Description

The 5P49V6968 is a programmable clock generator that is intended for high-performance consumer, networking, industrial, computing, and data communications applications. This is Renesas' sixth generation of programmable clock technology (VersaClock 6E).

The 5P49V6968 generates the frequencies from a single reference clock, which can originate from one of the two redundant clock inputs. A glitchless manual switchover function allows one of the redundant clocks to be selected during normal operation.
Two select pins allow up to four different configurations to be programmed, and can be used for different operating modes.

Typical Applications

- Ethernet switch/router
- PCI Express 1.0/2.0/3.0/4.0 spread spectrum on
- PCI Express 1.0/2.0/3.0/4.0/5.0 spread spectrum off
- Broadcast video/audio timing
- Multi-function printer
- Processor and FPGA clocking
- Any-frequency clock conversion
- MSAN/DSLAM/PON
- Fiber Channel, SAN
- Telecom line cards
- Datacenter

Features

- Flexible $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V power rails
- High-performance, low phase noise PLL, <0.5 ps RMS typical phase jitter on outputs
- Four banks of internal OTP memory
- In-system or factory programmable
- ${ }^{2}$ C serial programming interface
- 0xD0 or 0xD4 $I^{2} \mathrm{C}$ address options allow multiple devices to be configured in a same system
- Reference LVCMOS output clock
- Three universal configurable outputs (OUT1, 2, 4):
- Differential (LVPECL, LVDS, or HCSL) 1 kHz to 350 MHz
- Two single-ended (in-phase or 180 degrees out of phase) 1 kHz to 200 MHz
- I/O VDDs can be mixed and matched, supporting 1.8V (LVDS and LVCMOS), 2.5V, or 3.3 V
- Independent spread spectrum on each output pair
- Eight additional LPHCSL outputs (OUT 3, 5-11)
- 1.8 V low power supply
- 1 kHz to 200 MHz
- Programmable output enable or power-down mode
- Redundant clock inputs with manual switchover
- Available in $6 \times 6 \mathrm{~mm} 48$-VFQFPN package
- -40° to $+85^{\circ} \mathrm{C}$ industrial temperature operation

Block Diagram

Contents

1. Pin Assignments 3
2. Pin Descriptions. 3
3. Absolute Maximum Ratings 6
4. Thermal Characteristics 6
5. Recommended Operating Conditions. 6
6. Electrical Characteristics 7
7. Test Loads 14
8. Jitter Performance Characteristics 15
9. PCI Express Jitter Performance and Specification 16
10. Features and Functional Blocks 18
10.1 Device Startup and Power-on-Reset. 18
10.2 Internal Crystal Oscillator (XIN/REF) 19
10.2.1 Choosing Crystals 19
10.2.2 Tuning the Crystal Load Capacitor 19
10.3 Programmable Loop Filter. 21
10.4 Fractional Output Dividers (FOD). 21
10.4.1 Individual Spread Spectrum Modulation 21
10.4.2 Bypass Mode 21
10.4.3 Cascaded Mode 21
10.4.4 Dividers Alignment. 21
10.4.5 Programmable Skew 22
10.5 Output Drivers 22
10.6 SD/OE Pin Function. 22
10.7 I2C Operation 23
11. Typical Application Circuit24
11.1 Input - Driving the XIN/REF 25
11.1.1 Driving XIN/REF with a CMOS Driver 25
11.1.2 Driving XIN with a LVPECL Driver 26
11.2 Output - Single-ended or Differential Clock Terminations 27
11.2.1 LVDS Termination 27
11.2.2 LVPECL Termination 28
11.2.3 HCSL Termination. 29
11.2.4 LVCMOS Termination 29
12. Package Outline Drawings 30
13. Marking Diagram. 30
14. OrderingInformation 30
15. Revision History 31

1. Pin Assignments

Figure 1. Pin Assignments for $6 \times 6 \mathrm{~mm} 48$-VFQFPN Package - Top View

2. Pin Descriptions

Table 1. Pin Descriptions

Pin	Name	Type	Description	
1	OUT10B	Output		Complementary output clock 10. Low-power HCSL (LP-HCSL) output.
2	XOUT	Output		Crystal oscillator interface output.
3	XIN/REF	Input		Crystal oscillator interface input, or single-ended LVCMOS clock input. Input voltage needs to be below 1.2V. Refer to the Output Drivers section for more details.
4	VDDA	Power		Analog functions power supply pin. Connect to 1.8V.
5	VDDO	Power		Connect to 1.8V. Power pin for outputs 3, and 5-11.

Pin	Name	Type		Description
6	OUT9	Output		Output clock 9. Low-power HCSL (LP-HCSL) output.
7	OUT9B	Output		Complementary output clock 9. Low-power HCSL (LP-HCSL) output.
8	OUT8	Output		Output clock 8. Low-power HCSL (LP-HCSL) output.
9	OUT8B	Output		Complementary output clock 8. Low-power HCSL (LP-HCSL) output.
10	OUT7	Output		Output clock 7. Low-power HCSL (LP-HCSL) output.
11	OUT7B	Output		Complementary output clock 7. Low-power HCSL (LP-HCSL) output.
12	SD/OE	Input	Internal Pull- down	Enables/disables the outputs (OE) or powers down the chip (SD). The SH bit controls the configuration of the SD/OE pin. The SH bit needs to be high for SD/OE pin to be configured as SD. The SP bit (0x02) controls the polarity of the signal to be either active HIGH or LOW only when the pin is configured as OE (Default is active LOW.) It has a weak internal pulldown resistor. When configured as SD, the device is shut down, differential outputs are driven high/low, and the single-ended LVCMOS outputs are driven low. When configured as OE, and outputs are disabled, the outputs can be selected to be tri-stated or driven high/low depending on the programming bits as discussed in "SD/OE Pin Function".
13	SEL1/SDA	Input	Internal Pull-down	Configuration select pin, or ${ }^{12}$ C SDA input as selected by OUTO_SEL_I2CB. It has a weak internal pull-down resistor.
14	SELO/SCL	Input	$\begin{array}{\|c\|} \hline \text { Internal } \\ \text { Pull-down } \end{array}$	Configuration select pin, or ${ }^{12}$ C SCL input as selected by OUTO_SEL_I2CB. It has a weak internal pull-down resistor.
15	VDD	Power		Connect to 1.8V.
16	VDDO	Power		Connect to 1.8V. Power pin for outputs 3, and 5-11.
17	OUT6	Output		Output clock 6. Low-power HCSL (LP-HCSL) output.
18	OUT6B	Output		Complementary output clock 6. Low-power HCSL (LP-HCSL) output.
19	OUT5	Output		Output clock 5. Low-power HCSL (LP-HCSL) output.
20	OUT5B	Output		Complementary output clock 5. Low-power HCSL (LP-HCSL) output.
21	VDDO4	Power		Connect to 1.8 V to 3.3 V . VDD supply for OUT4.
22	OUT4	Output		Output clock 4. Refer to the Output Drivers section for more details.
23	OUT4B	Output		Complementary output clock 4. Refer to the Output Drivers section for more details.
24	OEA	Input	Internal Pull-down	Active low output enable pin for outputs $3,5,6$, and 11 . $0=$ Enable outputs, 1 = Disable outputs. This pin has an internal pull-down.
25	NC	-		Do not connect.
26	NC	-		Do not connect.
27	VDDO	Power		Connect to 1.8V. This is a power pin for outputs 3, and 5-11.
28	OUT3B	Output		Complementary output clock 3. Refer to the Output Drivers section for more details.
29	OUT3	Output		Output clock 3. Refer to the Output Drivers section for more details.
30	VDD_Core	Power		Connect to 1.8V.
31	VDD	Power		Connect to 1.8V.

