RENESAS

R2A20114BFP

Data Sheet

R03DS0101EJ0100

Continuous Conduction Mode Interleaving PFC Control IC Nov. 8, 2016

Description

R2A20114BFP is a boost converter IC with PFC (Power Factor Correction). Based on R2A20114AFP, R2A20114BFP has improved usability such as built-in PFC boost voltage control, current detecting amplifier with differential inputs, independent and high-functional error output pin, timer reset of OFF latch, and partial switch for PFC.

Interleaving control of the boost converters, namely, producing 180 degrees phase shift between the output signals (GD1,2) driving the boost converters, enables the system to perform high conversion efficiency and low switching noises and, at the same time, to reduces ripple currents in input and output current and then this allows use of smaller components such as boost inductors, input filters and output capacitors.

R2A20114BFP integrates a various kinds of protection circuits, such as the detection circuit of breaking of wire in feedback loop, two modes of over voltage protection circuits, over current protection circuit and error output circuit (*1), which improve the reliability of the power supply system and reduce the number of component parts on the system.

Functions

- Boost converter control with continuous conduction mode
- Interleaving control
- Brownout
- Phase drop
- External clock synchronization input
- External clock synchronization output
 - Two modes of over voltage protection Mode 1: Dynamic OVP preventing over voltage after sudden variation of load Mode 2: Static OVP preventing over voltage in the period of normal operation
- Dual over voltage protection circuits: FB and OVP2 terminals
- Feedback loop wire breaking/open detector
- Current balance control
- Phase 1 and Phase 2 independent over current protection
- Variable PFC output voltage

Features

<Maximum Ratings> Supply voltage Vcc: 24V

Operating ambient temperature Ta-opr: -40 to 125° C

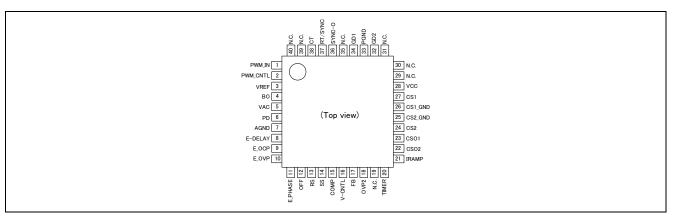
```
Junction temperature Tj: -40 to 150°C
```

<Electrical Characteristics>

VFB Feedback voltage VFB: $2.5V \pm 1.5\%$

UVLO operating start voltage VH: $10.4V \pm 0.7V$

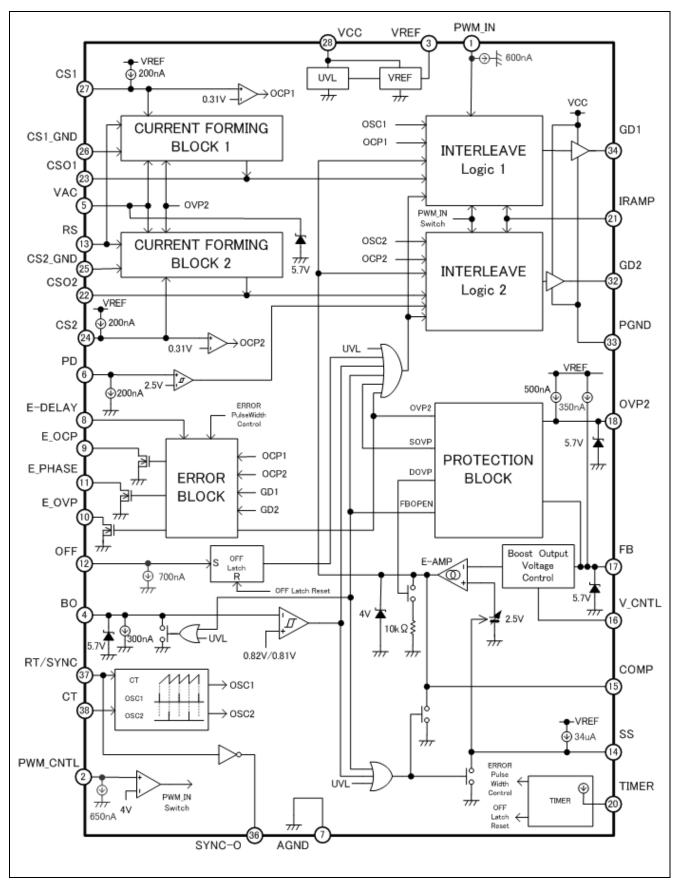
UVLO operation shutdown voltage VL: $8.9V \pm 0.5V$


UVLO hysteresis voltage Hysuv1: $1.5V \pm 0.5V$

```
<Package>
```

Pb-free LQPF-

Pin Arrangement



Pin Description

Pin No.	Pin Name	Function				
1	PWM_IN	PWM signal input terminal				
2	PWM_CNTL	PWM signal input mode switching terminal				
3	VREF	Reference voltage output terminal				
4	BO	Brownout input terminal				
5	VAC	AC voltage input terminal				
6	PD	Phase drop input terminal				
7	AGND	Analog ground				
8	E-DELAY	Delay of the error signal setting terminal				
9	E_OCP	OCP error signal output terminal				
10	E_OVP	OVP2 error signal output terminal				
11	E_PHASE	PHASE error signal output terminal				
12	OFF	Shutdown terminal				
13	RS	Current correction setting resistor connecting terminal				
14	SS	Soft start setting capacitor connecting terminal				
15	COMP	Error amplifier output terminal (to be phase-compensated)				
16	V_CNTL	DC voltage input terminal to control PFC boost voltage				
17	FB	Error amplifier output terminal (feedback voltage input terminal)				
18	OVP2	OVP2 input terminal				
19	N.C.	Open				
20	TIMER	ERROR pulse width & OFF latch auto-reset time setting capacitor connecting terminal				
21	IRAMP	Ramp waveform setting resistor connecting terminal				
22	CSO2	Current sense amplifier 2 output terminal (to be phase-compensated)				
23	CSO1	Current sense amplifier 1 output terminal (to be phase-compensated)				
24	CS2	Current sense 2 + input terminal				
25	CS2_GND	Current sense 2 — input terminal				
26	CS1_GND	Current sense 1 – input terminal				
27	CS1	Current sense 1 + input terminal				
28	VCC	Supply voltage terminal				
29-31	N.C.	Open				
32	GD2	Converter 2 power MOSFET drive terminal				
33	PGND	Power ground				
34	GD1	Converter 1 power MOSFET drive terminal				
35	N.C.	Open				
36	SYNC-O	Synchronization signal output terminal				
37	RT/SYNC	Frequency setting resistor connecting/Sync. Signal input terminal				
38	СТ	Frequency setting capacitor connecting terminal				
39,40	N.C.	Open				

Block Diagram

Absolute Maximum Ratings

Item Supply voltage		Symbol	Ratings	Unit	Note 3	
		VCC	-0.3 to +24	V		
GD1 and GD2 Peak current		lpk-gd1, lpk-gd2	±0.2	A	3, 4	
	DC current	ldc-gd1, ldc-gd2	±0.02	A	3	
Vref terminal current		Iref	-10	mA	3	
Terminal current		It-group	±1	mA	3, 5	
RS terminal current		Irs	-500	μA	3	
RT terminal current		Irt	-200	μA	3	
IRAMP terminal current		Iramp	-200	μA	3	
Terminal clamp current		Iclamp	300	μA	6	
Terminal voltage		Vt-group	-0.3 to Vref	V	3, 7	
Vref terminal voltage		Vt-ref	-0.3 to Vref+0.3	V	3	
CS1 terminal, CS2	terminal voltage	Vt-cs	-1 to +1	V	3	
Power dissipation		Pt	1	W	3, 8	
Operating ambient temperature		Ta-opr	-40 to +125	°C		
Junction temperature		Tj	-40 to +150	°C	9	
Storage temperatur	e	Tstg	-55 to +150	°C		

Notes

- 1. Rated voltages are with reference to the AGND and PGND terminals
- 2. For the direction of rated current, (+) denotes the current flowing into and (-) denotes the current flowing out of the IC
- 3. Ambient temperature Ta is 25 degrees centigrade.
- 4. Transient current when driving a capacitive load
- 5. Rated current for terminals COMP, CSO1, CSO2
- 6. Rated current for terminals VAC, FB, BO OVP2
- 7. Rated current for terminals CS1_GND, CS2_GND, RS, PD, E_OCP, E_OVP, E_PHASE, E-DELAY, OFF, PWM_IN, PWM_CNTL, RT/SYNC, IRAMP, SYNC-O, CT, COMP, CSO1, CSO2, TIMER, V_CNTL, SS
- 8. Thermal resistance θ ja = 85.3° C/W When the IC is mounted on glass epoxy board of 50 x 50 x 1.6 (mm)
- 9. Stress over the absolute maximum ratings may give a fatal damage to the IC. These values are ratings of the stress and functional operation of the IC exceeding recommended operating temperature is not included. Leaving in the conditions of the absolute maximum ratings long time may impact the reliability of the IC.

Electrical Characteristics

 $(Ta=25^{\circ}C, VCC=12V, CT=1000pF, RT=27k \Omega, CS1, CS2=GND, CS1_GND, CS2_GND=GND, V_CNTL=0V, IRAMP=10k \Omega, BO=1V, VAC=0V, RS=220k \Omega, FB=COMP)$

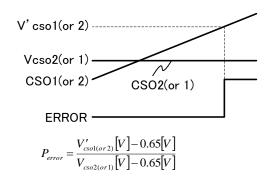
	Item		Min	Тур	Max	Unit	Test Conditions
Supply	UVLO turn-on threshold	Vuvlh	9.7	10.4	11.1	V	
	UVLO turn-off threshold	Vuvll	8.4	8.9	9.4	V	
	UVLO hysteresis	Hysuvl	1	1.5	2	V	
	Standby current	Istby	-	100	160	μA	VCC = 8.9 V
	Operating current	lcc	-	5	7.5	mA	
VREF	Output voltage	Vref	4.85	5	5.15	V	Isource = -1 mA
	Line regulation	Vref-line	-	5	20	mV	Isource = -1 mA , VCC = 10 V to 24 V
	Load regulation	Vref-load	-	5	20	mV	Isource = $-1 \text{ mA to } -10 \text{ mA}$
	Temperature stability	dVref	-	±80	-	ppm/°C	Ta = -40 to 125°C (*1)
Error	Feedback voltage	Vfb	2.462	2.5	2.538	V	FB-COMP Short
amplifier	Input bias current	lfb	-0.8	-0.4	-0.2	μA	Measured pin: FB
	Open loop gain	Av	-	40	-	dB	(*1)
	Upper clamp voltage	Vclamp- comp	3.8	4	4.3	V	FB = 2.0 V, COMP: Open
	Low voltage	VI-comp	0	0.1	0.3	V	FB = 3.0 V, COMP: Open
	Source current	Isrc-comp	-190	-135	-80	μA	FB = 1.5 V, COMP = 2.5 V
	Sink current 1	lsnk-comp1	-	120	-	μA	(*1)
	Sink current 2	lsnk-comp2	220	320	420	μA	FB =3.5 V, COMP = 2.5 V
	Transconductance	gm	120	200	290	μs	FB = 2.45 V ↔ 2.55 V, COMP = 2.5 V
Brownout	PFC enable voltage	Von-pfc	0.74	0.82	0.9	V	Input pin: BO
	PFC disable voltage	Voff-pfc	0.73	0.81	0.89	V	Input pin: BO
Oscillator	Initial accuracy	fout	70	78	86	kHz	Measured pin: OUT
	fout temperature stability	dfout/dTa	-	±0.1	-	%/°C	Ta = -40 to 125°C (*1)
	fout voltage stability	fout-line	-1.5	0.5	1.5	%	VCC = 12 V to 18 V
	CT top voltage	Vct-H	-	3.6	4	V	(*1)
	RT voltage	Vrt	1.15	1.25	1.35	V	
Synchroni- zation	SYNC threshold voltage(rising)	Vsync	2	3	4	V	
	SYNC Min. pulse	Psync	2	-	-	μs	
	SYNC-OUT Low Voltage	Vol-sync-o	-	-	0.3	V	Isink=1mA
	SYNC-OUT High Voltage	Voh-sync-o	4.4	-	-	V	Isource=-1mA

Note) *1 Design specification (data for reference)

