United **SiC**

750V-5.9m Ω SiC FET

Rev. B, July 2021

DATASHEET

UJ4SC075006K4S

Part Number	Package	Marking			
UJ4SC075006K4S	TO-247-4L	UJ4SC075006K4S			

Description

The UJ4SC075006K4S is a 750V, $5.9m\Omega$ G4 SiC FET. It is based on a unique 'cascode' circuit configuration, in which a normally-on SiC JFET is co-packaged with a Si MOSFET to produce a normally-off SiC FET device. The device's standard gate-drive characteristics allows for a true "drop-in replacement" to Si IGBTs, Si FETs, SiC MOSFETs or Si superjunction devices. Available in the TO-247-4L package, this device exhibits ultra-low gate charge and exceptional reverse recovery characteristics, making it ideal for switching inductive loads and any application requiring standard gate drive.

Features

- On-resistance R_{DS(on)}: 5.9mΩ (typ)
- Operating temperature: 175°C (max)
- Excellent reverse recovery: Q_{rr} = 440nC
- Low body diode V_{FSD}: 1.03V
- Low gate charge: $Q_G = 164nC$
- Threshold voltage V_{G(th)}: 4.7V (typ) allowing 0 to 15V drive
- Low intrinsic capacitance
- ESD protected, HBM class 2
- TO-247-4L package for faster switching, clean gate waveforms

Typical applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		750	V
Cata aguna valtaga	V	DC	-20 to +20	V
Gate-source voltage	V GS	AC (f > 1Hz)	-25 to +25	V
Continuous drain current ¹	Ι _D	T _C < 125°C	120	А
Pulsed drain current ²	I _{DM}	T _C = 25°C	588	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} = 6.5A	316	mJ
Short circuit withstand time ⁴	t _{sc}	V _{DS} = 400V, T _{J(START)} = 175°C	5	μs
SiC FET dv/dt ruggedness	dv/dt	$V_{DS} \le 500V$	100	V/ns
Power dissipation	P _{tot}	T _C = 25°C	714	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	TJ, T _{STG}		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	TL		250	°C

1. Limited by bondwires

2. Pulse width t_{p} limited by $T_{J,\text{max}}$

3. Starting $T_J = 25^{\circ}C$

4. Short circuit current is independent of the gate voltage $V_{GS}{>}12V$

Thermal Characteristics

Parameter	Symbol	Test Conditions		Lipite		
		Test Conditions	Min	Тур	Max	Onits
Thermal resistance, junction-to-case	$R_{ extsf{ heta}JC}$			0.16	0.21	°C/W

FET-Jet Calculator 😵 Buy Online 😽 Spice Models 🖌 Contact Sales

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Devenator	Sumphiel	Test Conditions		1 Justice			
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Drain-source breakdown voltage	BV _{DS}	V_{GS} =0V, I_{D} =1mA	750			V	
Total drain lookaga surrant		V _{DS} =750V, V _{GS} =0V, T _J =25°C		6	130		
l otal drain leakage current	IDSS	V _{DS} =750V, V _{GS} =0V, T _J =175°C		45		- μΑ	
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _J =25°C, V _{GS} =-20V / +20V		6	±20	μA	
Drain-source on-resistance	R _{DS(on)}	V _{GS} =12V, I _D =80A, T _J =25°C		5.9	7.4		
		V _{GS} =12V, I _D =80A, T _J =125°C		9.8		mΩ	
		V _{GS} =12V, I _D =80A, T _J =175°C		12.9			
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_{D} =10mA	4	4.7	6	V	
Gate resistance	R _G	f=1MHz, open drain		0.8	1.5	Ω	

Typical Performance - Reverse Diode

Devementer	Suma had	Test Conditions		1 Justice		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Diode continuous forward current ¹	ا _s	T _C < 125°C			120	А
Diode pulse current ²	I _{S,pulse}	T _c =25°C			588	А
Forward voltage	Vrcp	V _{GS} =0V, I _F =50A, T _J =25°C		1.03	1.16	V
Torward voltage	▼ FSD	V _{GS} =0V, I _F =50A, T _J =175°C		1.06		
Reverse recovery charge	Q _{rr}	V _R =400V, I _F =80A, V _{GS} =0V, R _{G_EXT} =5Ω		440		nC
Reverse recovery time	t _{rr}	di/dt=2800A/μs, Τ _J =25°C		31		ns
Reverse recovery charge	Q _{rr}	V _R =400V, I _F =80A, V _{GS} =0V, R _{G_EXT} =5Ω		525		nC
Reverse recovery time	t _{rr}	αι/dt=2800A/μs, T _J =150°C		37		ns