Pin	Name	Type		Description
32	NC	Input		Do not connect.
33	OEB7_10	Input	Internal Pull-down	Active low output enable pin for outputs 7-10. $0=$ Enable outputs; 1 = Disable outputs. This pin has an internal pull-down.
34	OUT2B	Output		Complementary output clock 2. Refer to the Output Drivers section for more details.
35	OUT2	Output		Output clock 2. Refer to the Output Drivers section for more details.
36	VDDO2	Power		Connect to 1.8 V to 3.3 V . VDD supply for OUT2
37	OUT1B	Output		Complementary output clock 1. Refer to the Output Drivers section for more details.
38	OUT1	Output		Output clock 1. Refer to the Output Drivers section for more details.
39	VDDO1	Power		Connect to 1.8 V to 3.3 V . VDD supply for OUT1.
40	NC	-		Do not connect.
41	OUT11	Output		Output clock 11. Low-power HCSL (LP-HCSL) output.
42	OUT11B	Output		Complementary output clock 11. Low-power HCSL (LP-HCSL) output.
43	VDDO	Power		Connect to 1.8V. Power pin for outputs 3, and 5-11.
44	VDD	Power		Connect to 1.8V.
45	OE_buffer	Input	Internal Pull- up	Active High Output enable for outputs 3, and 5-11. $0=$ Disable outputs; $1=$ Enable outputs. This pin has an internal pull-up.
46	VDDOO	Power		Power supply pin for OUTO_SEL_I2CB and crystal oscillation. Connect to 1.8 to 3.3 V . It sets the output voltage levels for OUTO.
47	$\begin{gathered} \text { OUTO_SEL_ } \\ \text { I2CB } \end{gathered}$	Output	Internal Pull- down	Latched input/LVCMOS Output. At power up, the voltage at the pin OUTO_SEL_I2CB is latched by the part and used to select the state of pins 13 and 14. If a weak pull-up (10Kohms) is placed on OUTO_SEL_I2CB, pins 13 and 14 will be configured as hardware select pins, SEL1 and SELO. If a weak pull-down (10Kohms) is placed on OUTO_SEL_I2CB or it is left floating, pins 13 and 14 will act as the SDA and SCL pins of an ${ }^{2} \mathrm{C}$ interface. After power up, the pin acts as a LVCMOS reference output.
48	OUT10	Output		Output clock 10. Low-power HCSL (LP-HCSL) output.
ePAD	GND	GND		Connect to ground pad.

3. Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the device at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 2. Absolute Maximum Ratings

Item	Rating
Supply Voltage, $\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DDD}}, \mathrm{V}_{\mathrm{DDO}}$	3.6 V
XIN/REF Input	1.2 V
${ }^{2} \mathrm{C}$ Loading Current (SDA)	10 mA
Storage Temperature, TSTG	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature	$125^{\circ} \mathrm{C}$
ESD Human Body Model	2000 V

4. Thermal Characteristics

Table 3. Thermal Characteristics

Symbol	Parameter	Value	Units
θ_{JA}	Theta JA. Junction to air thermal impedance (0mps)	41.05	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JB}	Theta JB. Junction to board thermal impedance $(0 \mathrm{mps})$	13.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc}	Theta JC. Junction to case thermal impedance $(0 \mathrm{mps})$	36.41	${ }^{\circ} \mathrm{C} / \mathrm{W}$

5. Recommended Operating Conditions

Table 4. Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Units
$\mathrm{V}_{\text {DDOx }}$	Power supply voltage for supporting 1.8V outputs.	1.71	1.8	1.89	V
	Power supply voltage for supporting 2.5V outputs.	2.375	2.5	2.625	V
	Power supply voltage for supporting 3.3V outputs.	3.135	3.3	3.465	V
$\mathrm{~V}_{\text {DDD }}$	Power supply voltage for core logic functions.	1.71		3.465	V
$\mathrm{~V}_{\text {DDA }}$	Analog power supply voltage. Use filtered analog power supply.	1.71		3.465	V
$\mathrm{~T}_{\text {PU }}$	Power ramp time for all VDDs to reach 90\% of VDD.	0.05		50	ms
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature, ambient.	-40		85	${ }^{\circ} \mathrm{C}$
C_{L}	Maximum load capacitance (3.3V LVCMOS only).			15	pF

6. Electrical Characteristics

Table 5. Current Consumption Characteristics

$V_{D D A}, V_{D D D}, V_{D D O O}=3.3 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%, 1.8 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
IDDCORE $^{[a]}$	Core Supply Current	100 MHz on all outputs		30		mA
IDDox	Output Buffer Supply Current	LVPECL, 350MHz, 3.3V V ${ }_{\text {dDox }}$		42		mA
		LVPECL, 350MHz, 2.5V V ${ }_{\text {dDox }}$		37		mA
		LVDS, 350MHz, 3.3V V ${ }_{\text {doox }}$		18		mA
		LVDS, 350MHz, 2.5V Vddox		17		mA
		LVDS, 350MHz, 1.8V V ${ }_{\text {doox }}$		16		mA
		HCSL, 250MHz, 3.3V V ${ }_{\text {dDOx }}{ }^{[b]}$		29		mA
		HCSL, 250MHz, 2.5V V ${ }_{\text {DDOx }}{ }^{[b]}$		28		mA
		LVCMOS, 50MHz, 3.3V, V ${ }_{\text {dDox }}[\mathrm{bb]},[\mathrm{c}]$		16		mA
		LVCMOS, $50 \mathrm{MHz}, 2.5 \mathrm{~V}, \mathrm{~V}_{\text {doox }}{ }^{[b],[c]}$		14		mA
		LVCMOS, 50MHz, 1.8V, V ${ }_{\text {doox }}[\mathrm{bl]},[\mathrm{c}]$		12		mA
		LVCMOS, 200MHz, 3.3V V ${ }_{\text {doxx }}{ }^{[b],[c]}$		36		mA
		LVCMOS, 200 MHz , 2.5V $\mathrm{V}_{\text {DDOx }}{ }^{[b],[c]}$		27		mA
		LVCMOS, 200MHz, 1.8V V ${ }_{\text {dDOx }}[\mathrm{bl},[\mathrm{c}]$		16		mA
IDDPD	Power Down Current	SD asserted, $I^{2} \mathrm{C}$ programming.		10		mA

[a] $l_{\text {DDCORE }}=l_{\text {DDA }}+l_{\text {DDDD }}$, no loads.
[b] Measured into a 5 " 50Ω trace with a $2 p F$ load.
[c] Single CMOS driver active.

Table 6. AC Timing Characteristics
$V_{D D A}, V_{D D D}, V_{D D O O}=3.3 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%, 1.8 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
Fin ${ }^{[a]}$	Input Frequency	Input frequency limit (Crystal)	8		40	MHz
		Input frequency limit (Single-ended over XIN)	1		200	
Fout ${ }^{[b]}$	Output Frequency	Single-ended clock output limit (LVCMOS), individual FOD mode.	1		200	MHz
		Differential clock output (LVPECL/LVDS/HCSL), individual FOD mode.	0.001		350	
		Single-ended clock output limit (LVCMOS), cascaded FOD mode, output 2, 4.	0.001		200	
		Differential clock output limit (LVPECL/LVDS/HCSL), cascaded FOD mode, output 2, 4.	0.001		350	
		Differential clock output (LP-HCSL output 3, 5-11)	0.001		200	
fvco	VCO Operating Frequency Range		2500		2900	MHz
Toc ${ }^{[c]}$	Output Duty Cycle	Measured at $\mathrm{V}_{\mathrm{DD}} / 2$, all outputs except reference output, $\mathrm{V}_{\text {DDOX }}=2.5 \mathrm{~V}$ or 3.3 V .	45	50	55	\%
		Measured at $\mathrm{V}_{\mathrm{DD}} / 2$, all outputs except reference output, $\mathrm{V}_{\text {DDOX }}=1.8 \mathrm{~V}$	40	50	60	\%
		Measured at $\mathrm{V}_{\mathrm{DD}} / 2$, reference output OUTO $(5-150.1 \mathrm{MHz})$ with 50% duty cycle input.	40	50	60	\%
		Measured at $\mathrm{V}_{\mathrm{DD}} / 2$, reference output OUTO ($150.1-200 \mathrm{MHz}$) with 50% duty cycle input.	30	50	70	\%
Tskew	Output Skew	Skew between the same frequencies, with outputs using the same driver format and phase delay set to Ons.		75		ps
Tstartup [d] [e]	Startup Time	Measured after all V_{DD} S have raised above 90% of their target value. [f]			30	ms
		PLL lock time from shutdown mode.		3	4	ms

[a] Practical lower frequency is determined by loop filter settings.
[b] A slew rate of $2.75 \mathrm{~V} / \mathrm{ns}$ or greater should be selected for output frequencies of 100 MHz or higher.
[c] Duty cycle is only guaranteed at maximum slew rate settings.
[d] Actual PLL lock time depends on the loop configuration.
[e] Includes loading the configuration bits from EPROM to PLL registers. It does not include EPROM programming/write time.
[f] Power-up with temperature calibration enabled, please contact Renesas if shorter lock-time is required in system.

Table 7. General Input Characteristics

$\mathrm{V}_{\mathrm{DDA}}, \mathrm{V}_{\mathrm{DDD}}, \mathrm{V}_{\mathrm{DDOO}}=3.3 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%, 1.8 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise.

Symbol	Parameter	Pins	Minimum	Typical	Maximum	Units
CIN	Input Capacitance	SD/OE,SEL1/SDA, SELO/SCL		3	7	pF
RpD	Pull-down Resistor	SD/OE, SEL1/SDA, SELO/SCL, OUTO_SEL_I2CB	100		300	k Ω
$\mathrm{V}_{\text {IH }}$	Input High Voltage	SD/OE	$0.7 \times V_{\text {DDD }}$		$V_{\text {DDD }}+0.3$	V
VIL	Input Low Voltage	SD/OE	GND - 0.3		$0.3 \times V_{\text {DDD }}$	V
V_{IH}	Input High Voltage	OUTO_SEL_I2CB	$0.65 \times V_{\text {DDOO }}$		$\mathrm{V}_{\text {DDOO }}+0.3$	V
VIL	Input Low Voltage	OUTO_SEL_I2CB	GND - 0.3		0.4	V
V_{IH}	Input High Voltage	XIN/REF	0.8		1.2	V
VIL	Input Low Voltage	XIN/REF	GND - 0.3		0.4	V
$\mathrm{T}_{\mathrm{R}} / \mathrm{T}_{\mathrm{F}}$	Input Rise/Fall Time	SD/OE, SEL1/SDA, SEL0/SCL			300	ns

Table 8. Electrical Characteristics - CMOS Outputs
$V_{D D A}, V_{D D D}, V_{D D O O}=3.3 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%, 1.8 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
Vor	Output High Voltage	$1 \mathrm{OH}=-15 \mathrm{~mA}(3.3 \mathrm{~V}),-12 \mathrm{~mA}(2.5 \mathrm{~V})$.	$0.7 \times \mathrm{V}_{\text {DDO }}$		$V_{\text {DDO }}$	V
Vон	Output High Voltage	$\mathrm{IOH}=-8 \mathrm{~mA}(1.8 \mathrm{~V})$	$0.5 \times \mathrm{V}$ DDO		$V_{\text {DDO }}$	V
VoL	Output Low Voltage	$\mathrm{IOH}=15 \mathrm{~mA}(3.3 \mathrm{~V}), 12 \mathrm{~mA}(2.5 \mathrm{~V}), 8 \mathrm{~mA}(1.8 \mathrm{~V})$			0.45	V
Rout	Output Driver Impedance	CMOS Output Driver		17		Ω
TsR	Slew Rate, SLEW[1:0] = 00	Single-ended 3.3V LVCMOS output clock rise and fall time, 20% to 80% of VDDO (output load $=5 \mathrm{pF}$) $V_{\text {DDOX }}=3.3 \mathrm{~V}$	1.0	2.2		V/ns
	Slew Rate, SLEW[1:0] = 01		1.2	2.3		
	Slew Rate, SLEW[1:0] = 10		1.3	2.4		
	Slew Rate, SLEW[1:0] = 11		1.7	2.7		
	Slew Rate, SLEW[1:0] = 00	Single-ended 2.5V LVCMOS output clock rise and fall time, 20\% to 80\% of VDDO (output load = 5pF) $V_{\text {DDOX }}=2.5 \mathrm{~V}$	0.6	1.3		
	Slew Rate, SLEW[1:0] = 01		0.7	1.4		
	Slew Rate, SLEW[1:0] = 10		0.6	1.4		
	Slew Rate, SLEW[1:0] = 11		1.0	1.7		
	Slew Rate, SLEW[1:0] = 00	Single-ended 1.8V LVCMOS output clock rise and fall time, 20% to 80% of VDDO (output load $=5 \mathrm{pF}$) $\mathrm{VDD}=1.8 \mathrm{~V}$.	0.3	0.7		
	Slew Rate, SLEW[1:0] = 01		0.4	0.8		
	Slew Rate, SLEW[1:0] = 10		0.4	0.9		
	Slew Rate, SLEW[1:0] = 11		0.7	1.2		
lozdo	Output Leakage Current (OUT1-4)	Tri-state outputs			5	$\mu \mathrm{A}$
	Output Leakage Current (OUTO)	Tri-state outputs			30	$\mu \mathrm{A}$

Table 9. Electrical Characteristics - LVDS Outputs
$V_{D D A}, V_{D D D}, V_{D D O O}=3.3 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%, 1.8 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise.

Symbol	Parameter	Minimum	Typical	Maximum	Units
$V_{\text {OT }}(+)$	Differential Output Voltage for the TRUE Binary State	247		454	mV
$\mathrm{V}_{\text {OT }}(-)$	Differential Output Voltage for the FALSE Binary State	-454		-247	mV
$\Delta \mathrm{V}_{\text {OT }}$	Change in $\mathrm{V}_{\text {OT }}$ between Complimentary Output States			50	mV
$\mathrm{V}_{\text {OS }}$	Output Common Mode Voltage (Offset Voltage) at $3.3 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%$	1.125	1.25	1.375	V
	Output Common Mode Voltage (Offset Voltage) at $1.8 \mathrm{~V} \pm 5 \%$	0.8	0.875	0.96	V
$\Delta \mathrm{~V}_{\text {OS }}$	Change in $V_{\text {OS }}$ between Complimentary Output States			50	mV
$\mathrm{I}_{\text {OS }}$	Outputs Short Circuit Current, $\mathrm{V}_{\text {OUT }}+$ or $\mathrm{V}_{\text {OUT }}-=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DDO }}$		9	24	mA
$\mathrm{I}_{\text {OSD }}$	Differential Outputs Short Circuit Current, $\mathrm{V}_{\text {OUT }}+=\mathrm{V}_{\text {OUT }}-$		6	12	mA
$\mathrm{~T}_{\mathrm{R}}$	LVDS rise time 20\%-80\%		300		ps
T_{F}	LVDS fall time 80\%-20\%		300		ps

Table 10. Electrical Characteristics - LVPECL Outputs
$V_{D D A}, V_{D D D}, V_{D D O O}=3.3 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise.

Symbol	Parameter	Minimum	Typical	Maximum	Units
$V_{O H}$	Output Voltage High, terminated through 50Ω tied to $V_{D D}-2 \mathrm{~V}$	$V_{D D O}-1.19$		$V_{D D O}-0.69$	V
$V_{\text {OL }}$	Output Voltage Low, terminated through 50Ω tied to $V_{D D}-2 \mathrm{~V}$	$V_{D D O}-1.94$		$V_{D D O}-1.4$	V
$V_{\text {Swing }}$	Peak-to-Peak Differential Output Voltage Swing	1.1		2	V
T_{R}	LVPECL rise time 20\%-80\%		400		ns
T_{F}	LVPECL fall time 80\%-20\%		400		ns

Table 11. Electrical Characteristics - HCSL Outputs[a]
$V_{D D A}, V_{D D D}, V_{D D O O}=3.3 \mathrm{~V} \pm 5 \%, 2.5 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless stated otherwise.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
$\mathrm{dV} / \mathrm{dt}$	Slew Rate	Scope averaging on $[b][c]$	1		4	V/ns
$\Delta \mathrm{dV} / \mathrm{dt}$	Slew Rate Matching	Scope averaging on $[b][c]$			20	$\%$
$\mathrm{~V}_{\text {MAX }}$	Maximum Voltage	Measurement on single-ended signal absolute value (scope averaging off)			1150	mV
$\mathrm{V}_{\text {MIN }}$	Minimum Voltage		-300			mV
$\mathrm{V}_{\text {SWING }}$	Voltage Swing	Scope averaging off $[b][f]$	300			mV
$\mathrm{V}_{\text {CROSS }}$	Crossing Voltage Value	Scope averaging off $[\mathrm{d}][f]$	250		550	mV
$\Delta \mathrm{V}_{\text {CROSS }}$	Crossing Voltage Variation	Scope averaging off $[\mathrm{ec}]$			140	mV

[a] Guaranteed by design and characterization. Not 100% tested in production.
[b] Measured from differential waveform.
[c] Slew rate is measured through the VSWING voltage range centered on differential OV . This results in a $\pm 150 \mathrm{mV}$ window around differential 0 V .
[d] VCROSS is defined as voltage where Clock = Clock\# measured on a component test board and only applies to the differential rising edge (i.e., Clock rising and Clock\# falling).
[e] The total variation of all VCROSS measurements in any particular system. Note that this is a subset of VCROSS min/max (VCROSS absolute) allowed. The intent is to limit VCROSS induced modulation by setting $\triangle V C R O S S$ to be smaller than VCROSS absolute.
[f] Measured from single-ended waveform.

Table 12. Spread-Spectrum Generation Specifications

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
fssout	Spread Frequency	Output frequency range for spread spectrum	5		300	MHz
$\mathrm{f}_{\text {MOD }}$	Mod Frequency	Modulation frequency.	30 to 63		kHz	
fspread	Spread Value	Amount of spread value (programmable)-center spread.	$\pm 0.1 \%$ to $\pm 2.5 \%$	$\% f_{\text {Out }}$		
		Amount of spread value (programmable)-down spread.	-0.2% to -5%			

Table 13. ${ }^{12} \mathrm{C}$ Bus (SCL/SDA) DC Characteristics

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
V_{IH}	Input High Level	For SEL1/SDA pin and SELO/SCL pin.	$0.7 \times \mathrm{V}_{\text {DDD }}$			V
$\mathrm{V}_{\text {IL }}$	Input Low Level	For SEL1/SDA pin and SELO/SCL pin.			$0.3 \times V_{\text {DDD }}$	V
$\mathrm{V}_{\mathrm{HYS}}$	Hysteresis of Inputs		$0.05 \times \mathrm{V}_{\text {DDD }}$			V
I_{IN}	Input Leakage Current		-1		36	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\mathrm{IOL}_{\text {O }}=3 \mathrm{~mA}$			0.4	V

Table 14. $1^{12} \mathrm{C}$ Bus (SCL/SDA) AC Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Units
$\mathrm{F}_{\text {SCLK }}$	Serial Clock Frequency (SCL)	10		400	kHz
$\mathrm{t}_{\text {BUF }}$	Bus Free Time between Stop and Start	1.3			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SU:START }}$	Setup Time, Start	0.6			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {HD:START }}$	Hold Time, Start	0.6			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SU:DATA }}$	Setup Time, Data Input (SDA)	0.1			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {HD:DATA }}$	Hold Time, Data Input (SDA) ${ }^{[a]}$	0			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {OVD }}$	Output Data Valid from Clock			0.9	$\mu \mathrm{~s}$
C_{B}	Capacitive Load for Each Bus Line			400	pF
t_{R}	Rise Time, Data and Clock (SDA, SCL)	$20+0.1 \times \mathrm{C}_{\mathrm{B}}$		300	ns
t_{F}	Fall Time, Data and Clock (SDA, SCL)	$20+0.1 \times \mathrm{C}_{\mathrm{B}}$		300	ns
$\mathrm{t}_{\text {HIGH }}$	High Time, Clock (SCL)	0.6			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {LOW }}$	Low Time, Clock (SCL)	1.3			$\mu \mathrm{~s}$
$\mathrm{t}_{\text {SU:STOP }}$	Setup Time, Stop	0.6			$\mu \mathrm{~s}$

[a] A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the $\mathrm{V}_{\mathrm{H}(\mathrm{min})}$ of the SCL signal) to bridge the undefined region of the falling edge of SCL.
[b] $I^{2} C$ inputs are $3.3 V$ tolerant.

7. Test Loads

Figure 2. LVCMOS Test Load

Figure 3. HCSL/LPHCSL Test Load

Figure 4. LVDS Test Load

Figure 5. LVPECL Test Load

8. J itter Performance Characteristics

Figure 6. Typical Phase Jitter Plot at 156.25MHz

Note: Measured with OUT2=156.25MHz on, 39.625 MHz input.
Table 15. J itter Performance

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
Jcr-cy	Cycle to Cycle Jitter	LVCMOS $3.3 \mathrm{~V} \pm 5 \%,-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$		5	30	ps
		All differential outputs $3.3 \mathrm{~V} \pm 5 \%,-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$		25	35	ps
$\mathrm{J}_{\text {pk-pk }}$	Period Jitter	LVCMOS 3.3V $\pm 5 \%,-40^{\circ} \mathrm{C}-90^{\circ} \mathrm{C}$		28	40	ps
		All differential outputs $3.3 \mathrm{~V} \pm 5 \%,-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$		4	30	ps
JRMS	RMS Phase Jitter(12kHz-20MHz)	LVCMOS $3.3 \mathrm{~V} \pm 5 \%,-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$		0.3		ps
		All differential outputs $3.3 \mathrm{~V} \pm 5 \%,-40^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$		0.5		ps

[a] Measured with 25 MHz crystal input.
[b] Configured with OUT0 $=25 \mathrm{MHz}-$ LVCMOS OUT1 $=100 \mathrm{MHz}$ HCSL OUT2 $=125 \mathrm{MHz}$ LVDS OUT3 $=156.25 \mathrm{MHz}-$ LVPECL.

9. PCI Express J itter Performance and Specification

Table 16. PCI Express J itter Performance (Spread Spectrum = OFF)

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Limit	Units	Notes
PCle Phase Jitter (Common Clocked Architectures)	tjphPCleG1-CC $^{\text {d }}$	PCle Gen1 (2.5 GT/s) SSC = OFF		4		86	$\begin{gathered} \mathrm{ps} \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$	1,2
	$\mathrm{t}_{\text {jphPCleG2-CC }}$	PCle Gen2 Lo Band ($5.0 \mathrm{GT} / \mathrm{s}$) SSC = OFF		0.05		3	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	1, 2
		PCle Gen2 Hi Band (5.0 GT/s) SSC = OFF		0.22		3.1	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	1, 2
	$\mathrm{t}_{\text {jphPCleG3-CC }}$	PCle Gen3 (8.0 GT/s) SSC = OFF		0.12		1	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	1, 2
	tiphPCleG4-CC $^{\text {d }}$	PCle Gen4 (16.0 GT/s) SSC = OFF		0.12		0.5	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	$\begin{gathered} 1,2,3, \\ 4 \end{gathered}$
	tiphPCleG5-CC	$\begin{gathered} \text { PCle Gen5 (} 32.0 \mathrm{GT} / \mathrm{s} \text {) } \\ \text { SSC = OFF } \end{gathered}$		0.05		0.15	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	$\begin{gathered} 1,2,3 \\ 5 \end{gathered}$
PCle Phase Jitter (SRNS Architectures)	$\mathrm{t}_{\text {jphPCleG1-SRNS }}$	PCle Gen1 (2.5 GT/s) $S S C=0 F F$		0.3		n/a	$\begin{gathered} \mathrm{ps} \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$	1, 2, 6
	$\mathrm{t}_{\text {jphPCleG2-SRNS }}$	PCle Gen2 (5.0 GT/s) SSC = OFF		0.26		n/a	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	1, 2, 6
	$\mathrm{t}_{\text {jphPCleG3-SRNS }}$	PCle Gen3 (8.0 GT/s) SSC = OFF		0.07		n/a	$\begin{gathered} \mathrm{ps} \\ (\mathrm{RMS}) \end{gathered}$	1, 2, 6
	$\mathrm{t}_{\text {jphPCleG4-SRNS }}$	PCle Gen4 ($16.0 \mathrm{GT} / \mathrm{s}$) SSC = OFF		0.07		n/a	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	1, 2, 6
	$\mathrm{t}_{\text {jphPCleG5-SRNS }}$	$\begin{gathered} \text { PCle Gen5 (} 32.0 \mathrm{GT} / \mathrm{s} \text {) } \\ \text { SSC = OFF } \end{gathered}$		0.07		n/a	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	1, 2, 6

${ }^{1}$ The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table.
2 Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200 MHz (at 300 MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the $2.5 \mathrm{GT} / \mathrm{s}$ data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83 . In the case where real-time oscilloscope and PNA measurements have both been done and produce different results the RTO result must be used.
${ }^{3}$ SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content.
4 Note that 0.7 ps RMS is to be used in channel simulations to account for additional noise in a real system.
5 Note that 0.25 ps RMS is to be used in channel simulations to account for additional noise in a real system.
6 While the PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by Ö2.

Table 17. PCI Express J itter Performance (Spread Spectrum = ON)

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Limit	Units	Notes
PCle Phase Jitter (Common Clocked Architectures)	tjphCleec1-cc	PCle Gen1 (2.5 GT/s) $S S C=\leq-0.5 \%$		16		86	$\begin{gathered} \mathrm{ps} \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$	1,2
	tiphPCleG2-Cc	PCle Gen2 Lo Band ($5.0 \mathrm{GT} / \mathrm{s}$) SSC $=\leq-0.5 \%$		0.02		3	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	1,2
		PCle Gen2 Hi Band (5.0 GT/s) $S S C=\leq-0.5 \%$		0.92		3.1	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	1,2
	tjphPClee3.cc	PCle Gen3 ($8.0 \mathrm{GT} / \mathrm{s}$) SSC = $\leq-0.5 \%$		0.37		1	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	1,2
	tjphPCle94.cC	PCle Gen4 ($16.0 \mathrm{GT} / \mathrm{s}$) $\text { SSC }=\leq-0.5 \%$		0.37		0.5	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	$\underset{4}{1,2,3,}$
	tjphPClees5.cc	PCle Gen5 ($32.0 \mathrm{GT} / \mathrm{s}$) $S S C=\leq-0.5 \%$		N/A		0.15	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	$\begin{gathered} 1,2,3, \\ 5 \end{gathered}$
PCle Phase Jitter (SRIS Architectures)	tjphPCleG1-SRIS	PCle Gen1 ($2.5 \mathrm{GT} / \mathrm{s}$) SSC = $\leq-0.3 \%$		14		n/a	$\begin{gathered} \mathrm{ps} \\ (\mathrm{p}-\mathrm{p}) \end{gathered}$	1, 2, 6
	tjphPCleg2-SRIS	PCle Gen2 ($5.0 \mathrm{GT} / \mathrm{s}$) $S S C=\leq-0.3 \%$		1.4		n/a	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	1, 2, 6
	tjphPCleg3-SRIS	PCle Gen3 ($8.0 \mathrm{GT} / \mathrm{s}$) $\text { SSC }=\leq-0.3 \%$		0.42		n/a	$\begin{gathered} \mathrm{ps} \\ \text { (RMS) } \end{gathered}$	1, 2, 6
	tjphPCleG4-SRIS	PCle Gen4 ($16.0 \mathrm{GT} / \mathrm{s}$) $\text { SSC }=\leq-0.3 \%$		0.36		n/a	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	1, 2, 6
	tjphPCleF5-SRIS	PCle Gen5 ($32.0 \mathrm{GT} / \mathrm{s}$) $S S C=\leq-0.3 \%$		N/A		n/a	$\begin{gathered} \text { ps } \\ \text { (RMS) } \end{gathered}$	1, 2, 6

