A) n: E = si	oduct ngle dic	ode	
	5 · 6 ·	U = Volt	ultrafas age rati	t recove ng (12 =	ery = 1200 \	/)		
	8	· Env N3	rironmer = haloge	ntal digit en-free,	: RoHS-c	complia	nt, and f	totally le

ORDERING INFORMATION (Example) QUANTITY PER T/R **PREFERRED P/N** MINIMUM ORDER QUANTITY PACKAGING DESCRIPTION VS-8ETU12HN3 50 1000 Antistatic plastic tube

LINKS TO RELATED DOCUMENTS						
Dimensions	www.vishay.com/doc?95221					
Part marking information	www.vishay.com/doc?95068					

Revision: 08-Jun-16

5

Document Number: 95775

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

TO-220AC

B Seating

A-

-A1

plane

DIMENSIONS in millimeters and inches

Conforms to JEDEC[®] outline TO-220AC

⊕ 0.015 **()** BA()

SAMBOI	MILLIM	MILLIMETERS		HES	NOTES	SYMPOL	MILLIMETERS		INCHES		NOTES
STIVIDOL	MIN.	MAX.	MIN.	MAX.	NOTES	STIVIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183		E1	6.86	8.89	0.270	0.350	6
A1	1.14	1.40	0.045	0.055		E2	-	0.76	-	0.030	7
A2	2.56	2.92	0.101	0.115		e1	4.88	5.28	0.192	0.208	
b	0.69	1.01	0.027	0.040		H1	5.84	6.86	0.230	0.270	6, 7
b1	0.38	0.97	0.015	0.038	4	L	13.52	14.02	0.532	0.552	
b2	1.20	1.73	0.047	0.068		L1	3.32	3.82	0.131	0.150	2
b3	1.14	1.73	0.045	0.068	4	L3	1.78	2.13	0.070	0.084	
С	0.36	0.61	0.014	0.024		L4	0.76	1.27	0.030	0.050	2
c1	0.36	0.56	0.014	0.022	4	ØΡ	3.54	3.73	0.139	0.147	
D	14.85	15.25	0.585	0.600	3	Q	2.60	3.00	0.102	0.118	
D1	8.38	9.02	0.330	0.355							
D2	11.68	12.88	0.460	0.507	6						
E	10.11	10.51	0.398	0.414	3, 6						

Notes

⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994

(2) Lead dimension and finish uncontrolled in L1

(3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body

- ⁽⁴⁾ Dimension b1, b3 and c1 apply to base metal only
- ⁽⁵⁾ Controlling dimension: inches
- ⁽⁶⁾ Thermal pad contour optional within dimensions E, H1, D2 and E1

⁽⁷⁾ Dimension E2 x H1 define a zone where stamping and singulation irregularities are allowed

⁽⁸⁾ Outline conforms to JEDEC TO-220, D2 (minimum) where dimensions are derived from the actual package outline

Revision: 09-Sep-2019

1

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.