SMT POWER INDUCTORS Toroid – POGO Series

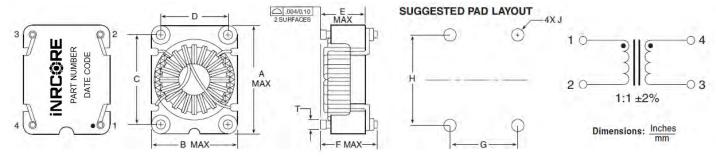
Ruggedized

- Ruggedized header with POGO pins for secure board mounting
- Current Rating:up to 23.8ADC
- Frequency Range:up to 1MHz
- Moisture Sensitivity Level: 3

Electrical Specifications @ 25 °C – Operating Temperature – 55 °C to +130 °C											
Part ^{4,5}	Inductance @ Irated	Irated	DCR (m¹)		Inductance @ OADC	Reference ET	Flux Density Factor	Core Loss Factor	Temp. Rise	Connection	
Number	(µH)	(A)	TYP	MAX	(pH)	(Volt-µsec)	(K1)	(K2)	Factor (K3)		
POGO 40											
PL8400	43.6	1.1	247.2	309	77	7.83	0.295	1.87E-10	114.23	Single	
P0G0 50											
PL8401	21.9	2.7	72.4	90.5	39.5	6.9	0.297	3.35E-10	85.71	Single	
PL8402	4.025	6.4	18.4	23	6.575	3.135	0.638	4.52E-10	67.89	Single	
PL8403	0.53	23.8	1.0	3	0.88	1	2.020	3.35E-10	85.71	Parallel	
PL8404	1.1	21	1.7	2.5	2.1	1.75	1.116	4.52E-10	67.89	Parallel	
P0G0 60											
PL8405	2.1	22.4	2.5	3.4	4	3.25	0.559	9.58E-10	44.56	Parallel	

NOTES:

- 1.Reference values are for an inductor with a 55° C temperature rise. The core loss is 10% of the copper loss at the ET listed and 500kHz.
- Core does not saturate abruptly. The ET and DC current are limited by the desired inductance and temperature rise.
- 3. In high volt-time applications, additional heating in the component can occur due to core losses in the inductor which may necessitate derating the current in order to limit the temperature rise of the component. In order to determine the approximate total losses (or temperature rise) for a given application, both copper and core losses should be taken into account.


Estimated Temperature Rise:

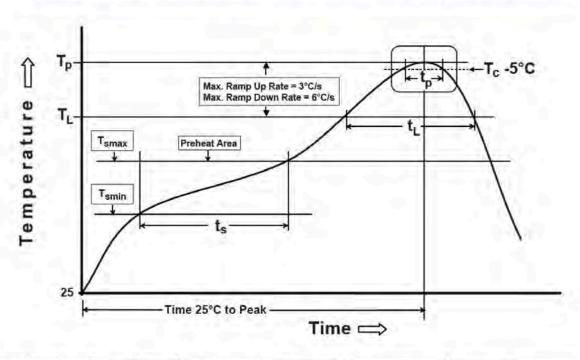
Trise = K3 * (Coreloss(W) + Copperloss(W).833 (C) CopperLoss = Irms 2 * DCR_Typical (m 1) / 1000 CoreLoss = K2 * (Freq_kHz) $^1.26$ * (\widehat{A}_B) $^2.1$ 1 \widehat{A}_B = K1 * Volt-usec * 100

4. Optional Tape & Reel packaging can be ordered by adding a "T" suffix to the part number (i.e. PL8400 becomes ${\bf PL8400T}$).

Mechanicals

Electrical Schematics

PKG	Α	В	С	D	E	F	G	Н	J	Т	Weight (MAX)	Tube	Reel
POGO 40	<u>.725</u> 18,42	<u>.575</u> 14,61	<u>.600</u> 15,24	<u>.450</u> 11,43	<u>.310</u> 7,87	<u>.380</u> 9,65	<u>.450</u> 11,43	<u>.600</u> 15,24	<u>.082</u> 2,08	. <u>062</u> 1,57	3.5 grams	30	300
POGO 50	<u>.910</u> 23,11	<u>.700</u> 17,78	<u>.730</u> 18,54	<u>.520</u> 13,21	<u>.400</u> 10,16	<u>.510</u> 12,95	<u>.520</u> 13,21	<u>.730</u> 18,54	<u>.145</u> 3,68	. <u>125</u> 3,18	8.2 grams	35	200
POGO 60	1.280 32,51	1.070 27,18	<u>1.100</u> 27,94	<u>.890</u> 22,61	<u>.400</u> 10,16	<u>.510</u> 12,95	<u>.890</u> 22,61	1.100 27,94	<u>.145</u> 3,68	<u>.125</u> 3,18	14.2 grams	15	100



SMT POWER INDUCTORS Toroid – POGO Series

Tin/Lead Recommended Reflow Profile (Based on J-STD-020D)

T _{SMIN} (°C)	Property of the Control of the Contr		T _P (°C MAX)	t _S	t _L (s)	t _P (s MAX)	Ramp-up rate (T _L to T _P)	Ramp-down rate (T _P to T _L)	Time 25°C to peak temperature (s MAX)	
100	150	183	235	60-120	60-150	20	3°C/s MAX	6°C/s MAX	360	

Notes:

- 1. All temperatures measured on the package leads.
- 2. Maximum times of reflow cycle: 2.

For More Information

iNRCORE,LLC 311 Sinclair Road Bristol, PA 19007-6812 U.S.A Tel: + 1.215.781.6400 Fax: +1.215.7816430

Global Sales Representatives and Locations:

http://www.inrcore.com

Performance warranty of products offered on this data sheet is limited to the parameters specified. Data is subject to change without notice. Other brand and product names mentioned herein may be trademarks or registered trademarks of their respective owners. © Copyright, 2020. iNRCORE, LLC. All rights reserved.

www.inrcore.com

M111.D(07/20)