${ }^{1}$ The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table.
2 Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200 MHz (at 300 MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the $2.5 \mathrm{GT} / \mathrm{s}$ data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83 . In the case where real-time oscilloscope and PNA measurements have both been done and produce different results the RTO result must be used.
${ }^{3}$ SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content.
4 Note that 0.7 ps RMS is to be used in channel simulations to account for additional noise in a real system.
5 Note that 0.25 ps RMS is to be used in channel simulations to account for additional noise in a real system.
6 While the PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by O 2 .

10. Features and Functional Blocks

10.1 Device Startup and Power-on-Reset

The 5P49V6968 has an internal power-up reset (POR) circuit. All VDDs must be connected to the desired supply voltage to trigger a POR.
The user can define specific default configurations through internal One-Time-Programmable (OTP) memory -- either the user or factory can program the default configuration. Contact Renesas if a specific factory-programmed default configuration is required, or refer to the VersaClock 6E Programming Guide.
The device will identity which of the two modes to operate in by the state of the OUTO_SEL_I2CB pin at POR. Both modes' default configurations can be programmed as follows:

1. Software Mode $\left({ }^{2} \mathrm{C}\right)$: OUTO_SEL_I2CB is low at POR.

The ${ }^{12} \mathrm{C}$ interface will be open to users for in-system programming, overriding device default configurations at any time.
2. Hardware Select Mode: OUTO_SEL_I2CB is high at POR.
 Power-Up Behavior .
Internal OTP memory can support up to four configurations, which selectable by the SELO/SEL1 pins.
At POR, logic levels at SELO and SEL1 pins must be settled, which results in the selected configuration to be loaded at power up.
After the first 10 ms of operation, the levels of the SELx pins can be changed, either to low or to the same level as VDDD/VDDA. The SELx pins must be driven with a digital signal of < 300 ns rise/fall time and only a single pin can be changed at a time. After a pin level change, the device must not be interrupted for at least 1 ms so that the new values have time to load and take effect.

Table 18. Power-Up Behavior

OUTO_SEL_I2CB at POR	SEL1	SEL0	$\mathbf{I}^{2} C$ Access	REG0:7	Config
1	0	0	No	0	0
1	0	1	No	0	1
1	1	0	No	0	2
1	1	1	No	0	3
0	X	X	Yes	1	$12 C$ defaults
0	X	X	Yes	0	0

10.2 Internal Crystal Oscillator (XIN/REF)

10.2.1 Choosing Crystals

A crystal manufacturer will calibrate its crystals to the nominal frequency with a certain load capacitance value. When the oscillator load capacitance matches the crystal load capacitance, the oscillation frequency will be accurate. When the oscillator load capacitance is lower than the crystal load capacitance, the oscillation frequency will be higher than nominal and vice versa. Therefore, for an accurate oscillation frequency you must match the oscillator load capacitance with the crystal load capacitance.

10.2.2 Tuning the Crystal Load Capacitor

Cs1 and Cs2 are stray capacitances at each crystal pin and typical values are between 1 pF and 3 pF (see Figure 7).
Ce 1 and Ce 2 are additional external capacitors. Increasing the load capacitance reduces the oscillator gain, so it is recommended to consult the manufacturer when adding Ce 1 and/or Ce 2 to avoid crystal startup issues.

Ci 1 and Ci 2 are integrated programmable load capacitors, one at XIN and one at XOUT.
Figure 7. Tuning the Crystal Load Capacitor

The value of each capacitor is composed of a fixed capacitance amount plus a variable capacitance amount set with the XTAL[5:0] register. Ci 1 and Ci 2 are commonly programmed to be the same value. Adjustment of the crystal tuning capacitors allows maximum flexibility to accommodate crystals from various manufacturers. The range of tuning capacitor values available are in accordance with the following table. $\mathrm{Ci} 1 / \mathrm{Ci} 2$ starts at 9 pF with the setting 000000 b , and can be increased up to 25 pF with the setting 111111 b . The step per bit is 0.5 pF .

Table 19. XTAL[5:0] Tuning Capacitor

Parameter	Bits	Step (pF)	Min (pF)	Max (pF)
XTAL	6	0.5	9	25

You can write the following equation for this capacitance:

$$
\begin{aligned}
& \mathrm{Ci}=9 \mathrm{pF}+0.5 \mathrm{pF} \times \mathrm{XTAL}[5: 0] \\
& \mathrm{Cxin}=\mathrm{Ci} 1+\mathrm{Cs} 1+\mathrm{Ce} 1 \\
& \mathrm{CxOUT}=\mathrm{Ci} 2+\mathrm{Cs} 2+\mathrm{Ce} 2
\end{aligned}
$$

The final load capacitance of the crystal:

$$
C_{L}=C_{x i N} \times C_{\text {XOUT }} /\left(C_{x i n}+C_{\text {Xout }}\right)
$$

It is recommended to set the same value at each crystal pin meaning:

$$
\mathrm{CXIN}_{\text {XIN }}=\mathrm{CXOUT}^{2}
$$

Example 1: The crystal load capacitance is specified as 8 pF and the stray capacitance at each crystal pin is $\mathrm{Cs}=1.5 \mathrm{pF}$. Assuming an equal capacitance value at XIN and XOUT, the equation is as follows:

$$
\begin{aligned}
& 8 p F=(9 p F+0.5 p F \times X T A L[5: 0]+1.5 p F) / 2 \\
& \text { So, XTAL[5:0] }=11(\text { decimal })
\end{aligned}
$$

Example 2: The crystal load capacitance is specified as 12 pF and the stray capacitance Cs is unknown. Footprints for external capacitors Ce are added and a worst case Cs of $5 p F$ is used. This example uses $C s+C e=5 p F$; the correct value for Ce can be determined later to make 5 pF together with Cs .

$$
\begin{aligned}
& 12 p F=(9 p F+0.5 p F \times X T A L[5: 0]+5 p F) / 2 \\
& \text { So, XTAL[5:0] }=20(\text { decimal })
\end{aligned}
$$

Table 20. Rec ommended Crystal Characteristics

| Parameter | Minimum | Typical | Maximum | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Mode of Oscillation | Fundamental | | | |
| Frequency | 8 | 25 | 40 | MHz |
| Equivalent Series Resistance (ESR) | | 10 | 100 | Ω |
| Shunt Capacitance | | | 7 | pF |
| Load Capacitance $\left(C_{L}\right)$ at < $=25 \mathrm{MHz}$ | 6 | 8 | 12 | pF |
| Load Capacitance $\left(C_{L}\right)>25 \mathrm{MHz}$ to 40 MHz | 6 | | 8 | pF |
| Maximum Crystal Drive Level | | | 100 | μW |

10.3 Programmable Loop Filter

The device PLL loop bandwidth operating range depends on the input reference frequency (Fref).
Table 21. Loop Filter Settings

Input Reference Frequency (MHz)	Loop Bandwidth Minimum (kHz)	LoopBandwidth Maximum (kHz)
1	40	126
350	300	1000

10.4 Fractional Output Dividers (FOD)

The 5P49V6968 has four fractional output dividers (FOD). Each FOD is comprised of a 12 -bit integer counter and a 24 -bit fractional counter. The output divider can operate in integer divide only mode for improved performance, or use the fractional counters to generate a clock frequency accurate to 50 ppb .
FODs support the following features.

10.4.1 Individual Spread Spectrum Modulation

The output clock frequencies can be modulated to spread energy across a broader range of frequencies, thereby lowering system EMI. Each divider has individual spread ability. Spread modulation independent of output frequency, a triangle wave modulation between 30 and 63 kHz .

Spread spectrum can be applied to any output clock, clock frequency, or spread amount from $\pm 0.25 \%$ to $\pm 2.5 \%$ center-spread and -0.5% to -5\% down-spread.

10.4.2 Bypass Mode

Bypass mode (divide by 1) allows the output to behave as a buffered copy from the input or another FOD.

10.4.3 Cascaded Mode

As shown in the block diagram on page 1, FODs can be cascaded for lower output frequency.
For example, if OUT1 is configured to run at 12.288 MHz and needs another 48 kHz output, the user can cascade FOD2 by taking input from OUT1, with a divide ratio of 256 . As a result, OUT 2 runs at 48 kHz while in alignment with 12.288 MHz on OUT1.

10.4.4 Dividers Alignment

Each output divider block has a synchronizing pulse to provide startup alignment between outputs dividers. This allows alignment of outputs for low skew performance.
When the 5P49V6968 is in hardware select mode, outputs are automatically aligned at POR. The same synchronization reset is also triggered when switching between configurations with the SELO/1 pins. This ensures that the outputs remain aligned in every configuration.
When the 5 P 49 V 6968 is using software mode, $I^{2} \mathrm{C}$ is used to reprogram an output divider during operation, and therefore, alignment can be lost. Alignment can be restored by manually triggering a reset through $I^{2} \mathrm{C}$.
The outputs are aligned on the falling edges of each output by default. Rising edge alignment can also be achieved by using the programmable skew feature to delay the faster clock by 180 degrees. The programmable skew feature also allows for fine tuning of the alignment.

10.4.5 Programmable Skew

The 5P49V6968 can skew outputs by quadrature values. The skew on each output can be adjusted from 0 to 360 degrees. Skew is adjusted in units equal to $1 / 32$ of the VCO period. As a result, for 100 MHz output and a 2800 MHz VCO, the user can select how many 11.161 ps units to be added to the skew (resulting in units of 0.402 degrees). For example, $0,0.402,0.804,1.206,1.408$, and so on. The granularity of the skew adjustment is always dependent on the VCO period and the output period.

10.5 Output Drivers

Device output drivers can individually support the following features:

- 2.5 V or 3.3 V voltage level for HCSL/LVPECL operation
- $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V voltage levels for CMOS/LVDS operation
- CMOS supports four operating modes:
- CMOSD: OUTx and OUTxB 180 degrees out of phase
- CMOSX2: OUTx and OUTxB phase-aligned
- CMOS1: only OUTx pin is on
- CMOS2: only OUTxB pin is on

When a given output is configured to CMOSD or CMOSX2, then all previously described configuration and control apply equally to both pins.

- Independent output enable/disabled by register bits. When disabled, an output can be either in a logic 1 state or Hi-Z.

The following options are used to disable outputs:

- Output turned off by ${ }^{2} \mathrm{C}$
- Output turned off by SD/OE pin
- Output unused, which means it is turned off regardless of OE pin status

10.6 SD/OE Pin Function

The SD/OE pin can be programmed as follows:

- OE output enable (low active)
- OE output enable (high active)
- Global shutdown (low active)
- Global shutdown (high active)

Output behavior when disabled is also programmable. The user can select the output driver behavior when it is off as follows:

- OUTx pin high, OUTxB pin low (controlled by SD/OE pin)
- OUTx/OUTxB Hi-Z (controlled by SD/OE pin)
- OUTx pin high, OUTxB pin low (configured through $\mathrm{I}^{2} \mathrm{C}$)
- OUTx/OUTxB Hi-Z (configured by ${ }^{12} \mathrm{C}$)

The user can disable the output with either ${ }^{2} \mathrm{C}$ or SD/OE pin. For more information, see the VersaClock 6E Programming Guide.

$10.7 \quad$ I $^{2} \mathrm{C}$ Operation

The 5P49V6968 acts as a slave device on the $I^{2} \mathrm{C}$ bus using one of the two ${ }^{12} \mathrm{C}$ addresses ($0 \times \mathrm{xD} 0$ or $0 \times \mathrm{D} 4$) to allow multiple devices to be used in the system. The interface accepts byte-oriented block write and block read operations.

Address bytes (2 bytes) specify the register address of the byte position of the first register to write or read.
Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first).
Read and write block transfers can be stopped after any complete byte transfer. During a write operation, data will not be moved into the registers until the STOP bit is received, at which point, all data received in the block write will be written simultaneously.

For full electrical ${ }^{12} \mathrm{C}$ compliance, use external pull-up resistors for SDATA and SCLK.
Figure 8. I2C R/W Sequence
Current Read

| S | Dev Addr + R | A | Data 0 | A | Data 1 | A | 000 | A | Data n | Abar |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | P

Sequential Read

s	Dev Addr + W	A	Reg start Addr	A	Sr	Dev Addr + R	A	Data 0	A	Data 1	A	000	A	Data n	Abar	P

Sequential Write

S	Dev Addr + W	A	Reg start Addr	A	Data 0	A	Data 1	A	000	A	Data n	A	P

from master to slave
from slave to master

$\mathrm{S}=\mathrm{start}$
$\mathrm{Sr}=$ repeated start
A = acknowledge
Abar= none acknowledge
$P=$ stop

11. Typical Application Circuit

Figure 9. Typical Application Circuit

11.1 Input - Driving the XIN/REF

11.1.1 Driving XIN/REF with a CMOS Driver

In some instances, it is preferable to have XIN/REF driven by a clock input -- for reasons such as better SNR, multiple input select with device CLKIN, etc. The XIN/REF pin can take an input when its amplitude is between 500 mV and 1.2 V , and the slew rate more than $0.2 \mathrm{~V} / \mathrm{ns}$. The XIN/REF input can be overdriven by an LVCMOS driver or by one side of a differential driver through an AC coupling capacitor. The XOUT pin can be left floating.

Figure 10. Overdriving XIN with a CMOS Driver

Table 22. Nominal Voltage Divider Values for Overdriving CLKIN with Single-ended Driver

LVCMOS Diver V DD 2	Ro + Rs	R1	R2	V_XIN (peak)	Ro+Rs+R1+R2
3.3	50.0	130	75	0.97	255
2.5	50.0	100	100	1.00	250
1.8	50.0	62	130	0.97	242

11.1.2 Driving XIN with a LVPECL Driver

Figure 11 shows an example of the interface diagram for a 3.3V LVPECL driver. This is a standard LVPECL termination with one side of the driver feeding the XIN/REF input. It is recommended that all components in the schematic be placed in the layout; though some components may not be used, they can be used for debugging purposes. The datasheet specifications are characterized and guaranteed using a quartz crystal as the input. If the driver is 2.5 V LVPECL, the only required change is to use the appropriate R3 value.

Figure 11. Overdriving XIN with a LVPECL Driver

Table 23 shows resistor values that ensure the maximum drive level for the CLKIN port is not exceeded for all combinations of 5\% tolerance on the driver $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DDO}}$, and 5% resistor tolerances. The resistor values can be adjusted to reduce the loading for a slower and weaker LVCMOS driver by increasing the impedance of the R1-R2 divider. To better assist with this assessment, the total load (Ro+Rs+R1+R2) on the driver is included in the table.

Table 23. Nominal Voltage Divider Values for Overdriving CLKIN with Single-ended Driver

LVCMOS Diver VDD	Ro + Rs	R1	R2	Vrx (peak)	Ro+Rs+R1+R2
3.3	50.0	130	75	0.97	255
2.5	50.0	100	100	1.00	250
1.8	50.0	62	130	0.97	242

11.2 Output - Single-ended or Differential Clock Terminations

11.2.1 LVDS Termination

For a general LVDS interface, the recommended value for the termination impedance (ZT) is between 90Ω and 132Ω. The actual value should be selected to match the differential impedance (Zo) of your transmission line. A typical point-to-point LVDS design uses a 100Ω parallel resistor at the receiver and a 100Ω. Differential transmission-line environment. In order to avoid any transmission-line reflection issues, the components should be surface mounted and must be placed as close to the receiver as possible. The standard termination schematic as shown in figure Standard Termination or the termination of figure Optional Termination can be used, which uses a center tap capacitance to help filter common mode noise. The capacitor value should be approximately 50 pF . In addition, since these outputs are LVDS compatible, the input receiver's amplitude and common-mode input range should be verified for compatibility with the Renesas LVDS output.

For example, the LVDS outputs can be AC coupled by placing capacitors between the LVDS outputs and the 100Ω shunt load. This is a common practice with receiver with internal self-bias circuitry. If using a non-standard termination, it is recommended to contact Renesas and confirm that the termination will function as intended.

Figure 12. Standard and Optional Terminations

11.2.2 LVPECL Termination

The clock layout topology shown below are typical terminations for LVPECL outputs. The differential outputs generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. For VDDO $=2.5 \mathrm{~V}$, the VDDO -2 V is very close to ground level. The R3 in 2.5 V LVPECL Output Termination can be eliminated and the termination is shown in 2.5 V LVPECL Output Termination (2).

Figure 13. 3.3V LVPECL Output Termination (1)

Figure 14. 3.3V LVPECL Output Termination (2)

Figure 15. 2.5V LVPECL Output Termination (1)

Figure 16. 2.5V LVPECL Output Termination (2)

Figure 17. 2.5V LVPECL Output Termination (3)

11.2.3 HCSL Termination

HCSL termination scheme applies to both 3.3 V and 2.5 V VDDO.

Figure 18. HCSL Receiver Terminated

Figure 19. HCSL Source Terminated

11.2.4 LVCMOS Termination

Each output pair can be configured as a standalone CMOS or dual-CMOS output driver. An example of CMOSD driver termination is shown in the following figure:

- CMOS1 - Single CMOS active on OUTx pin
- CMOS2 - Single CMOS active on OUTxB pin
- CMOSD - Dual CMOS outputs active on both OUTx and OUTxB pins, 180 degrees out of phase
- CMOSX2 - Dual CMOS outputs active on both OUTx and OUTxB pins, in-phase

Figure 20. LVCMOS Termination

12. Package Outline Drawings

The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available.
www.idt.com/us/en/document/psc/48-vfqfpn-package-outline-drawing60-x-60-x-090-mm-body-epad-42-x-42-mm-040mm-pitchndg48p2

13. Marking Diagram

- Lines 1 and 2 indicate the part number.
- Line 3:
- "YYWW" is the last digit of the year and week that the part was assembled.
- \# denotes the sequential lot number.
- "\$" denotes the mark code.

14. Ordering Information

Orderable Part Number[a][b]	Package	Carrier Type	Temperature
5P49V6968AdddNDGI	$6 \times 6 \mathrm{~mm} \mathrm{48-VFQFPN}$	Tray	-40° to $+85^{\circ} \mathrm{C}$
5P49V6968AdddNDGI8	$6 \times 6 \mathrm{~mm} 48$-VFQFPN	Tape and Reel	-40° to $+85^{\circ} \mathrm{C}$
5P49V6968A000NDGI	$6 \times 6 \mathrm{~mm} 48$-VFQFPN	Tray	-40° to $+85^{\circ} \mathrm{C}$
5P49V6968A000NDG18	$6 \times 6 \mathrm{~mm} 48$-VFQFPN	Tape and Reel	-40° to $+85^{\circ} \mathrm{C}$

[a] "ddd" denotes factory programmed configurations based on required settings. Please contact factory for factory programming.
[b] "000" denotes un-programmed parts for user customization.

15. Revision History

Revision Date	Description of Change
August 20, 2020	Updated slew rate terminology in section Driving XIN/REF with a CMOS Driver.
October 4, 2019	- Updated Absolute Maximum Ratings table. - Updated PCI Express Jitter Performance tables (Table 16 and Table 17). - Updated Electrical Characteristics tables (Table 8, Table 10 and Table 13).
June 19, 2019	- PCle specification updated. - Added recommended power ramp time. - Expanded spread spectrum value range. - I2C tolerant voltage footnote changed to 3.3V. - LVDS Termination section allows AC-coupling for LVDS signals.
August 30, 2018	Updated schematics for Driving XIN/REF with a CMOS Driver and Driving XIN with an LVPECL Driver sections.
July 5, 2018	Removed all references to CLKIN and updated values in electrical tables.
March 16, 2018	Updated Current Consumption, AC Timing, LVDS, and CMOS electrical tables.
December 12, 2017	Initial release.

TOP VIEW

BOTTOM VIEW

NOTES:

1. JEDEC compatible.
2. All dimensions are in mm and angles are in degrees.
3. Use $\pm 0.05 \mathrm{~mm}$ for the non-toleranced dimensions.
4. Numbers in () are for references only.

RECOMMENDED LAND PATTERN
(PCB Top View, NSMD Design)

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/

Trademarks