 $(Ta=25^{\circ}C, VCC=12V, CT=1000pF, RT=27k \Omega, CS1, CS2=GND, CS1_GND, CS2_GND=GND, V_CNTL=0V, IRAMP=10k \Omega, BO=1V, VAC=0V, RS=220k \Omega, FB=COMP)$

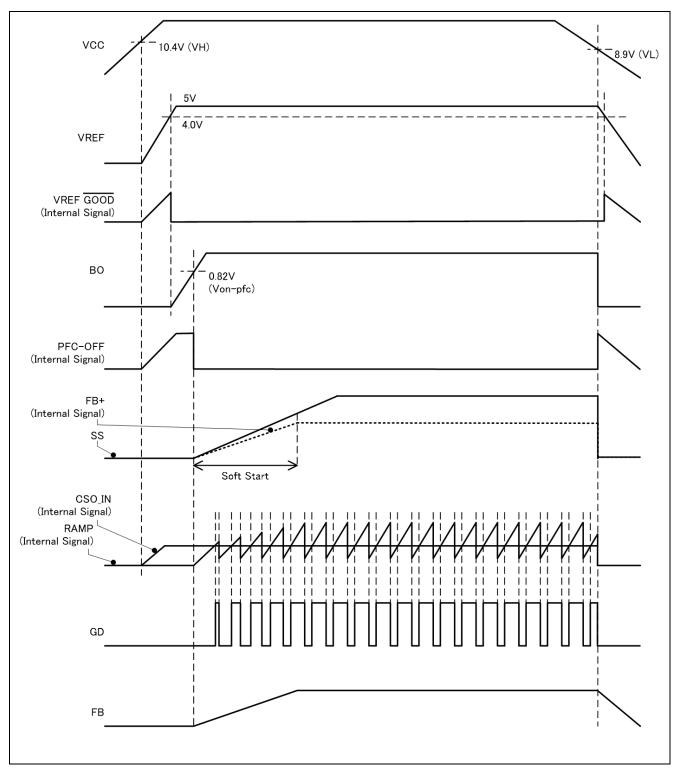
Item		Symbol	Min	Тур	Max	Unit	Test Conditions
Current	RS output voltage 1	Vrs1	0.42	0.51	0.6	V	VAC = 0 V, VOVP2 = 2.5 V
slope	RS output voltage 2	Vrs2	-0.1	0	0.1	V	VAC = 2.5 V, VOVP2 = 0 V
	VAC bias current	Ivac	-0.4	-0.2	-0.05	μA	Measured pin: VAC
Soft start	Source current	lss	-48	-34	-20	μA	SS = 2 V
Phase drop	Phase drop threshold voltage	Vpd	2.4	2.5	2.6	V	
	Phase drop hysteresis	Hya-pd	150	200	250	mV	
	PD bias current	lpd	0.05	0.2	0.5	μA	Measured pin: PD
PWM_IN	Input Voltage	Vpwm_in_h	3.5	-	-	V	
		Vpwm_in_l	-	-	1.5	V	
	PWM_IN Bias current	lpwm_in	0.3	0.6	1.2	μΑ	
	Delay to output	Td-pwm_in	-	100	250	Ns	
	PWM_CNTL Threshold voltage	Vpwm_cntl	3.3	4.0	4.7	V	Measured pin : PWM_CNTL
	PWM_CNTL Bias current	lpwm_cntl	0.32	0.65	1.3	μA	Measured pin : PWM_CNTL
AMP1, 2	CSO offset voltage1	Voffset	0.60	0.85	1.1	V	Vcs = 0 V
	CSO offset voltage2	Vcaoh	2.7	3	3.3	V	Vcs = 0.24 V
	CS Bias current	lcs-r	-0.4	-0.2	-0.05	μA	Measured pin: CS1, 2
Gate drive	Gate drive rise time	tr-gd	-	30	100	ns	CL = 100 pF
1 and 2	Gate drive fall time	tf-gd	-	30	100	ns	CL = 100 pF
	Gate drive low	Vol1-gd	-	0.05	0.3	V	Isink = 2 mA
	voltage	Vol2-gd	-	1	1.25	V	Isink = 0.05 mA, VCC = 5 V
	Gate drive high voltage	Voh-gd	11.5	11.9	-	V	Isource = -2 mA
	Minimum duty cycle	Dmin-out	-	-	0	%	
	Maximum duty cycle	Dmax-out	90	95	98	%	

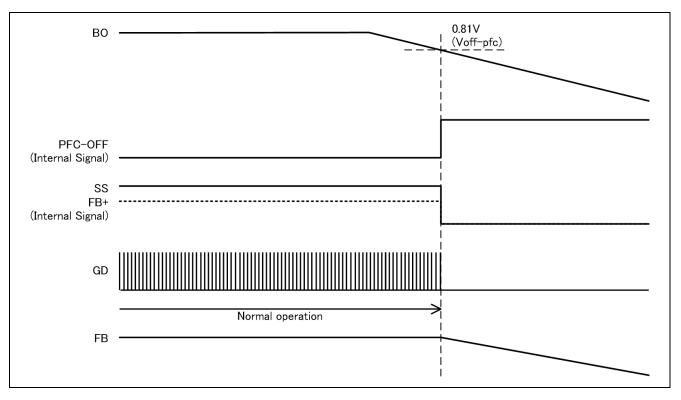
	Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Over voltage protection	Dynamic OVP Threshold voltage	Vdovp	VFB× 1.025	VFB× 1.04	VFBx 1.055	V	
	Static OVP Threshold voltage	Vsovp	VFB× 1.065	VFB× 1.08	VFBx 1.095	V	COMP = OPEN
	Static OVP Hysteresis	Hys-sovp	50	100	150	mV	COMP = OPEN
	OVP2 Threshold voltage	Vovp2	VFB× 1.065	VFBx 1.08	VFB× 1.095	V	COMP = OPEN
	OVP2 Hysteresis	Hys-ovp2	50	100	150	mV	COMP = OPEN
	OVP2 Bias current	Iovp2	-0.7	-0.35	-0.17	μΑ	Measured pin: OVP2
	FB Open Detect Threshold voltage	Vfbopen	0.45	0.5	0.55	V	
	FB Open Detect hysteresis	Vfbopen	0.16	0.2	0.24	V	
Over current	OCP Threshold voltage	VCL	0.28	0.31	0.34	V	
protection	Delay to output	td-CL	-	100	250	ns	
V_CNTL	Input Range	Vcntl	0	-	3.5	V	
	V_CNTL Disable voltage	Vcntl_dis	-	0.2	-	V	
	V_CNTL Limit voltage	Vcntl_clam p	-	4	-	V	
	VFB Control voltage 1	Vfb_cntl1	2.371	2.445	2.519	V	V_CNTL=0.3V
	VFB Control voltage 2	Vfb_cntl2	1.571	1.645	1.769	V	V_CNTL=3.5V
	Discharge Current	Icntl	0.87	1.75	3.50	μΑ	


 $(Ta=25^{\circ}C, VCC=12V, CT=1000pF, RT=27k \Omega, CS1, CS2=GND, CS1_GND, CS2_GND=GND, V_CNTL=0V, IRAMP=10k \Omega, BO=1V, VAC=0V, RS=220k \Omega, FB=COMP)$

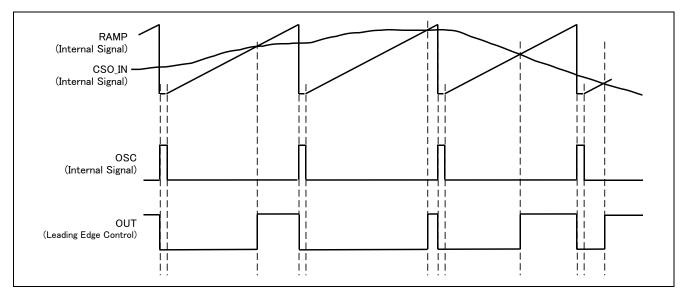
	Item		Min	Тур	Max	Unit	Test Conditions
Error signal	ERROR shunt current	lerror-s	1	-	-	mA	
	ERROR leakage current	lerror-l	-	-	1	μA	
	Phase error detect point	Perror	1.1	1.35	1.6	-	Vcso1 or 2 = 2.5 V, Vcso2 or 1: sweep (*1)
	OFF threshold voltage	Voff	3.3	4	4.7	V	
	OFF terminal Input bias current	loff	0.35	0.7	1.4	μΑ	
	OFF Latch Reset Threshold voltage	Vres_lat	3.8	4.0	4.2	V	Measured pin : TIMER
	ERROR timer Reset Threshold voltage	Vres_err	1.9	2.0	2.1	V	Measured pin : TIMER
	TIMER terminal	Itim_off	-90	-60	-30	μA	
	current	Itim_ocp	-3.2	-2.0	-1.2	mA	
		ltim_ovp	-1.6	-1.0	-0.6	mA	
		Itim_phase	-800	-500	-300	μA	
	E-DELAY charge current	led-c	-55	-36	-20	μA	
	E-DELAY discharge current	led-d	20	36	55	μA	
	E-DELAY threshold voltage	Vdelay	2.35	2.45	2.55	V	

 $(Ta=25^{\circ}C, VCC=12V, CT=1000pF, RT=27k \Omega, CS1, CS2=GND, CS1_GND, CS2_GND=GND, V_CNTL=0V, IRAMP=10k \Omega, BO=1V, VAC=0V, RS=220k \Omega, FB=COMP)$

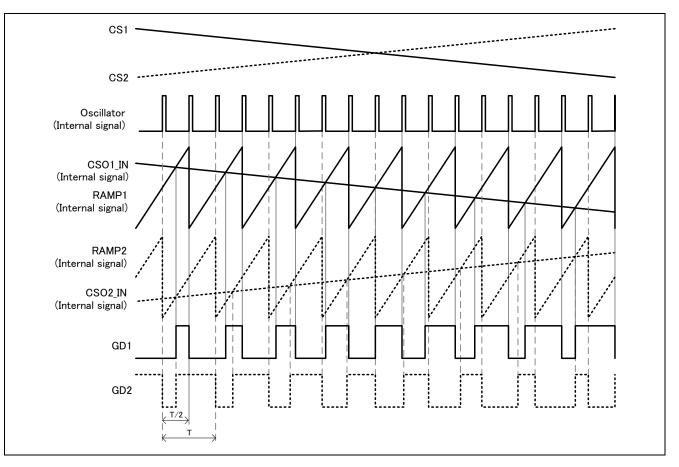

Note) *1



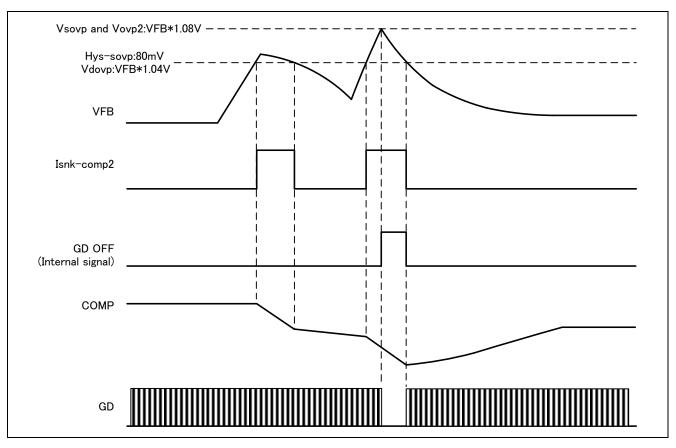
Timing Chart


Vcc Start-up and Stop timing

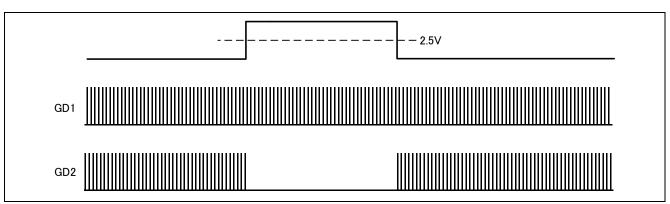
Stop timing



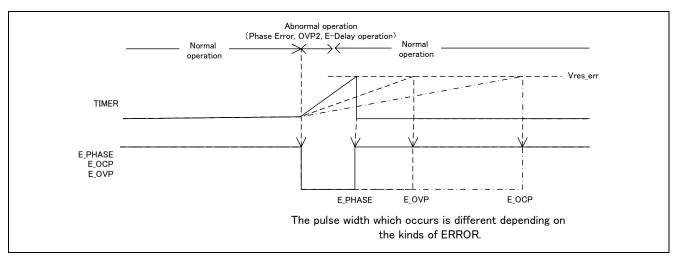
Oscillator, Gate Drive Output



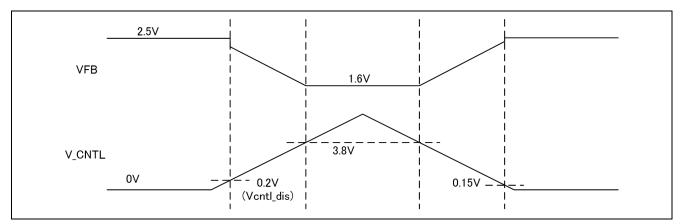
Current share

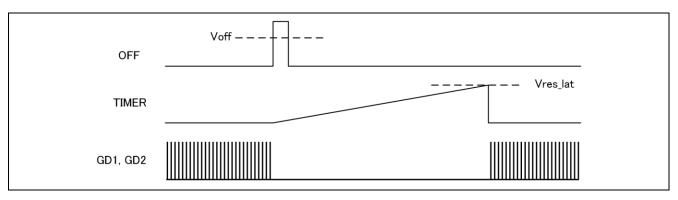


Overvoltage protection (OVP)

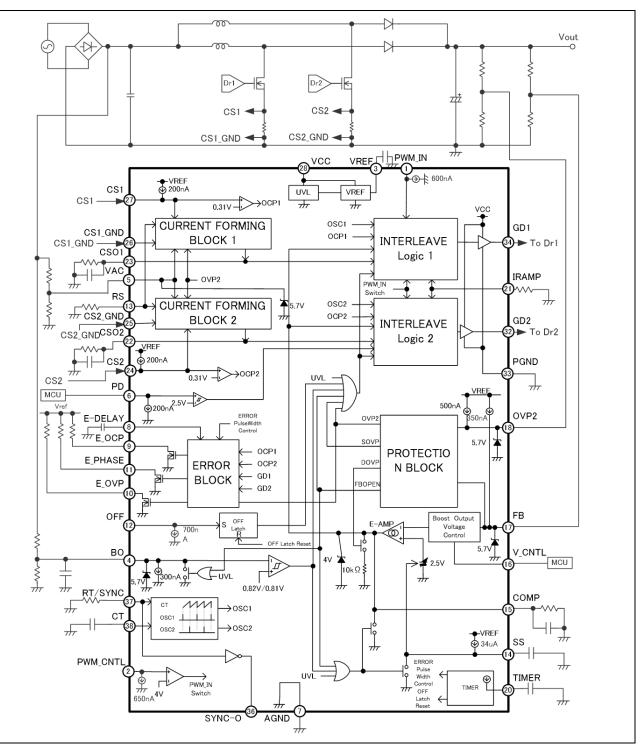


Phase drop

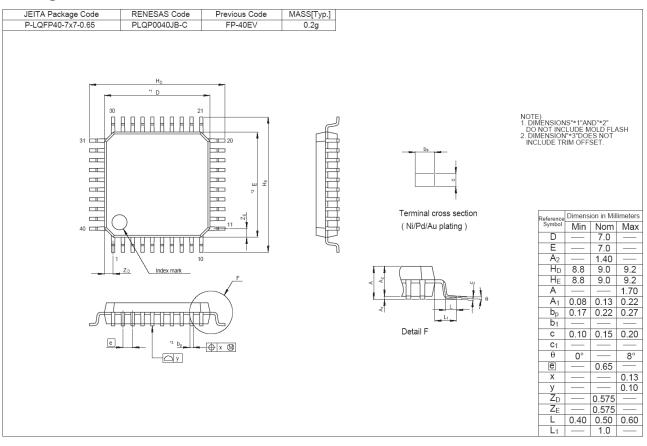



E_PHASE, E_OCP, E_OVP

Programmable boost output voltage



Off latch



System Diagram

Package Dimensions

R2A20114BFP Data Sheet

		Description					
Rev.	Date	Page	Summary				
1.00	Nov. 8, 2016	-	New				

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-sease Lectronics nong round Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141