Typical Performance - Dynamic

Duranta	Gundhal	Test Constitutions	Value			Linita	
Parameter	Symbol	lest Conditions	Min	Тур	Max	Units	
Input capacitance	C _{iss}			8374			
Output capacitance	C _{oss}	v _{DS} =400v, v _{GS} =0v f=100kHz		362		pF	
Reverse transfer capacitance	C _{rss}	1-100KH2		4			
Effective output capacitance, energy related	C _{oss(er)}	V_{DS} =0V to 400V, V_{GS} =0V		475		pF	
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		950		pF	
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		38		μJ	
Total gate charge	Q_G	V400V_180A		164			
Gate-drain charge	Q_{GD}	$V_{DS} = -0V \text{ to } 15V$		24		nC	
Gate-source charge	Q_{GS}	VGS 00 10 150		46			
Turn-on delay time	t _{d(on)}			37			
Rise time	t _r	Notes 5 and 6, V_{DS} =400V, I_D =80A, Gate		40		nc	
Turn-off delay time	$t_{d(off)}$	Driver =0V to +15V, Turn-on $R_{G,EXT}$ =1.5 Ω ,		110		_	
Fall time	t _f			13			
Turn-on energy including R_S energy	E _{ON}	inductive Load. FWD:		514			
Turn-off energy including R_S energy	E _{OFF}	same device with V_{GS} = 0V		170			
Total switching energy	E _{TOTAL}	and $R_G = 5\Omega$, RC snubber:		684		μJ	
Snubber R _s energy during turn-on	E _{RS_ON}	$T_1=25^{\circ}C$		9.6			
Snubber R _s energy during turn-off	E_{RS_OFF}			50			
Turn-on delay time	t _{d(on)}			36			
Rise time	t _r	Notes 5 and 6, $V_{-}=400V_{-}=80A_{-}$ Gate		44			
Turn-off delay time	$t_{d(off)}$	Driver =0V to +15V,		121		115	
Fall time	t _f	Turn-on R _{G,EXT} =1.5Ω, Turn-off R _{G,EXT} =5Ω,		16			
Turn-on energy including R _s energy	E _{ON}			640			
Turn-off energy including R _s energy	E _{OFF}	device with $V_{GS} = 0V$ and		189			
Total switching energy	E _{TOTAL}	$R_{G} = 5\Omega$, RC snubber:		829		μJ	
Snubber R _s energy during turn-on	E _{RS_ON}	$r_s = 532 \text{ and } C_s = 680\text{ pF},$ $T_1 = 150^{\circ}\text{C}$		9			
Snubber R _s energy during turn-off	E _{RS_OFF}			51]	

5. Measured with the switching test circuit in Figure 29.

6. In this datasheet, all the switching energies (turn-on energy, turn-off energy and total energy) presented in the tables and Figures include the device RC snubber energy losses.

Typical Performance Diagrams

Figure 1. Typical output characteristics at $T_{\rm J}$ = - 55°C, tp < 250 μs

Contact Sales Learn

Figure 2. Typical output characteristics at T $_{\rm J}$ = 25°C, tp < 250 μs

Figure 3. Typical output characteristics at T $_{\rm J}$ = 175°C, tp < 250 μs

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_D = 80A

Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

Figure 6. Typical transfer characteristics at V_{DS} = 5V

Figure 7. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 10mA

Figure 8. Typical gate charge at I_D = 80A

United **SiC**

	FET-Jet Calculator	P	Buy Online	0 00	Spice Models		Contact Sales		Learn More
--	-----------------------	---	---------------	-------------	-----------------	--	------------------	--	---------------

Figure 10. 3rd quadrant characteristics at T_J = 25°C

Figure 11. 3rd quadrant characteristics at T_J = 175°C

Figure 12. Typical stored energy in C_{OSS} at V_{GS} = 0V

Spice Models

Contact Sales Learn

More

Buy Online

FET-Jet

Calculato

III

Figure 13. Typical capacitances at f = 100kHz and V_{GS} = 0V

Figure 15. Total power dissipation

Figure 16. Maximum transient thermal impedance

Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_p

Spice

Models

Buy

Online

Learn

More

C

Contact

Sales

FET-Jet

Calculator

Ħ

Figure 18. Reverse recovery charge Qrr vs. junction temperature

Figure 19. Clamped inductive switching energy vs. drain current at V_{DS} = 400V and T_J = 25°C

Figure 20. Clamped inductive switching energy vs. drain current at V_{DS} = 500V and T_J = 25°C

	FET-Jet Calculator	P	Buy Online	<u>ْ</u>	Spice Models	\bigcirc	Contact Sales		Learn More
--	-----------------------	---	---------------	----------	-----------------	------------	------------------	--	---------------

Figure 21. RC snubber energy loss vs. drain current at V_{DS} = 400V and T_J = 25°C

Figure 22. RC snubber energy losses vs. drain current at V_{DS} = 500V and T_J = 25°C

Figure 23. Clamped inductive switching energies vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 80A, and T_J = 25°C

Figure 24. RC snubber energy losses vs. $R_{G,EXT}$ at V_{DS} = 400V, I_D = 80A, and T_1 = 25°C

United **SiC**

	FET-Jet Calculator	P	Buy Online	3	Spice Models		Contact Sales		Learn More
--	-----------------------	---	---------------	----------	-----------------	--	------------------	--	---------------

Figure 25. Clamped inductive switching energies vs. snubber capacitance C_S at V_{DS} = 400V, I_D = 80A, and T_J = 25°C

Figure 26. RC snubber energy losses vs. snubber capacitance C_s at V_{DS} = 400V, I_D = 80A, and T_J = 25°C

Figure 27. Clamped inductive switching energy vs. junction temperature at V_{DS} =400V and I_D = 80A

Figure 28. Clamped inductive switching energy vs. junction temperature at V_{DS} =500V and I_D = 80A

Figure 29. Schematic of the half-bridge mode switching test circuit. Note, a bus RC snubber ($R_{BS} = 1\Omega$, $C_{BS} = 100$ nF) is used to reduce the power loop high frequency oscillations.

Applications Information

SiC FETs are enhancement-mode power switches formed by a highvoltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance ($R_{DS(on)}$), output capacitance (C_{oss}), gate charge (Q_G), and reverse recovery charge (Qrr) leading to low conduction and switching losses. The SiC FETs also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the FET is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on SiC FET operation, see www.unitedsic.com.

Disclaimer

UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within. Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein.